REDUCING GRAPHS BY LIFTING ROTATIONS OF EDGES TO SPLITTABLE GRAPHS

Vitaly Baransky     (Ural Federal University, 51 Lenina av., Ekaterinburg, 620000, Russian Federation)
Valentin Zuev     (Ural Federal University, 51 Lenina av., Ekaterinburg, 620000, Russian Federation)
Tatiana Senchonok     (Ural Federal University, 51 Lenina av., Ekaterinburg, 620000, Russian Federation)

Abstract


A graph \(G\) is splittable if its set of vertices can be represented as the union of a clique and a coclique. We will call a graph \(H\) a splittable ancestor of a graph \(G\) if the graph \(G\) is reducible to the graph \(H\) using some sequential lifting rotations of edges and \(H\) is a splittable graph. A  splittable \(r\)-ancestor of \(G\) we will call its splittable ancestor whose Durfey rank is \(r\). Let us set \(s = ({1}/{2}) (\mathrm{sum}\,\mathrm{tl}(\lambda) - \mathrm{sum}\,\mathrm{hd}(\lambda))\), where \(\mathrm{hd}(\lambda)\) and \(\mathrm{tl}(\lambda)\) are the head and the tail of a partition \(\lambda\). The main goal of this work is to prove that any graph \(G\) of Durfey rank \(r\) is reducible by \(s\) successive lifting rotations of edges to a splittable \(r\)-ancestor \(H\) and \(s\) is the smallest non-negative integer with this property. Note that the degree partition \(\mathrm{dpt}(G)\) of the graph \(G\) can be obtained from the degree partition \(\mathrm{dpt}(H)\) of the splittable \(r\)-ancestor \(H\) using a sequence of \(s\) elementary transformations of the first type. The obtained results provide new opportunities for investigating the set of all realizations of a given graphical partition using splittable graphs.


Keywords


Integer partition, Graphical partition, Degree partition, Splittable graph, Rotation of an edge

Full Text:

PDF

References


  1. Andrews G.E. The Theory of Partitions. Cambridge: Cambridge Univ. Press, 1976. 255 p. DOI: 10.1017/CBO9780511608650
  2. Baransky V.A., Senchonok T.A. Around the Erdös–Gallai criterion. Ural Math. J., 2023. Vol. 9, No. 1. P. 29–48. DOI: 10.15826/umj.2023.1.003
  3. Foldes S., Hammer P.L. Split graphs. In: Proc. of the 8th South-Eastern Conf. on Comb.: Graph Theory and Computing, 1977. P. 311–315.
  4. Fulkerson D.R., Hoffman A.J., McAndrew M. H. Some properties of graphs with multiple edges. Canad. J. Math., 1965. Vol. 17. P. 166–177. DOI: 10.4153/CJM-1965-016-2
  5. Hammer P.L., Simeone B. The splittance of a graph. Combinatorica, 1981. Vol. 1. P. 275–284. DOI: 10.1007/BF02579333
  6. Mahadev N.V.R., Peled U.N. Threshold Graphs and Related Topics. Ser. Annals of Discr. Math., vol. 56. Amsterdam: North-Holland Publ. Co., 1995. 542 p.
  7. Merris R. Graph Theory. New York: J. Wiley & Sons Inc., 2001. 256 p. DOI: 10.1002/9781118033043
  8. Merris R. Split graphs. European J. Combin., 2003. Vol. 24. P. 413–430. DOI: 10.1016/S0195-6698(03)00030-1
  9. Tyshkevich R.I. Decomposition of graphical sequences and unigraphs. Discrete Math., 2000. Vol. 220. P. 201–238. DOI: 10.1016/S0012-365X(99)00381-7




DOI: http://dx.doi.org/10.15826/umj.2024.2.003

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.