\(\mathcal{I}\)-STATISTICAL CONVERGENCE OF COMPLEX UNCERTAIN SEQUENCES IN MEASURE
Abstract
The main aim of this paper is to present and explore some of properties of the concept of \(\mathcal{I}\)-statistical convergence in measure of complex uncertain sequences. Furthermore, we introduce the concept of \(\mathcal{I}\)-statistical Cauchy sequence in measure and study the relationships between different types of convergencies. We observe that, in complex uncertain space, every \(\mathcal{I}\)-statistically convergent sequence in measure is \(\mathcal{I}\)-statistically Cauchy sequence in measure, but the converse is not necessarily true.
Keywords
\(\mathcal{I}\)-convergence, \(\mathcal{I}\)-statistical convergence, Uncertainty theory, Complex uncertain variable
Full Text:
PDFReferences
- Chen X., Ning Y., Wang X. Convergence of complex uncertain sequences. J. Intell. Fuzzy Syst., 2016. Vol. 30, No. 6. P. 3357–3366. DOI: 10.3233/IFS-152083
- Debnath S., Das B. Statistical convergence of order α for complex uncertain sequences. J. Uncertain Syst., 2021. Vol. 14, No. 2. Art. no. 2150012. DOI: 10.1142/S1752890921500124
- Debnath S., Das B. On λ-statistical convergence of order α for complex uncertain sequences. Int. J. Gen. Syst., 2022. Vol. 52, No. 2. P. 191–202. DOI: 10.1080/03081079.2022.2132490
- Debnath S., Das B. On rough statistical convergence of complex uncertain sequences. New Math. Nat. Comput., 2023. Vol. 19, No. 1. P. 1–17. DOI: 10.1142/S1793005722500454
- Debnath S., Debnath J. On \(\mathcal{I}\)-statistically convergent sequence spaces defined by sequence of Orlicz functions using matrix transformation. Proyecciones J. Math., 2014. Vol. 33, No. 3. P. 277–285. DOI: 10.4067/S0716-09172014000300004
- Debnath S., Rakshit D. On \(\mathcal{I}\)-statistical convergence. Iranian J. Math. Sci. Inform., 2018. Vol. 13, No. 2. P. 101–109. DOI: 10.7508/ijmsi.2018.13.009
- Esi A. Debnath S., Saha S. Asymptotically double \(\lambda_{2}\)-statistically equivalent sequences of interval numbers. Mathematica, 2020. Vol. 62(85), No. 1. P. 39–46. DOI: 10.24193/mathcluj.2020.1.05
- Fast H. Sur la convergence statistique. Colloq. Math., 1951. Vol. 2, No. 3–4. P. 241–244. (in French)
- Fridy J.A. On statistically convergence. Analysis, 1985. Vol. 5, No. 4. P. 301–313. DOI: 10.1524/anly.1985.5.4.301
- Kişi Ö. S \(S_{\lambda}(\mathcal{I})\)-convergence of complex uncertain sequences. Mat. Stud., 2019. Vol. 51, No. 2. P. 183–194.
- Kostyrko P., Wilczyński W., Salát T. \(\mathcal{I}\)-convergence. Real Anal. Exchange, 2000/2001. Vol. 26, No. 2. P. 669–686.
- Liu B. Uncertainty Theory, 4th ed. Berlin, Heidelberg: Springer-Verlag, 2015. 487 p. DOI: 10.1007/978-3-662-44354-5
- Mursaleen M., Debnath S., Rakshit D. \(\mathcal{I}\)-statistical limit superior and I-statistical limit inferior. Filomat, 2017. Vol. 31, No. 7. P. 2103–2108. DOI: 10.2298/FIL1707103M
- Nath P.K., Tripathy B.C. Convergent complex uncertain sequences defined by Orlicz function. Ann. Univ. Craiova-Math. Comput. Sci. Ser., 2019. Vol. 46, No. 1. P. 139–149.
- Peng Z. Complex Uncertain Variable. PhD, Tsinghua University, 2012.
- Roy S., Tripathy B.C., Saha S. Some results on \(p\)-distance and sequence of complex uncertain variables. Commun. Korean. Math. Soc., 2020. Vol. 35, No. 3. P. 907–916. DOI: 10.4134/CKMS.c200026
- Saha S., Tripathy B. C., Roy S. On almost convergence of complex uncertain sequences. New Math. Nat. Comput., 2016. Vol. 16, No. 03. P. 573–580. DOI: 10.1142/S1793005720500349
- Savas E., Das P. A generalized statistical convergence via ideals. App. Math. Lett., 2011. Vol. 24, No. 6. P. 826–830. DOI: 10.1016/j.aml.2010.12.022
- Savas E., Das P. On \(\mathcal{I}\)-statistically pre-Cauchy sequences. Taiwanese J. Math., 2014. Vol. 18, No. 1. P. 115–126. DOI: 10.11650/tjm.18.2014.3157
- Savas E., Debnath S., Rakshit D. On \(\mathcal{I}\)-statistically rough convergence. Publ. Inst. Math., 2019. Vol. 105, No. 119. P. 145–150. DOI: 10.2298/PIM1919145S
- Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math., 1951. Vol. 2, No. 1. P. 73–74. (in French)
- Tripathy B.C., Nath P.K. Statistical convergence of complex uncertain sequences. New Math. Nat. Comput., 2017. Vol. 13, No. 3. P. 359–374. DOI: 10.1142/S1793005717500090
- You C., Yan L. Relationships among convergence concepts of uncertain sequences. Comput. Model. New Technol., 2016. Vol. 20, No. 3. P. 12–16.
- Wu J., Xia Y. Relationships among convergence concepts of uncertain sequences. Inform. Sci., 2012. Vol. 198. P. 177–185. DOI: 10.1016/j.ins.2012.02.048
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.