ARTINIAN \(\mathbf{M}\)-COMPLETE, \(\mathbf{M}\)-REDUCED, AND MINIMALLY \(\mathbf{M}\)-COMPLETE ASSOCIATIVE RINGS
Abstract
In 1996, the first author defined analogs of the concepts of complete (divisible), reduced, and periodic abelian groups, well-known in the theory of abelian groups, for arbitrary varieties of algebras. In 2021, the first author proposed a modification of the concepts of completeness and reducibility, which is more natural in the case of associative rings. The paper studies the modification of these concepts for associative rings. Artinian \(\mathbf{M}\)-complete, \(\mathbf{M}\)-reduced rings, and minimally \(\mathbf{M}\)-complete associative nilpotent rings, simple rings with unity, and finite rings are characterized.
Keywords
Full Text:
PDFReferences
- Andrunakievich V.A., Ryabukhin Yu.M. Radikaly algebr i strukturnaya teoriya [Radicals of Algebra and Structure Theory]. Moscow: Nauka, 1979. 496 p. (in Russian)
- Bourbaki N. Algebra. Moduli, kol’ca, formy [Algebra. Modules, Rings, Forms]. Moscow: Mir, 1966. 556 p.(in Russian)
- Feis K. Algebra: kol’ca, moduli i kategorii [Algebra: Rings, Modules and Categories]. Vol. 1. Moscow: Mir, 1977. 688 p. (in Russian)
- Fuchs L. Beskonechnye abelevy gruppy [Infinite Abelian Groups]. Vol. 1. Moscow: Mir, 1974. 335 p. (in Russian)
- Fuchs L. Beskonechnye abelevy gruppy [Infinite Abelian Groups]. Vol. 2. Moscow: Mir, 1977. 416 p. (in Russian)
- Gardner B.J., Wiegandt R. Radical Theory of Rings. New York: Marcel Dekker, 2004. 408 p. DOI: 10.1201/9780203913352
- Herstein I.N. Nekommutativnye kol’ca. [Noncommutative Rings]. Moscow: Mir, 1972. 190 p. (in Russian)
- Jacobson N. Stroenie kolec. [Structure of Rings]. Moscow: Izdat. Inostran. Liter., 1961. 392 p. (in Russian)
- Kalicki J., Scott D. Equational completness of abstract algebras. Indag. Math., 1955. Vol. 17. P. 650–659. DOI: 10.1016/S1385-7258(55)50089-8
- Kornev A.I. Complete radicals of some group rings. Sib. Math. J., 2007. Vol. 48. P. 857–862. DOI: 10.1007/s11202-007-0087-0
- Kornev A.I., Pavlova T.V. Characterization of one radical of group rings over finite prime fields. Sib. Math. J., 2004. Vol. 45. P. 504–512. DOI: 10.1023/B:SIMJ.0000028615.28396.f2
- Kornev A.I., Pavlova T.V. Finite complete associative rings. In: Matematika i Informatika: Nauka I Obrazovanie: collection of works. Omsk: OmGPU, 2002. Vol. 1. P. 43–45. (in Russian)
- Kurosh A.G. Radicals in the group theory. Sib. Mat. Zh., 1962. Vol. 3, No. 6. P. 912–931. (in Russian)
- Lidl R., Niederreiter G. Konechnye polya [Finite Fields]. Vol. 1. Moscow: Mir, 1988. 430 p. (in Russian)
- Mal’tsev A.I. Multiplication of classes of algebraic systems. Sib. Math. J., 1967. Vol. 8, No. 2. P. 254–267. DOI: 10.1007/BF02302476
- Martynov L.M. On notions of completeness, solvability, primarity, reducibility and purity for arbitrary algebras. In: Int. Conf. on Modern Algebra and Its Applications (Vanderbilt University, Tennessee, May 14–18, 1996. Schudule and Abstracts). Nashville, 1996. P. 79–80.
- Martynov L.M. On concepts of completeness, reducibility, primarity, and purity for arbitrary algebras. In: Universal Algebra and its Applications: collection of works. Volgograd, September 6–11, 1999. Volgograd: Peremena, 2000. P. 179–190. (in Russian)
- Martynov L.M. One radical algebras with a property of transversality by minimal varieties. Herald of Omsk University, 2004. Vol. 2. P. 19–21. URL: https://elib.omsu.ru/issues/124/5973.php (in Russian)
- Martynov L.M. Completeness, reducibility, primarity and purity for algebras: results and problems. Sib. Élektron. Mat. Izv., 2016. Vol. 13. P. 181–241. DOI: 10.17377/semi.2016.13.016 (in Russian)
- Martynov L.M. On the complete radical of a monoid ring. Herald of Omsk University, 2017. Vol. 84, No. 2. P. 8–13.
- Martynov L.M. About one modification of concepts of completely, reducibility, periodicity and primarity for associative rings. Herald of Omsk University, 2021. Vol. 26, No. 2. P. 12–22. DOI: 10.24147/1812-3996.2021.26(2).12-22
- Martynov L.M., Pavlova T.V. On minimally complete associative rings. Herald of Omsk University, 2016. Vol. 79, No. 1. P. 6–13. (in Russian)
- Martynov L.M., Pavlova T.V. Letter to the editor. Herald of Omsk University, 2019. Vol. 24, No. 2. P. 23–24. (in Russian)
- Pavlova T.V. Complete radical of full ring of matrices over an arbitrary ring. In: Matematika i Informatika: Nauka i Obrazovanie: collection of works. Omsk: OmGPU, 2011. Vol. 10. P. 16–19. (in Russian)
- Pavlova T.V. On Artinian rings with a split-off complete radical. Herald of Omsk University, 2018. Vol. 23, No. 4. P. 37–43. (in Russian)
- Pavlova T.V. Complete associative Artinian rings. Herald of Omsk University, 2005. Vol. 1. P. 17–19. (in Russian)
- Pavlova T.V. On reduced associative Artinian rings. In: Problemy i perspektivy fiz-mat. i tekhn. obrazovaniya: collection of works. Ishim, Filial TyumGU v Ishime, 2014. P. 40–46. (in Russian)
- Pavlova T.V. Minimally complete associative Artinian rings. Sib. Élektron. Mat. Izv., 2017. Vol. 14. P. 1238–1247. DOI: 10.17377/semi.2017.14.105 (in Russian)
- Pavlova T.V. Corrigendum: Minimally complete associative Artinian rings. Sib. Élektron. Mat. Izv., 2019. Vol. 16. P. 1913–1915. DOI: 10.33048/semi.2019.16.136 (in Russian)
- Shevrin L.N., Martynov L.M. Attainable classes of algebras. Siberian Math. J., 1971. Vol. 12, No. 6. P. 986–998.
- Ševrin L.N., Martynov L.M. Attainability and solvability for classes of algebras. In: Semigroups. Vol. 39: Coll. Math. Soc., J. Bolyai, G. Poliak, St. Schwarz, O. Steinfeld (eds.). Amsterdam, Oxford, New York, 1985. P. 397–459.
- Wilson R.S. On structure of finite rings. II. Pasific J. Math., 1974. Vol. 51, No. 1. P. 317–325. DOI: 10.2140/pjm.1974.51.317
Article Metrics
Refbacks
- There are currently no refbacks.