A TWO-FOLD CAPTURE OF COORDINATED EVADERS IN THE PROBLEM OF A SIMPLE PURSUIT ON TIME SCALES

Elena S. Mozhegova     (Udmurt State University, Universitetskaya Str., 1, Izhevsk, 426034, Russian Federation)
Nikolai N. Petrov     (Udmurt State University, Universitetskaya Str., 1, Izhevsk, 426034, Russian Federation)

Abstract


In finite-dimensional Euclidean space, we study the problem of a simple pursuit of two evaders by a group of pursuers in a given time scale.
It is assumed that the evaders use the same control and do not move out of a convex polyhedral set. The pursuers use counterstrategies based on information on the initial positions and on the prehistory of the control of evaders. The set of admissible controls of each of the participants is a sphere of unit radius with its center at the origin, and the goal sets are the origin. The goal of the group of pursuers is the capture of at least one evader by two pursuers. In terms of the initial positions and parameters of the game, a sufficient condition for capture is obtained. The study is based on the method of resolving functions, which makes it possible to obtain sufficient conditions for solvability of the pursuit problem in some guaranteed time.


Keywords


Differential game, Group pursuit, Evader, Pursuer, Time scale

Full Text:

PDF

References


  1. Aulbach B., Hilger S. Linear dynamic processes with inhomogeneous time scale. In: Nonlinear Dynamics and Quantum Dynamical Systems: Contributions to the Int. Seminar ISAM-90, held in Gaussig (GDR), March 19–23, 1990. Ser. Math. Res., vol. 59. Berlin, Boston: De Gruyter, 1990. P. 9–20. DOI: 10.1515/9783112581445-002
  2. Benchohra M., Henderson J., Ntouyas S. Impulsive Differential Equations and Inclusions. New York: Hindawi Publishing, 2006. 380 p. 
  3. Blagodatskikh A.I., Petrov N.N. Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob”ektov [Conflict Interaction of Groups of Controlled Objects]. Izhevsk: Udmurt State University, 2009. 266 p. (in Russian)
  4. Bohner M., Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhäuser, 2003. 348 p. DOI: 10.1007/978-0-8176-8230-9
  5. Cabada A., Vivero D.R. Expression of the Lebesgue \(\Delta\)-integral on time scales as a usual Lebesgue integral; application to the calculus of \(\Delta\)-antiderivatives. Math. Comput. Model., 2006. Vol. 43, No. 1–2. P. 194–207. DOI: 10.1016/j.mcm.2005.09.028
  6. Chikrii A.A. Conflict-Controlled Processes. Dordrecht, NL: Kluwer Academic Publishers, 1997. 424 p. DOI: 10.1007/978-94-017-1135-7
  7. Grigorenko N.L. Matematicheskie metody upravleniya neskol’kimi dinamicheskimi protsessami [Mathematical methods of control over multiple dynamic processes]. Moscow: Moscow State University, 1990, 197 p. (in Russian)
  8. Guseinov G.S. Integration on time scales. J. Math. Anal. Appl., 2003. Vol. 285, No. 1. P. 107–127. DOI: 10.1016/S0022-247X(03)00361-5
  9. Hilger S. Analysis on measure chains – a unified approach to continuous and discrete calculus. Results in Mathematics, 1990. Vol. 18. P. 18–56. DOI: 10.1007/BF03323153
  10. Krasovskii N.N., Subbotin A.I. Pozitsionnye differentsial’nye igry [Positional Differential Games]. Moscow: Nauka, 1974. 456 p. (in Russian)
  11. Martins N., Torres D. Necessary conditions for linear noncooperative \(N\)-player delta differential games on time scales. Discuss. Math. Differ. Incl. Control Optim., 2011. Vol. 31, No. 1. P. 23–37. DOI: 10.7151/dmdico.1126
  12. Petrov N.N. Controllability of autonomous systems. Differ. Uravn., 1968. Vol. 4, No. 4. P. 606–617. URL: https://mi.mathnet.ru/eng/de328 (in Russian)
  13. Petrov N.N. Multiple capture of a given number of evaders in the problem of simple pursuit with phase restrictions on timescales. Dyn. Games Appl., 2022. Vol. 12, No. 2. P. 632–642. DOI: 10.1007/s13235-021-00387-y
  14. Petrov N.N. On a problem of pursuing a group of evaders in time scales. Trudy Inst. Mat. i Mekh. UrO RAN, 2021. Vol. 27, No. 3. P. 163–171 DOI: 10.21538/0134-4889-2021-27-3-163-171 (in Russian)
  15. Petrov N.N. The problem of simple group pursuit with phase constraints in time scales. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2020. Vol. 30, No. 2. P. 249–258. DOI: 10.35634/vm200208 (in Russian)
  16. Petrov N.N., Mozhegova E.S. On a simple pursuit problem on time scales of two coordinated evaders. Chelyabinsk Phys. Math. J., 2022. Vol. 7, No. 3. P. 277–286. DOI: 10.47475/2500-0101-2022-17302 (in Russian)
  17. Petrov N.N., Mozhegova E.S. Simple pursuit problem with phase restrictions of two coordinated evaders on time scales. Mat. Teor. Igr Pril., 2022. Vol. 14, No. 4. P. 81–95. URL: https://mi.mathnet.ru/eng/mgta314 (in Russian)




DOI: http://dx.doi.org/10.15826/umj.2024.1.010

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.