ON A GROUP EXTENSION INVOLVING THE SPORADIC JANKO GROUP \(J_{2}\)
Abstract
Using the electronic Atlas of Wilson [21], the group J_2 has an absolutely irreducible module of dimension 6 over F_4. Therefor a split extension group of the form 4^6:J_2:= \bar{G} exists. In this paper we study this group, where we determine its conjugacy classes and character table using the coset analysis technique together with Clifford-Fischer Theory. We determined the inertia factor groups of \bar{G} by analysing the maximal subgroups of J_2 and maximal of the maximal subgroups of J_2 together with other various information. It turns out that the character table of \bar{G} is a 53 x 53 real valued matrix, while the Fischer matrices are all integer valued matrices with sizes ranging from 1 to 8.
Keywords
Group extensions, Janko sporadic simple group, Inertia groups, Fischer matrices, Character table
Full Text:
PDFReferences
- Ali F., Moori J. The Fischer–Clifford matrices and character table of a maximal subgroup of \(Fi_{24}\). Algebra Colloq., 2010. Vol. 17, No. 3. P. 389–414. DOI: 10.1142/S1005386710000386
- Basheer A. B. M. Clifford-Fischer Theory Applied to Certain Groups Associated with Symplectic, Unitary and Thompson Groups. PhD Thesis. Pietermaitzburg: University of KwaZulu-Natal, 2012.
- Basheer A.B.M. On a group involving the automorphism of the Janko group \(J_{2}\). J. Indones. Math. Soc., 2023. Vol. 29, No. 2. P. 197–216. DOI: 10.22342/jims.29.2.1371.197-216
- Basheer A.B.M. On a group extension involving the Suzuki group \(Sz(8)\). Afr. Mat., 2023. Vol. 34, No. 4. Art. no. 96. DOI: 10.1007/s13370-023-01130-z
- Basheer A.B.M., Moori J. Fischer matrices of Dempwolff group \(2^{5}{^{\cdot}}GL(5,2)\). Int. J. Group Theory, 2012. Vol. 1, No. 4. P. 43–63. DOI: 10.22108/IJGT.2012.1590
- Basheer A.B.M., Moori J. On the non-split extension group \(2^{6}{^{\cdot}}Sp(6,2)\). Bull. Iranian Math. Soc., 2013. Vol. 39, No. 6. P. 1189–1212.
- Basheer A.B.M., Moori J. On the non-split extension \(2^{2n}{^{\cdot}}Sp(2n,2)\). Bull. Iranian Math. Soc., 2015. Vol. 41, No. 2. P. 499–518.
- Basheer A.B.M., Moori J. On a maximal subgroup of the Thompson simple group. Math. Commun., 2015. Vol. 20, No. 2. P. 201–218. https://hrcak.srce.hr/149786
- Basheer A.B.M., Moori J. A survey on Clifford-Fischer theory. In: Groups St Andrews 2013, C.M. Campbell, M.R. Quick, E.F. Robertson, C.M. Roney-Dougal (eds.). London Math. Soc. Lecture Note Ser., vol. 422. Cambridge University Press, 2015. P. 160–172. DOI: 10.1017/CBO9781316227343.009
- Basheer A.B.M., Moori J. On a group of the form \(3^{7}{:}Sp(6,2)\). Int. J. Group Theory, 2016. Vol. 5, No. 2. P. 41–59. DOI: 10.22108/IJGT.2016.8047
- Basheer A.B.M., Moori J. On two groups of the form \(2^{8}{:}A_{9}\). Afr. Mat., 2017. Vol. 28. P. 1011–1032. DOI: 10.1007/s13370-017-0500-1
- Basheer A.B.M., Moori J. On a group of the form \(2^{10}{:}(U_{5}(2){:}2)\). Ital. J. Pure Appl. Math., 2017. Vol. 37. P. 645–658. URL: https://ijpam.uniud.it/online\_issue/201737/57-BasheerMoori.pdf
- Basheer A.B.M., Moori J. Clifford-Fischer theory applied to a group of the form \(2^{1+6}_{-}{:}((3^{1+2}{:}8){:}2)\). Bull. Iranian Math. Soc., 2017. Vol. 43, No. 1. P. 41–52.
- Basheer A.B.M., Moori J. On a maximal subgroup of the affine general linear group \(GL(6,2)\). Adv. Group Theory Appl., 2021. Vol. 11. P. 1–30. DOI: 10.32037/agta-2021-001
- Bosma W., Cannon J.J. Handbook of Magma Functions, 1st ed. Sydney: University of Sydney, 1993. 690 p.
- Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A. ATLAS of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford: Clarendon Press, 1985. 250 p.
- Fray R.L., Monaledi R.L., Prins A.L. Fischer–Clifford matrices of \(2^{8}{:}(U_{4}(2){:}2)\) as a subgroup of \(O^{+}_{10}(2)\). Afr. Mat., 2016. Vol. 27. P. 1295–1310. DOI: 10.1007/s13370-016-0410-7
- GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra. Version 4.4.10, 2007. URL: http://www.gap-system.org
- Maxima, A Computer Algebra System. Version 5.18.1, 2009. URL: http://maxima.sourceforge.net
- Moori J. On the Groups \(G^{+}\) and \(\overline{G}\) of the Form \(2^{10}{:}M_{22}\) and \(2^{10}{:}\overline{M}_{22}\). PhD Thesis. Birmingham: University of Birmingham, 1975.
- Moori J. On certain groups associated with the smallest Fischer group. J. London Math. Soc., 1981. Vol. 2. P. 61–67.
- Wilson R.A. The Finite Simple Groups. London: Springer-Verlag, 2009. XV, 298 p. DOI: 10.1007/978-1-84800-988-2
- Wilson R.A., et al. Atlas of Finite Group Representations. Version 3. URL: http://brauer.maths.qmul.ac.uk/Atlas/v3/
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.