LINEAR PROGRAMMING AND DYNAMICS
Abstract
Keywords
Full Text:
PDFReferences
Eremin I.I., Mazurov Vl.D., Astafjev N.N. Improper problems of linear and convex programming. Moscow: Nauka, 1983. 336 p. (in Russian)
Eremin I.I. Conflicting models of optimal planning. Moscow: Nauka, 1988. 160 p. (in Russian)
Eremin I.I. Duality for Pareto-successive linear optimization problems // Tr. In-ta matematiki i mekhaniki UrO RAN. 1995. Vol. 3. P. 245-261 (in Russian)
Eremin I.I. The theory of linear optimization. Ekaterinburg, Ekaterinburg, 1999. 312 p. (in Russian)
Eremin I.I., Mazurov Vl.D. Questions of optimization and pattern recognition. Sverdlovsk, Sredne-Ural. knizh. izd-vo, 1979. 64 p. (in Russian)
Eremin I.I. The theory of duality in linear optimization. Chelyabinsk: Publishing house YUUrGU, 2005. 195 p. (in Russian)
Vasiliev F.P. Methods of optimization: in 2 bks. Bk. 1, 2. Moscow, MTsNMO, 2011. 620 p. (in Russian)
Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis. Moscow: FIZMATLIT, 2009. (in Russian)
Vasiliev F.P., Khoroshilova E.V., Antipin A.S. An Extragradient Method for Finding the Saddle Point in an Optimal Control Problem // Moscow University Comp. Maths. and Cybernetics. 2010. Vol. 34. no 3. P. 113-118.
Antipin A.S., Khoroshilova E.V. On methods of extragradient type for solving optimal control problems with linear constraints // Izvestiya IGU. Seriya: Matematika. 2010. Vol. 3. P. 2-20 (in Russian)
Vasiliev F.P., Khoroshilova E.V., Antipin A.S. Regularized extragradient method for finding a saddle point in optimal control problem // Proceedings of the Steklov Institute of Mathematics. 2011. Vol. 275, suppl. 1. P. 186-196.
Antipin A.S. Two-person game with Nash equilibrium in optimal control problems // Optim. Lett. 2012. 6(7). P. 1349-1378.
Khoroshilova E.V. Extragradient method of optimal control with terminal constraints // Automation and Remote Control. 2012. Vol. 73, no. 3. P. 517-531.
Khoroshilova Elena V. Extragradient-type method for optimal control problem with linear constraints and convex objective function // Optim. Lett., August 2013. Vol. 7, iss. 6, P. 1193-1214.
Antipin A.S. Terminal Control of Boundary Models // Comput. Math. Math. Phys. 2014. V. 54, no 2. P. 257-285.
Antipin A.S., Khoroshilova E.V. On boundary value problem of terminal control with quadratic quality criterion // Izvestiya IGU. Seriya: Matematika. 2014. Vol. 8. P. 7-28.
Antipin A.S., Vasilieva O.O. Dynamic method of multipliers in terminal control // Comput. Math. Math. Phys. 2015. Vol. 55, no 5. P. 766-787.
Antipin A.S., Khoroshilova E.V. Optimal Control with Connected Initial and Terminal Conditions // Proceedings of the Steklov Institute of Mathematics. 2015. Vol. 289, suppl. 1. P. 9-25.
Konnov I.V. Equilibrium Models and Variational Inequalities. Kazan State University, 2007 (in Russian)
Article Metrics
Refbacks
- There are currently no refbacks.