A STABLE METHOD FOR LINEAR EQUATION IN BANACH SPACES WITH SMOOTH NORMS
Abstract
Keywords
Full Text:
PDFReferences
Adams R.A., Fournier J.J.F. Sobolev Spaces. Amsterdam: Elsevier, 2003. 320 p.
Bakushinskii A.B. Methods for solving monotonic variational inequalities, based on the principle of iterative regularization. USSR Computational Mathematics and Mathematical Physics, 1977. Vol. 17, No. 6. P. 12–24.
Bakushinsky A., Goncharsky A. III-Posed Problems: Theory and Applications. Dordrecht: Kluwer Academic Publishers, 1994. 258 p. DOI: 10.1007/978-94-011-1026-6
Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer, 2011. 599 p. DOI: 10.1007/978-0-387-70914-7
Cioranescu I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Dordrecht: Kluwer Academic Publishers, 1990. 260 p. DOI: 10.1007/978-94-009-2121-4
Dryazhenkov A.A., Potapov M.M. Constructive observability inequalities for weak generalized solutions of the wave equation with elastic restraint. Comput. Math. Math. Phys., 2014. Vol. 54, No. 6. P. 939–952. DOI: 10.1134/S0965542514060062
Dunford N., Schwartz J.T. Linear Operators. Part I: General Theory. New York: Interscience Publishers, 1958. 872 p.
Ekeland I., Temam R. Convex Analysis and Variational Problems. Amsterdam: North-Holland Publishing Company, 1976. 394 p. DOI: 10.1137/1.9781611971088
Ekeland I., Turnbull T. Infinite-Dimensional Optimization and Convexity. Chicago: The University of Chicago Press, 1983. 174 p.
Engl H.W., Hanke M., Neubauer A. Regularization of Inverse Problems. Dordrecht: Kluwer Academic Publishers, 1996. 322 p.
Il’in V.A., Kuleshov A.A. On some properties of generalized solutions of the wave equation in the classes \(L_p\) and \(W_p^1\) for \(p \geq 1\). Differ. Equ., 2012. Vol. 48, No. 11. P. 1470–1476. DOI: 10.1134/S0012266112110043
Ivanov V.K. On linear problems that are not well-posed. Soviet Mathematics Doklady, 1962. Vol. 3. P. 981–983.
Kantorovich L.V., Akilov G.P. Functional Analysis. Oxford: Pergamon Press, 1982. 604 p. DOI: 10.1016/C2013-0-03044-7
Krein S.G. Linear Equations in Banach Spaces. Boston: Birkhäuser, 1982. 106 p. DOI: 10.1007/978-1-4684-8068-9
Lions J.-L. Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev., 1988. Vol. 30, No. 1. P. 1–68. DOI: 10.1137/1030001
Morozov V.A. Regularization of incorrectly posed problems and the choice of regularization parameter. USSR Computational Mathematics and Mathematical Physics, 1966. Vol. 6, No. 1. P. 242–251. DOI: 10.1016/0041-5553(66)90046-2
Phillips D.L. A technique for the numerical solution of certain integral equations of the first kind. J. ACM, 1962. Vol. 9, No. 1. P. 84–97. DOI: 10.1145/321105.321114
Potapov M.M. Strong convergence of difference approximations for problems of boundary control and observation for the wave equation. Comput. Math. Math. Phys., 1998. Vol. 38, No. 3. P. 373–383.
Potapov M.M. A stable method for solving linear equations with nonuniformly perturbed operators. Dokl. Math., 1999. Vol. 59, No. 2. P. 286–288.
Riesz F., Sz.-Nagy B. Functional Analysis. London: Blackie & Son Limited, 1956. 468 p.
Scherzer O., Grasmair M., Grossauer H., Haltmeier M., Lenzen F. Variational Methods in Imaging. New York: Springer, 2009. 320 p. DOI: 10.1007/978-0-387-69277-7
Schuster T., Kaltenbacher B., Hofmann B., Kazimierski K.S. Regularization Methods in Banach Spaces. Berlin: De Gruyter, 2012. 283 p.
Tikhonov A.N. Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics Doklady, 1963. Vol. 4, No. 4. P. 1035–1038.
Tikhonov A.N., Arsenin V.Y. Solution of Ill-posed Problems. Washington: Winston & Sons, 1977. 258 p.
Tikhonov A.N., Leonov A.S., Yagola A.G. Nonlinear Ill-posed Problems. London: Chapman & Hall, 1998. 386 p.
Zuazua E. Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev., 2005. Vol. 47, No. 2. P. 197–243. DOI: 10.1137/S0036144503432862
Article Metrics
Refbacks
- There are currently no refbacks.