\(\mathcal{I}^{\mathcal{K}}\)-SEQUENTIAL TOPOLOGY
Abstract
In the literature, \(\mathcal{I}\)-convergence (or convergence in \(\mathcal{I}\)) was first introduced in [11]. Later related notions of \(\mathcal{I}\)-sequential topological space and \(\mathcal{I}^*\)-sequential topological space were introduced and studied. From the definitions it is clear that \(\mathcal{I}^*\)-sequential topological space is larger(finer) than \(\mathcal{I}\)-sequential topological space. This rises a question: is there any topology (different from discrete topology) on the topological space \(\mathcal{X}\) which is finer than \(\mathcal{I}^*\)-topological space? In this paper, we tried to find the answer to the question. We define \(\mathcal{I}^{\mathcal{K}}\)-sequential topology for any ideals \(\mathcal{I}\), \(\mathcal{K}\) and study main properties of it. First of all, some fundamental results about \(\mathcal{I}^{\mathcal{K}}\)-convergence of a sequence in a topological space \((\mathcal{X} ,\mathcal{T})\) are derived. After that, \(\mathcal{I}^{\mathcal{K}}\)-continuity and the subspace of the \(\mathcal{I}^{\mathcal{K}}\)-sequential topological space are investigated.
Keywords
Full Text:
PDFReferences
- Blali A., El Amrani A., Hasani R.A., Razouki A. On the uniqueness of \(\mathcal{I}\)-limits of sequences. Siberian Electron. Math. Rep., 2021. Vol. 8, No. 2. P. 744–757. DOI: 10.33048/semi.2021.18.055
- Banerjee A.K., Paul M. Strong \(\mathcal{I}^{\mathcal{K}}\)-convergence in probabilistic metric spaces. Iranian J. Math. Sci. Inform., 2022. Vol. 17, No. 2. P. 273–288. DOI: 10.52547/ijmsi.17.2.273
- Banerjee A.K., Paul M. A note on \(I^{K}\) and \(I^{K^{*}}\)-Convergence in Topological Spaces. 2018. 10 p. arXiv:1807.11772v1 [math.GN]
- Das P. Some further results on ideal convergence in topological spaces. Topology Appl., 2012. Vol. 159, No. 10–11. P. 2621–2626. DOI: 10.1016/j.topol.2012.04.007
- Das P., Sleziak M., Toma V. \(\mathcal{I}^{\mathcal{K}}\)-Cauchy functions. Topology Appl., 2014. Vol. 173. P. 9–27. DOI: 10.1016/j.topol.2014.05.008
- Das P., Sengupta S., Šupina J. \(\mathcal{I}^{\mathcal{K}}\)-convergence of sequence of functions. Math. Slovaca, 2019. Vol. 69, No. 5. P. 1137–1148. DOI: 10.1515/ms-2017-0296
- Fast H. Sur la convergence statistique. Colloq. Math., 1951. Vol. 2, No. 3–4. P. 241–244. URL: https://eudml.org/doc/209960 (in French)
- Georgiou D., Iliadis S., Megaritis A., Prinos G. Ideal-convergence classes. Topology Appl., 2017. Vol. 222. P. 217–226. DOI: 10.1016/j.topol.2017.02.045
- Jasinski J., Recław I. Ideal convergence of continuous functions. Topology Appl., 2006. Vol. 153, No. 18. P. 3511–3518. DOI: 10.1016/j.topol.2006.03.007
- Kostyrko P., Mačaj M., Šalát T., Sleziak M. \(\mathcal{I}\)-convergence and extremal \(\mathcal{I}\)-limit points. Math. Slovaca, 2005. Vol. 55, No. 4. P. 443–464.
- Kostyrko P., Salát T., Wilczyńki W. \(\mathcal{I}\)-convergence. Real Anal. Exchange, 2000/2001. Vol. 26, No. 2. P. 669–685.
- Lahiri B.K., Das P. \(I\) and \(I^∗\)-convergence in topological space. Math. Bohem., 2005. Vol. 130, No. 2. P. 153–160. DOI: 10.21136/MB.2005.134133
- Mačaj M., Sleziak M. \(\mathcal{I}^{\mathcal{K}}\)-convergence. Real Anal. Exchange, 2010–2011. Vol. 36, No. 1. P. 177–194.
- Mursaleen M., Debnath S., Rakshit D. \(I\)-statistical limit superior and \(I\)-statistical limit inferior. Filomat, 2017. Vol. 31, No. 7. P. 2103–2108. DOI: 10.2298/FIL1707103M
- Öztürk F., Şençimen C., Pehlivan S. Strong \(\Gamma\)-ideal convergence in a probabilistic normed space. Topology Appl., 2016. Vol. 201. P. 171–180. DOI: 10.1016/j.topol.2015.12.035
- Pal S.K. \(\mathcal{I}\)-sequential topological space. Appl. Math. E-Notes, 2014. Vol. 14. P. 236–241.
- Renukadevi V., Prakash B. \(\mathcal{I}\): Fréchet-Urysohn spaces. Math. Morav., 2016. Vol. 20, No. 2. P. 87–97. DOI: 10.5937/MatMor1602087R
- Sabor Behmanush H., Küçükaslan M. Some Properties of \(\mathcal{I}^*\)-Sequential Topological Space. 2023. 13 p. arXiv:2305.19647 [math.GN]
- Salát T., Tripathy B.C., Ziman M. On some properties of \(\mathcal{I}\)-convergence. Tatra Mt. Math. Publ., 2004. Vol. 28, No. 2. P. 279–286.
- Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math., 1951. Vol. 2. P. 73–74. (in French)
- Zhou X., Liu L., Lin S. On topological space defined by \(\mathcal{I}\)-convergence. Bull. Iran. Math. Soc., 2020. Vol. 46, No. 3. P. 675–692. DOI: 10.1007/s41980-019-00284-6
Article Metrics
Refbacks
- There are currently no refbacks.