A PRESENTATION FOR A SUBMONOID OF THE SYMMETRIC INVERSE MONOID

Apatsara Sareeto     (Institute of Mathematics, University of Potsdam, Potsdam, 14476, Germany)
Jörg Koppitz     (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria)

Abstract


In the present paper,  we study a submonoid of the symmetric inverse semigroup \(I_n\). Specifically, we  consider the monoid of all order-, fence-, and parity-preserving transformations of \(I_n\). While the rank and a set of generators of minimal size for this monoid are already known, we will provide a presentation for this monoid.

Keywords


Symmetric inverse monoid, Order-preserving, Fence-preserving, Presentation

Full Text:

PDF

References


  1. Clifford A.H., Preston G.B. The Algebraic Theory of Semigroups. Math. Surveys Monogr., vol. 7, part 1. Providence. R.I.: Amer. Math. Soc. Surveys, 1961. DOI: 10.1090/surv/007.1; Math. Surveys Monogr., vol. 7, part 2. Providence. R.I.: Amer. Math. Soc. Surveys, 1967. DOI: 10.1090/surv/007.2
  2. Currie J.D., Visentin T.I. The number of order-preserving maps of fences and crowns. Order, 1991. Vol. 8. P. 133–142.
  3. Dimitrova I., Koppitz J., Lohapan L. Generating sets of semigroups of partial transformations preserving a zig-zag order on \(\mathbb{N}\). Int. J. Pure Appl. Math., 2017. Vol. 117, No. 2. P. 279–289. DOI: 10.12732/ijpam.v117i2.4
  4. East J. A presentation of the singular part of the symmetric inverse monoid. Comm. Algebra, 2006. Vol. 34, No. 5. P. 1671–1689. DOI: 10.1080/00927870500542689
  5. East J. A presentation for the singular part of the full transformation semigroup. Semigroup Forum, 2010. Vol 81. P. 357–379. DOI: 10.1007/s00233-010-9250-1
  6. Fernandes V.H. The monoid of all injective order preserving partial transformations on a finite chain. Semigroup Forum, 2001. Vol. 62. P. 178–204. DOI: 10.1007/s002330010056
  7. Fernandes V.H., Koppitz J., Musunthia T. The rank of the semigroup of all order-preserving transformations on a finite fence. Bull. Malays. Math. Sci. Soc., 2019. Vol. 42. P. 2191–2211. DOI: 10.1007/s40840-017-0598-1
  8. Howie J.M. Fundamentals of Semigroup Theory. Oxford: Clarendon Press, 1995. 351 p.
  9. Jendana K., Srithus R. Coregularity of order-preserving self-mapping semigroups of fences. Commun. Korean Math. Soc., 2015. Vol. 30, No. 4. P. 349–361. DOI: 10.4134/CKMS.2015.30.4.349
  10. Lallement G. Semigroups and Combinatorial Applications. New York: Wiley, 1979. 376 p.
  11. Lohapan L., Koppitz J. Regular semigroups of partial transformations preserving a fence \(\mathbb{N}\). Novi Sad J. Math., 2017. Vol. 47, No. 2. P. 77–91. DOI: 10.30755/NSJOM.05333
  12. Lohapan L., Koppitz J., Worawiset S. Congruences on infinite semigroups of transformations preserving a zig-zag order. J. Algebra Appl., 2021. Vol. 20, No. 09. Art. no. 2150167.  DOI: 10.1142/S021949882150167X
  13. Ruškuc N. Semigroup Presentations. Ph. D. Thesis. St Andrews: University of St Andrews, 1995.
  14. Rutkowski A. The formula for the number of order-preserving selfmappings of a fence. Order, 1992. Vol. 9. P. 127–137. DOI: 10.1007/BF00814405
  15. Sareeto A., Koppitz J. The rank of the semigroup of order-, fence- and parity-preserving partial injections on a finite set. Asian-Eur. J. Math., 2023. DOI: 10.1142/S1793557123502236
  16. Srithus R., Chinram R., Khongthat C. Regularity in the semigroup of transformations preserving a zig-zag order. Bull. Malays. Math. Sci. Soc., 2020. Vol. 43, No. 2. P. 1761–1773. DOI: 10.1007/s40840-019-00772-2
  17. Wagner V.V. Generalized groups. Dokl. Akad. Nauk SSSR, 1952. Vol. 84, No. 6. P. 1119–1122. (in Russian)




DOI: http://dx.doi.org/10.15826/umj.2023.2.015

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.