GRACEFUL CHROMATIC NUMBER OF SOME CARTESIAN PRODUCT GRAPHS

I Nengah Suparta     (Department of Mathematics, Universitas Pendidikan Ganesha, Jl. Udayana 11, Singaraja-Bali 81117, Indonesia)
Mathiyazhagan Venkatachalam     (Department of Mathematics, Kongunadu Arts and Science College, Coimbatore–641029, Tamil Nadu, India)
I Gede Aris Gunadi     (Department of Mathematics, Universitas Pendidikan Ganesha, Jl. Udayana 11, Singaraja-Bali 81117, Indonesia)
Putu Andi Cipta Pratama     (Department of Mathematics, Universitas Pendidikan Ganesha, Jl. Udayana 11, Singaraja-Bali 81117, Indonesia)

Abstract


A graph \(G(V,E)\) is a system consisting of a finite non empty set of vertices \(V(G)\) and a set of edges \(E(G)\). A  (proper) vertex colouring of \(G\) is a function \(f:V(G)\rightarrow \{1,2,\ldots,k\},\) for some positive integer \(k\) such that \(f(u)\neq f(v)\) for every edge \(uv\in E(G)\). Moreover, if \(|f(u)-f(v)|\neq |f(v)-f(w)|\) for every adjacent edges \(uv,vw\in E(G)\), then the function \(f\) is called  graceful colouring for \(G\). The minimum number \(k\) such that \(f\) is a graceful colouring for \(G\) is called the graceful chromatic number of \(G\). The purpose of this research is to determine graceful chromatic number of Cartesian product graphs \(C_m \times P_n\) for integers \(m\geq 3\) and \(n\geq 2\), and \(C_m \times C_n\) for integers \(m,n\geq 3\). Here, \(C_m\) and \(P_m\) are cycle and path with \(m\) vertices, respectively.  We found some exact values and bounds for graceful chromatic number of these mentioned Cartesian product graphs.


Keywords


Graceful colouring, Graceful chromatics number, Cartesian product graph

Full Text:

PDF

References


  1. Alfarisi R., Dafik, Prihandini R.M., Adawiyah R., Albirri E.R., Agustin I.H. Graceful Chromatic Number of Unicyclic Graphs. J. Phys.: Conf. Ser., 2019. Vol. 1306: The 2nd Int. Conf. Math.: Education, Theory, and Application (30–31 October 2018, Sukoharjo, Indonesia). Art. no. 012039. DOI: 10.1088/1742-6596/1306/1/012039
  2. Asyari M.L., Agustin I.H., Nisviasari R., Adawiyah R. On graceful chromatic number of some graphs. J. Phys.: Conf. Ser., 2022. Vol. 2157: The 5th Int. Conf. Combinatorics, Graph Theory, and Network Topology, ICCGANT 2021. (21–22 August 2021, Jember, Indonesia). Art. no. 012013. DOI: 10.1088/1742-6596/2157/1/012013
  3. Byers A.D. Graceful Colorings and Connection in Graphs. Diss. Doct. at Western Michigan University, 2018. Dissertations. Vol. 3308. URL:  https://scholarworks.wmich.edu/dissertations/3308
  4. English E., Zhang P., Kalamazoo. On graceful colourings of trees. Math. Bohem., 2016. Vol. 142, No. 1. P. 57–73. URL: http://dml.cz/dmlcz/146009
  5. Gallian J.A. A dynamic survey of graph labeling. Electron. J. Combin., 2021. Vol. 24, #DS6. 623 p. URL: https://www.combinatorics.org/files/Surveys/ds6/ds6v25-2022.pdf
  6. Mincu R., Obreja C., Popa A. The graceful chromatic number for some particular classes of graphs. In: Proc. 21st Int. Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE Xplore, 2019. Art. no. 19492926. DOI: 10.1109/SYNASC49474.2019.00024




DOI: http://dx.doi.org/10.15826/umj.2023.2.016

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.