A CHARACTERIZATION OF DERIVATIONS AND AUTOMORPHISMS ON SOME SIMPLE ALGEBRAS
Abstract
In the present paper, we study simple algebras, which do not belong to the well-known classes of algebras (associative algebras, alternative algebras, Lie algebras, Jordan algebras, etc.). The simple finite-dimensional algebras over a field of characteristic 0 without finite basis of identities, constructed by Kislitsin, are such algebras. In the present paper, we consider two such algebras: the simple seven-dimensional anticommutative algebra \(\mathcal{D}\) and the seven-dimensional central simple commutative algebra \(\mathcal{C}\). We prove that every local derivation of these algebras \(\mathcal{D}\) and \(\mathcal{C}\) is a derivation, and every 2-local derivation of these algebras \(\mathcal{D}\) and \(\mathcal{C}\) is also a derivation. We also prove that every local automorphism of these algebras \(\mathcal{D}\) and \(\mathcal{C}\) is an automorphism, and every 2-local automorphism of these algebras \(\mathcal{D}\) and \(\mathcal{C}\) is also an automorphism.
Keywords
Full Text:
PDFReferences
- Ayupov Sh., Arzikulov F. 2-Local derivations on semi-finite von Neumann algebras. Glasg. Math. J., 2014. Vol. 56, No. 1. P. 9–12. DOI: 10.1017/S0017089512000870
- Ayupov Sh., Arzikulov F. 2-Local derivations on associative and Jordan matrix rings over commutative rings. Linear Algebra Appl., 2017. Vol. 522. P. 28–50. DOI: 10.1016/j.laa.2017.02.012
- Ayupov Sh., Kudaybergenov K. 2-Local derivations and automorphisms on \(B(H)\). J. Math. Anal. Appl., 2012. Vol. 395, No. 1. P. 15–18. DOI: 10.1016/j.jmaa.2012.04.064
- Ayupov Sh., Kudaybergenov K. 2-Local derivations on von Neumann algebras. Positivity, 2015. Vol. 19. P. 445–455. DOI: 10.1007/s11117-014-0307-3
- Ayupov Sh., Kudaybergenov K. 2-Local automorphisms on finite-dimensional Lie algebras. Linear Algebra Appl., 2016. Vol. 507. P. 121–131. DOI: 10.1016/j.laa.2016.05.042
- Ayupov Sh., Kudaybergenov K. Local derivations on finite-dimensional Lie algebras. Linear Algebra Appl., 2016. Vol. 493. P. 381—398. DOI: 10.1016/j.laa.2015.11.034
- Ayupov Sh., Kudaybergenov K., Omirov B. Local and 2-local derivations and automorphisms on simple Leibniz algebras. Bull. Malays. Math. Sci. Soc., 2020. Vol. 43. P. 2199—2234. DOI: 10.1007/s40840-019-00799-5
- Ayupov Sh., Kudaybergenov K., Rakhimov I. 2-Local derivations on finite-dimensional Lie algebras. Linear Algebra Appl., 2015. Vol. 474. P. 1–11. DOI: 10.1016/j.laa.2015.01.016
- Chen Z., Wang D. 2-Local automorphisms of finite-dimensional simple Lie algebras. Linear Algebra Appl., 2015. Vol. 486. P. 335–344. DOI: 10.1016/j.laa.2015.08.025
- Costantini M. Local automorphisms of finite dimensional simple Lie algebras. Linear Algebra Appl., 2019. Vol. 562. P. 123–134. DOI: 10.1016/j.laa.2018.10.009
- Filippov V.T. \(\delta\)-derivations of prime alternative and Mal’tsev algebras. Algebra Logic, 2000. Vol. 39. P. 354–358. DOI: 10.1007/BF02681620
- Kadison R.V. Local derivations. J. Algebra, 1990. Vol. 130, No. 2. P. 494–509. DOI: 10.1016/0021-8693(90)90095-6
- Kaigorodov I. On \((n + 1)\)-ary derivations of simple \(n\)-ary Mal’tsev algebras. St. Petersburg Math. J., 2014. Vol. 25. P. 575–585. DOI: 10.1090/S1061-0022-2014-01307-6
- Kaygorodov I., Popov Yu. A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations. J. Algebra, 2016. Vol. 456. P. 323–347. DOI: 10.1016/j.jalgebra.2016.02.016
- Khrypchenko M. Local derivations of finitary incidence algebras. Acta Math. Hungar., 2018. Vol. 154. P. 48–55. DOI: 10.1007/s10474-017-0758-7
- Kim S.O., Kim J.S. Local automorphisms and derivations on \(M_n\). Proc. Amer. Math. Soc., 2004. Vol. 132, No. 5. P. 1389–1392.
- Isaev I.M., Kislitsin A.V. An example of a simple finite-dimensional algebra with no finite basis of identities. Dokl. Math., 2012. Vol. 86, No. 3. P. 774–775. DOI: 10.1134/S1064562412060154
- Isaev I.M., Kislitsin A.V. Example of simple finite dimensional algebra with no finite basis of its identities. Comm. Algebra, 2013. Vol. 41, No. 12. P 4593–4601. DOI: 10.1080/00927872.2012.706348
- Kislitsin A.V. An example of a central simple commutative finite-dimensional algebra with an infinite basis of identities. Algebra Logic, 2015. Vol 54. P. 204–210. DOI: 10.1007/s10469-015-9341-x
- Kislitsin A.V. Simple finite-dimensional algebras without finite basis of identities. Sib. Math. J., 2017. Vol. 58. P. 461–466. DOI: 10.1134/S00374466 17030090
- Larson D.R., Sourour A.R. Local derivations and local automorphisms of \(B(X)\). In: Proc. Sympos. Pure Math., Providence, Rhode Island Part 2, 1990. Vol. 51. P. 187–194. URL: http://hdl.handle.net/1828/2373
- Lin Y.-F., Wong T.-L. A note on 2-local maps. Proc. Edinb. Math. Soc. (2), 2006. Vol. 49, No. 3. P. 701–708. DOI: 10.1017/S0013091504001142
- Mal’tsev A.I. Analytic loops. Mat. Sb. (N.S.), 1955. Vol. 36(78), No. 3. P 569–576. (in Russian)
- Šemrl P. Local automorphisms and derivations on \(B(H)\). Proc. Amer. Math. Soc., 1997. Vol. 125. P. 2677–2680. DOI: 10.1090/S0002-9939-97-04073-2
Article Metrics
Refbacks
- There are currently no refbacks.