A NEW GENERALIZED VARENTROPY AND ITS PROPERTIES
Abstract
The variance of Shannon information related to the random variable \(X\), which is called varentropy, is a measurement that indicates, how the information content of \(X\) is scattered around its entropy and explains its various applications in information theory, computer sciences, and statistics. In this paper, we introduce a new generalized varentropy based on the Tsallis entropy and also obtain some results and bounds for it. We compare the varentropy with the Tsallis varentropy. Moreover, we explain the Tsallis varentropy of the order statistics and analyse this concept in residual (past) lifetime distributions and then introduce two new classes of distributions by them.
Keywords
Full Text:
PDFReferences
Abbasnejad M., Arghami N.R. Renyi entropy properties of order statistics. Comm. Statist. Theory Methods, 2010. Vol. 40, No. 1. P. 40–52. DOI: 10.1080/03610920903353683
Afhami B., Madadi M., Rezapour M. Goodness-of-fit test based on Shannon entropy of k-record values from the generalized. J. Stat. Sci., 2015. Vol. 9, No. 1. P. 43–60.
Arikan E. Varentropy decreases under the polar transform. IEEE Trans. Inform. Theory, 2016. Vol. 62, No. 6. P. 3390–3400. DOI: 10.1109/TIT.2016.2555841
Arnold B.C., Balakrishnan N., Nagaraja H.N. A First Course in Order Statistics. Classics Appl. Math., vol. 54. Philadelphia: SIAM, 2008. 279 p. DOI: 10.1137/1.9780898719062
Baratpour S., Ahmadi J., Arghami N.R. Characterizations based on Rényi entropy of order statistics and record values. J. Statist. Plann. Inference, 2008. Vol. 138, No. 8. P. 2544–2551. DOI: 10.1016/j.jspi.2007.10.024
Baratpour S., Khammar A. Tsallis entropy properties of order statistics and some stochastic comparisons. J. Statist. Res. Iran, 2016. Vol. 13, No. 1. P. 25–41 DOI: 10.18869/acadpub.jsri.13.1.2
Bobkov S., Madiman M. Concentration of the information in data with log-concave distributions. Ann. Probab., 2011. Vol. 39, No. 4. P. 1528–1543. URL: https://projecteuclid.org/euclid.aop/1312555807
David H.A., Nagaraja H.N. Order Statistics. 3rd edition. Wiley Ser. Probab. Stat. Hoboken, New Jersey: John Wiley & Sons, Inc. 2003. 458 p. DOI: 10.1002/0471722162
Di Crescenzo A., Longobardi M. Statistic comparisons of cumulative entropies. In: Stochastic Orders in Reliability and Risk. Li H., Li X. (eds.). Lect. Notes Stat., vol. 208. New York: Springer, 2013. P. 167–182. DOI: 10.1007/978-1-4614-6892-9_8
Di Crescenzo A., Paolillo L. Analysis and applications of the residual varentropy of random lifetimes. Probab. Engrg. Inform. Sci., 2020. P. 1–19. DOI: 10.1017/S0269964820000133
Ebrahimi N., Kirmani S.N.U.A. Some results on ordering of survival functions through uncertainty. Statist. Probab. Lett., 1996. Vol. 29, No. 2. P. 167–176. DOI: 10.1016/0167-7152(95)00170-0
Ebrahimi N., Soofi E.S., Zahedi H. Information properties of order statistics and spacing. IEEE Trans. Inform. Theory, 2004. Vol. 50, No. 1. P. 177–183. DOI: 10.1109/TIT.2003.821973
Enomoto R., Okamoto N., Seo T. On the asymptotic normality of test statistics using Song’s kurtosis. J. Stat. Theory Pract., 2013. Vol. 7, No. 1. P. 102–119. DOI: 10.1080/15598608.2013.756351
Gupta R.C., Taneja H.C., Thapliyal R. Stochastic comparisons based on residual entropy of order statistics and some characterization results. J. Stat. Theory Appl., 2014. Vol. 13, No. 1. P. 27–37. DOI: 10.2991/jsta.2014.13.1.3
Kontoyiannis I., Verdú S. Optimal lossless compression: Source varentropy and dispersion. IEEE Trans. Inform. Theory, 2014. Vol. 60, No. 2. P. 777–795. DOI: 10.1109/TIT.2013.2291007
Liu J. Information Theoretic Content and Probability. Ph.D. Thesis, University of Florida, 2007.
Nanda A.K., Paul P. Some results on generalized residual entropy. Inform. Sci., 2006. Vol. 176, No. 1. P. 27–47. DOI: 10.1016/j.ins.2004.10.008
Park S. The entropy of consecutive order statistics. IEEE Trans. Inform. Theory, 1995. Vol. 41, No. 6. P. 2003–2007. DOI: 10.1109/18.476325
Psarrakos G., Navarro J. Generalized cumulative residual entropy and record values. Metrika, 2013. Vol. 76. P. 623–640. DOI: 10.1007/s00184-012-0408-6
Raqab M.Z., Amin W.A. Some ordering result on order statistics and record values. IAPQR Trans., 1996. Vol. 21, No. 1. P. 1–8.
Shannon C.E. A mathematical theory of communication. Bell System Technical J., 1948. Vol. 27, No. 3. P. 379–423 DOI: 10.1002/j.1538-7305.1948.tb01338.x
Song K.-S. Rényi information, log likelihood and an intrinsic distribution measure. J. Statist. Plann.Inference, 2001. Vol. 93, No. 1–2. P. 51–69. DOI: 10.1016/S0378-3758(00)00169-5
Tsallis C. Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys., 1988. Vol. 52. P. 479–487. DOI: 10.1007/BF01016429
Vikas Kumar, Taneja H.C. A generalized entropy-based residual lifetime distributions. Int. J. Biomath., 2011. Vol. 04, No. 02. P. 171–148. DOI: 10.1142/S1793524511001416
Wilk G., W lodarczyk Z. Example of a possible interpretation of Tsallis entropy. Phys. A: Stat. Mech. Appl., 2008. Vol. 387, No. 19–20. P. 4809–4813. DOI: 10.1016/j.physa.2008.04.022
Wong K.M., Chen S. The entropy of ordered sequences and order statistics. IEEE Trans. Inform. Theory, 1990. Vol. 36, No. 2. P. 276–284. DOI: 10.1109/18.52473
Zarezadeh S., Asadi M. Results on residual Rényi entropy of order statistics and record values. Inform. Sci., 2010. Vol. 180, No. 21. P. 4195–4206. DOI: 10.1016/j.ins.2010.06.019
Zhang Z. Uniform estimates on the Tsallis entropies. Lett. Math. Phys., 2007. Vol. 80. P. 171–181. DOI: 10.1007/s11005-007-0155-1
Zografos K. On Mardia’s and Song’s measures of kurtosis in elliptical distributions. J. Multivariate Anal., 2008. Vol. 99, No. 5. P. 858–879. DOI: 10.1016/j.jmva.2007.05.001
Article Metrics
Refbacks
- There are currently no refbacks.