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A MODEL OF AGE–STRUCTURED POPULATION

UNDER STOCHASTIC PERTURBATION OF DEATH

AND BIRTH RATES1

Maxim A. Alshanskiy

Ural Federal University, Ekaterinburg, Russia
m.a.alshansky@urfu.ru

Abstract: Under consideration is construction of a model of age-structured population reflecting random
oscillations of the death and birth rate functions. We arrive at an Itô-type difference equation in a Hilbert space
of functions which can not be transformed into a proper Itô equation via passing to the limit procedure due to
the properties of the operator coefficients. We suggest overcoming the obstacle by building the model in a space
of Hilbert space valued generalized random variables where it has the form of an operator-differential equation
with multiplicative noise. The result on existence and uniqueness of the solution to the obtained equation is
stated.

Key words: Brownian sheet, Cylindrical Wiener process, Gaussian white noise, Stochastic differential
equation, Age-structured population model.

Introduction

A well known model of an age-structured population dynamics is the famous McKendrick–von
Foerster equation

∂u(x, t)

∂t
+

∂u(x, t)

∂x
= −m(x)u(x, t), (0.1)

where u(x, t) is density of the population at age x at time t (so, that
x2
∫

x1

u(s, t)ds is the number of

individuals with the age belonging to [x1;x2] at the time t) and m(x) is the death rate. The usual
assumption is that the age of individuals is limited, say x ∈ [0; 1]. The process of reproduction is
modeled by the boundary condition

u(0, t) =

∫ 1

0
b(x)u(x, t) dx. (0.2)

Here b(x) is the birth rate which describes the reproductive capacity of the population with respect
to age. The model would be more realistic if it reflected random oscillations of the rates of death and
birth. Presence of these oscillations can be considered as the result of superposition of multitude
of factors connected with different aspects of vital activity of the individuals in the population as
well as with unpredictable changes in the environment connected with its physical nature, with
food supply, vital activity of competing populations, predators and so on. The assumption of
randomness of the oscillations is the way of avoiding unnecessary complication of the model that

1This work was supported by the Program for State Support of Leading Scientific Schools of the Russian
Federation (project no. NSh-9356.2016.1) and by the Competitiveness Enhancement Program of the Ural
Federal University (Enactment of the Government of the Russian Federation of March 16, 2013 no. 211,
agreement no. 02.A03.21.0006 of August 27, 2013).
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occurs when one tries to reflect the interaction of all these factors which are often hardly subject
to formalization.

Stochastically perturbed McKendrick–von Furster equation was for the first time introduced
in [10] in a straightforward way by adding a term containing Gaussian white noise and having
form g(t, u)Ẇ (t) (or equivalently g(t, u)dW (t) in the corresponding Itô equation), where W (t) is a
Hilbert space valued Wiener process and g(t, ·) maps the Hilbert space H, where u considered as
a function of t takes values, onto the space of linear bounded operators acting from the separable
Hilbert space K, where the values of W (t) lie, to H. In an analogous fashion in [7] was introduced
the McKendrick–von Furster equation perturbed with the Levy noise. However both works do not
consider the question of choice of appropriate mapping g(t, ·).

The aim of our work is clarification of this question in order consistent with the desired prop-
erties of the noisy influence on the population.

Since both of the rates are described by functions m and b of age x ∈ [0; 1], it seems natural to
model these oscillations by appropriate random processes taking values in spaces of functions of x
and to build a model having form of a stochastic equation in such a space. In the present work we
discuss problems that arise in building such a model.

We start with a difference equation for the increment of the number of individuals belonging
to a small segment of length ∆x of the age scale during a small period of time ∆t. In section 1
we show that a Brownian sheet naturally arises in modelling the random fluctuations of the death
rate. Crucial assumption here is independence between fluctuations of per capita amounts of dead
individuals at disjoint segments of the age scale or the time line.

In section 2 we consider passage to limit in the obtained difference equation when ∆x tends to
zero. We show that the obstacle connected with non-differentiability of the Brownian sheet can be
overcome with the help of the concept of a cylindrical random variable on a Hilbert space. Thus,
we obtain a difference equation for the increments of the density of the population in a Hilbert
space H of functions of x ∈ [0; 1]. We show that the random fluctuations of the death rate can
be modeled by increments of a cylindrical Wiener process. We also show how this idea can be
implemented in modeling the random fluctuations of the rate of birth.

In section 3 we discuss difficulties that arise when we attempt to convert the difference equation
into a stochastic differential equation in the Hilbert space H. We show that the use of the theory of
Itô-type stochastic differential equations in infinite dimensional Hilbert spaces (see the review of the
theory in [5, 6]) is limited due to the properties of the operator coefficients in the difference equation
obtained on the previous step. The necessary requirement for the operator-valued integrand of a
well defined Itô integral with respect to a cylindrical Wiener process is the condition of being a
Hilbert–Schmidt operator, which is not the case here. The way out can be found in setting the
equation in the space (S)−ρ(H) of H-valued generalized random variables introduced and studied
in [2, 8, 9]. Cylindrical Wiener process W (t) considered a function of t with values in this space
happens to be differentiable with the derivative W ′(t) = W(t) being the cylindrical H-valued white
noise. We use the established in [3] connection between the Itô integral with respect to a cylindrical
Wiener process and the Hitsuda–Skorohod integral. Thus, we finally arrive at a model having form
of an operator-differential equation in (S)−ρ(H) and formulate the existence and uniqueness result
for the Cauchy problem for this equation.

1. Difference equation

Consider evolution of the population density u(x, t) of an age-structured population, where
x ∈ [0; 1] is age, t ≥ 0 is time. Given x ∈ [0; 1] and t ≥ 0 we consider the change of the number of
individuals that belong to a small segment [x;x+∆x] at the moment t during a small time interval
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[t; t+∆t]:

x+∆x+∆t
∫

x+∆t

u(s, t+∆t)ds−
x+∆x
∫

x

u(s, t)ds = u(x+∆x, t+∆t)∆x− u(x, t)∆x+ o(∆x).

Suppose the change is due to death of individuals and m(x) is the expected rate of death at age
x, i.e. m(x)∆x+ o(∆x) is the mean number of dead in the age segment [x;x+∆x] in a unit time
under constant unit density with respect to age. Suppose also that the population replenishment
is due to reproduction which is characterized by the birth rate function b(x) and is described by
the boundary condition (0.2). Now let the death rate be subject to random fluctuations, so that
omitting the o(∆x)’s we arrive at the following equation:

u(x+∆t, t+∆t)∆x− u(x, t)∆x = −u(x, t)m(x)∆x∆t+ u(x, t)∆η, (1.1)

where ∆η = ∆ηx,t∆x,∆t is the random increment of the number of dead individuals in an arbitrary
age segment [x;x+∆x] during the time [t; t+∆t] under constant unit density of population.

The individuals belonging to the age segment [x;x + ∆x] at the moment t move along the
age scale as the time goes and get into the segment [x + ∆t;x + ∆t + ∆x] at the time t + ∆t.
This suggests a natural parametrization of the introduced family of random variables by means of
parallelograms Πx,t

∆x,∆t (the upper and the right sides are supposed to be excluded, see figure 1):

∆η = ∆ηx,t∆x,∆t = ∆η
(

Πx,t
∆x,∆t

)

. (1.2)

We will suppose that the following hypothesis holds.

✲

✻

x

t

x x+∆t x+∆x x+∆x+∆t

t

t+∆t

�
�
�
�
�
�

��
��

��
��

Figure 1. Parallelogram Πx,t

∆x,∆t
.

Hypothesis 1. ∆η
(

Πxk,tk
∆xk,∆tk

)

, k = 1, . . . , n, n ∈ N, are independent if the parallelograms

Πxk,tk
∆xk,∆tk

are pairwise disjoint.

Given arbitrary segments [x;x+∆x] and [t; t+∆t] consider the uniform partition {xk} of [x;x+
∆x], where xk = x + k∆x/n, k = 0, 1, . . . , n and the corresponding decomposition Πx,t

∆x,∆t =
⋃n−1

k=0 Π
xk,t
∆x/n,∆t. The definition of ∆η’s implies the following ”additivity” for them:

∆η
(

Πx,t
∆x,∆t

)

=

n−1
∑

k=0

∆η
(

Πxk,t
∆x/n,∆t

)

.
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Due to the Hypothesis 1 it follows

Var
[

∆η
(

Πx,t
∆x,∆t

)]

=

n−1
∑

k=0

Var
[

∆η
(

Πxk,t
∆x/n,∆t

)]

.

This condition will be fulfilled if we let

∆η
(

Πx,t
∆x,∆t

)

=











γ
√
∆x, with probability λ∆t,

0, with probability 1− 2λ∆t,

−γ
√
∆x, with probability λ∆t,

(1.3)

for any x, t,∆x,∆t. Here γ and λ are some proportionality factors. This is true since we have

∆η
(

Πxk,t
∆x/n,∆t

)

=























γ

√

∆x

n
, with probability λ∆t,

0, with probability 1− 2λ∆t,

−γ

√

∆x

n
, with probability λ∆t,

and therefore

Var
[

∆η
(

Πxk,t
∆x/n,∆t

)]

= γ2
∆x

n
2λ∆t. (1.4)

Note that the Central Limit Theorem holds for the sequence of series of random variables {ξ(n)k }nk=1,

n = 1, 2, . . . , where ξ
(n)
k = ∆η

(

Πxk,t
∆x/n,∆t

)

, since ξ
(n)
k are independent and identically distributed

with Eξ
(n)
k = 0 and Var ξ

(n)
k given by (1.4). By the Central Limit Theorem we conclude that

the distribution of
1

γ
√
2λ∆x∆t

n
∑

i=1

ξ
(n)
i converges to standard Gaussian when n → ∞. So, the

Hypothesis 1 together with the additivity property (1) makes it natural to impose the following
hypothesis.

Hypothesis 2. ∆η
(

Πx,t
∆x,∆t

)

∼ N
(

0, 2λγ2∆x∆t
)

.

Definition 1. The collection of random variables {Θ(B) , B ∈ B(R2)} is called a Gaussian
orthogonal measure on the Borel σ-field B(R2) if the following holds:

1. Θ(B) ∼ N (0, µL(B)) for all B ∈ B(R2), where µL is the Lebesque measure of B;

2. B1 ∩B2 = ∅ implies Θ(B1) and Θ(B2) are independent for all B1, B2 ∈ B(R2);

3. Θ(∪∞
k=1Bk) =

∑∞
k=1Θ(Bk) (the series is mean square convergent) for any sequence {Bk} ⊂

B(R2) of pairwise disjoint sets.

Hypotheses 1 and 2 imply that ∆η = γ
√
2λΘ, where Θ is a Gaussian orthogonal measure on

B(R2). Thus, equation (1.1) turns into

u(x+∆t, t+∆t)∆x− u(x, t)∆x = −u(x, t)m(x)∆x∆t+ α0u(x, t)Θ
(

Πxk,t
∆x,∆t

)

, (1.5)

where α0 ∈ R is a constant.
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Definition 2. [1, p. 649] A two-parameter Gaussian random process {B(x, t) , x ≥ 0, t ≥ 0} is
called a Brownian sheet if it satisfies the following conditions:

1. E [B(x, t)] = 0 , for all x, t ≥ 0;

2. Cov (B(x1, t1),B(x2, t2)) = min{x1;x2} ·min{t1; t2} for all x1, x2, t1, t2 ≥ 0.

In [4, Definition 12, p. 107] a random process, satisfying the conditions of Definition 2 is called a
Wiener–Chentsov random field.

It is easy to see that the random process defined by

B(x, t) := Θ
(

Π0,0
x,t

)

, x, t ≥ 0 (1.6)

is a Brownian sheet.

Note that a Brownian sheet on [0; 1] × [0;T ] admits the following decomposition

B(x, t) =

n
∑

n,k=0

θn,k
8
√
T

π2(2n+ 1)(2k + 1)
sin

π(2n + 1)t

2T
sin

π(2k + 1)x

2
, (1.7)

where θn,k are independent standard Gaussian random variables, defined on a probability space

(Ω,F ,P). Replacing Θ
(

Πxk,t
∆x,∆t

)

in (1.5) by the increment of the Brownian sheet, defined by (1.6)

we obtain

u(x+∆t, t+∆t)∆x− u(x, t)∆x = −u(x, t)∆xµ(x)∆t+

+α0u(x, t) [B(x+∆x, t+∆t)− B(x, t+∆t)− B(x+∆x, t) + B(x, t)] .

Let u(x, t) be continuously differentiable with respect to x. Then we have

u(x+∆t, t+∆t)− u(x, t) = u(x, t+∆t) +
∂u

∂x
(x, t+∆t)∆t+ o(∆t)− u(x, t) =

= u(x, t+∆t)− u(x, t) +

[

∂u

∂x
(x, t) + o(1)

]

∆t+ o(∆t) =

= u(x, t+∆t)− u(x, t) +
∂u

∂x
(x, t)∆t+ o(∆t).

Omitting the o(∆t)’s and dividing both sides of the equation by ∆x, we obtain the equation

u(x, t+∆t)− u(x, t) =

(

−∂u

∂x
(x, t)− µ(x)u(x, t)

)

∆t+

+α0u(x, t)

[

B(x+∆x, t+∆t)− B(x, t+∆t)

∆x
− B(x+∆x, t)− B(x, t)

∆x

]

.

(1.8)

Brownian sheet is nowhere differentiable in both variables. Therefore we can not pass to limit in
this difference equation letting ∆x → 0. In the next section we consider this equation in a Hilbert
space of functions of x ∈ [0; 1] and justify this passage to limit with the help of the concept of
cylindrical random variable.
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2. Difference equation in a Hilbert space

The set of functions ek(x) =
√
2 sin

x

λk
, k = 0, 1, . . . , used in expansion (1.7), where λk =

2

π(2k + 1)
is an orthonormal basis in the space H = L2[0; 1]. Note that the random processes

βk(t), defined by the series

βk(t) =

∞
∑

n=0

θn,k
2
√
2T

π(2n+ 1)
sin

π(2n+ 1)t

2T
, t ∈ [0;T ], (2.1)

are independent Brownian motions (here, as in (1.7), θn,k are independent standard Gaussian
random variables). Thus, we can rewrite the expansion (1.7) as

B(x, t) =

∞
∑

k=0

λkβk(t)ek(x) (2.2)

and consider B(t) = B(·, t) as a random process in H. It is easy to see that the series (2.2) is
convergent in L2(Ω,F ,P;H) for any t.

Let us introduce the shift operator τ∆x : H → H, defining it on the elements of the basis {ek}
by

τ∆xek = sin
∆x

λk
ẽk + cos

∆x

λk
ek , (2.3)

where ẽk(x) := λke
′
k(x) =

√
2 cos x

λk
, k = 0, 1, . . . . Note that the set {ẽk} is also an orthonormal

basis in L2[0; 1]. Equation (1.8) can be written as the following difference equation in H:

u(t+∆t)− u(t) =

(

− ∂

∂x
u(t)−mu(t)

)

∆t+

+α0u(t)

[

τ∆xB(t+∆t)− B(t+∆t)

∆x
− τ∆xB(t)− B(t)

∆x

]

,

where u(t) = u(·, t).

Definition 3. [6, p. 17] Let H be a Hilbert space. A linear operator X : H → L2(Ω,F ,P)
with the properties:

1. X[h] ∼ N(0, ‖h‖2) for any h ∈ H,

2. X(h1) and X(h2) are independent if (h1, h2)H = 0,

is called a cylindrical standard Gaussian random variable on H.

It follows from the definition that any cylinder standard Gaussian random variable X is a
bounded operator: X ∈ L

(

H;L2(Ω,F ,P)
)

with ‖X‖ = 1.

Definition 4. [6, p. 19] A family {W (t) , t ∈ R} is called a cylindrical Wiener process if

1. W (t) : H → L2(Ω,F ,P) is a linear operator;

2. W (t)[h] is a brownian motion for any h ∈ H ;

3. E (W (t)[h1]W (t)[h2]) = t(h1, h2)H for any h1, h2 ∈ H .
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Let W (t) be a cylindrical Wiener process on a Hilbert space H. It follows from the definition
that 1√

t
W (t) is a cylindrical standard Gaussian random variable on H for any t > 0. We also have

that for any orthonormal basis {gk}∞k=0 in H βk(t) := W (t)[gk] are independent Brownian motions,
therefore one can identify W (t) with the expansion

W (t) =

∞
∑

k=0

βk(t)gk (2.4)

by letting

W (t)[h] :=

∞
∑

k=0

hkβk(t) , h =

∞
∑

k=0

hkgk ∈ H . (2.5)

Although the series (2.4) is divergent in L2(Ω,F ,P;H), the right hand side of the equality (2.5)
defines a random variable belonging to L2(Ω,F ,P) which can be thought of as a scalar prod-
uct (W (t), h)H . Conversely, any sequence of independent Brownian motions {βk(t)}∞k=0 and an
orthonormal basis {gk}∞k=0 in H generate a cylindrical Wiener process on H, defined by (2.5).

The next proposition states that when ∆x → 0, the difference quotients
τ∆xB(·, t)− B(·, t)

∆x
converge to a cylindrical Wiener process as cylindrical random variables on the Hilbert space
H = L2[0; 1].

Proposition 1. For any h ∈ H

lim
∆x→0

E

(

τ∆xB(t)− B(t)

∆x
−W0(t), h

)2

H

= 0 , (2.6)

where W0(t) is the cylindrical Wiener process, defined by the expansion

W0(t) =

∞
∑

k=0

βk(t)ẽk.

P r o o f. Let h =
∑∞

k=1 hkek =
∑∞

k=1 h̃kẽk ∈ H. Using the expansion (2.2) and the equality
(2.3), we obtain

(

τ∆xB(t)− B(t)

∆x
−W0(t), h

)

H

=
∞
∑

k=0

βk(t)
[

ζk(∆x)h̃k + γk(∆x)hk

]

,

where

ζk(∆x) =
sin∆x/λk

∆x/λk
− 1, γk(∆x) =

cos∆x/λk − 1

∆x/λk
.

We have

E

(

τ∆xB(t)− B(t)

∆x
−W0(t), h

)2

H

= t

∞
∑

k=0

[

ζk(∆x)h̃k + γk(∆x)hk

]2
(2.7)

and due to the estimate

[

ζk(∆x)h̃k + γk(∆x)hk

]2
≤ 2

[

ζ2k(∆x)h̃2k + γ2k(∆x)h2k

]

≤ 4
[

h̃2k + h2k

]

,

we conclude that the series in the right hand side of (2.7) is uniformly convergent with respect to
∆x ∈ R. Since lim

∆x→0
ζk(∆x) = lim

∆x→0
γk(∆x) = 0 for any k, it follows (2.6). �
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Thus, letting ∆x → 0 in (1.8), we arrive at the following difference equation in H:

u(t+∆t)− u(t) =

(

− ∂

∂x
u(t)−mu(t)

)

∆t+ α0u(t) (W0(t+∆t)−W0(t)) .

Note, that the last term in the right hand side of this equation can not be thought of as a product
of functions of x. This is due to the fact that the increments of the cylindrical Wiener process are
cylindrical Gaussian random variables on H and do not belong to H = L2[0; 1] with probability
one. In order to give meaning to the product we rewrite the equation in the following form:

u(t+∆t)− u(t) = Au(t)∆t+ α0B0(u(t)) (W0(t+∆t)−W0(t)) , (2.8)

where A = − d

dx
−m(x) : H → H with the domain

D(A) =

{

u ∈ H1[0; 1]

∣

∣

∣

∣

u(0) =

∫ 1

0
b(x)u(x) dx

}

,

and B0 : H → L(H) is the operator, defined by B0 : u 7→ B0(u), where B0(u) is the operator of
multiplication by u.

Since for any u ∈ H we have

‖B0(u)ek‖2H =

∫ 1

0
|u(x)ek(x)|2dx ≤ 2‖u‖2H

and h =
∑∞

k=0 hkek ∈ H1[0, 1] iff ‖h‖21 :=

∞
∑

k=0

(

hk
λk

)2

< ∞, the following estimate holds:

‖B0(u)h‖2H =

∥

∥

∥

∥

∥

∞
∑

k=0

hkB0(u)ek

∥

∥

∥

∥

∥

2

H

≤
( ∞
∑

k=0

|hk|‖B0(u)ek‖
)2

≤

≤
∞
∑

k=0

(

hk
λk

)2 ∞
∑

k=0

λ2
k‖B0(u)ek‖2 ≤ ‖h‖21‖u‖2H · 2

∞
∑

k=0

λ2
k .

Since
∑∞

k=0 λ
2
k < ∞, it follows B0(u)h ∈ H. Therefore the equation (2.8) can be understood in the

following weak sense:

(u(t+∆t)− u(t), h)H = (u(t), A∗h)H∆t+ α0(W0(t+∆t)−W0(t))[B0(u(t))h] (2.9)

for any h ∈ D(A∗). Here A∗h(x) = h′(x)−m(x)h(x) + b(x)h(0) with the domain

D(A∗) =
{

h ∈ H1[0; 1] |h(1) = 0
}

.

Consider the first term in the right hand side of (2.9). We have

(u(t), A∗h)H = (u(t), h′)H − (u(t),mh)H + (u(t), 〈h, δ〉b)H =

= (u(t), h′)H − (m,B0(u(t))h)H + (b,B1(u(t))h)H ,
(2.10)

where δ is the Dirac delta-function, considered as an element of the spaceH−1[0; 1], the operator
B1 : H → L(H1[0; 1];H) is defined by B1(u)h = 〈h, δ〉u, u ∈ H, h ∈ H1[0; 1]. The second term in
the right hand side of (2.9) has appeared as the result of stochastic perturbation of the operator of
multiplication by m(x) (the mean rate of death). This operator is represented by the second term in
the right hand side of (2.10). Since the third term there corresponds to the operator of multiplication
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by b(x) (the mean birth rate) initially contained in the boundary condition, it is natural to introduce
an analogous stochastic perturbation of this factor by the term α1(W1(t+∆t)−W1(t))[B1(u(t))h],
where W1(t) is a cylindrical Wiener process independent with W0(t) and α1 is a constant.

Thus, we arrive at the following equation:

u(t+∆t)− u(t) = Au(t)∆t+ α0B0(u(t)) (W0(t+∆t)−W0(t))+

+α1B1(u(t)) (W1(t+∆t)−W1(t)) ,
(2.11)

which is understood in the weak sense, namely:

(u(t+∆t)− u(t), h)H = (u(t), A∗h)H∆t+ α0(W0(t+∆t)−W0(t))[B0(u(t))h]

+α1(W1(t+∆t)−W1(t))[B1(u(t))h]

for any h ∈ D(A∗).

3. Differential equation

For any t > 0 let {tk}Nk=0 be a partition of the segment [0; t], where tk = k∆t, ∆t = t/N .
Summing up the equality (2.11) written for the points tk we obtain

u(t)− u(0) =

N−1
∑

k=0

Au(tk)∆t+

N−1
∑

k=0

B0(u(tk)) (W0(tk+1)−W0(tk))+

+
N−1
∑

k=0

B1(u(tk)) (W1(tk+1)−W1(tk)) .

Letting N → ∞ we arrive at the following integral Itô equation

u(t)− u(0) =

∫ t

0
Au(s) ds +

∫ t

0
B0(u(s)) dW0(s) +

∫ t

0
B1(u(s)) dW1(s), (3.1)

if the integrals in the right hand side exist. The equation is usually written in the following
differential form:

du(t) = Au(t) dt+B0(u(t)) dW0(t) +B1(u(t)) dW1(t) , u(0) = u0. (3.2)

The necessary condition of existence of the integrals in (3.1) is B0(u), B1(u) ∈ L2(H;H) (the space
of Hilbert–Schmidt operators acting in H) for any u ∈ H. It is not the case here, therefore it
is impossible to obtain theorems on existence and uniqueness of solution (weak, or mild) for the
problem (3.3) (see, for example, Theorem 6.7, p. 164 in [5], Theorem 3.3, p. 97 in [6]).

The way out can be found in setting the problem in the space of generalized Hilbert-space-
valued random variables (S)−ρ(H) ⊃ L2(Ω,F , P ;H), ρ ∈ [0; 1] (see the definition and properties
of this space in [9]). It turns out that a cylindrical Wiener process W (t) on H is a differentiable
(S)−ρ(H)-valued function of t. Denote its derivative by W(t). It is called a cylindrical singular
white noise. It was proved in [3] that for any predictable L2(H,H)-valued process Ψ(t) it holds

∫ t

0
Ψ(s) dW (s) =

∫ t

0
Ψ(s) ⋄W(s)ds,

where ⋄ is the Wick product, if the Itô integral in the left hand side exists. The integral in the
right hand side is often called the Hitsuda–Skorohod integral. It can be considered an extension of
the Itô integral onto a wider class of integrands.
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Thus, the problem (3.3) takes the form

du(t)

dt
= Au(t) +B0(u(t)) ⋄W0(t) +B1(u(t)) ⋄W1(t), u(0) = u0. (3.3)

in the space (S)−ρ(H). The following theorem is stated here without proof as it is a straightforward
generalization of the Theorem 3 in [9].

Theorem 1. Let A be the generator of a C0-semigroup of operators in a Hilbert space H,
B0(·), B1(·) ∈ L

(

H,L2(HQ,H)
)

, where Q is a positive trace class operator in H with the set of
eigenvalues {σ2

j }∞j=1 satisfying the condition

∑

j

σ−2
j j−2p < ∞ , for some p ∈ N,

and HQ = Q1/2(H) with the norm ‖x‖Q = ‖Q−1/2x‖H . Then the problem (3.3) has a unique
solution u(t) ∈ (S)−0(H) for any u0 ∈ (D(A)), where (D(A)) denotes the domain of A in (S)−0(H).

Remark 1. Conditions of the theorem hold true for the operators, B and B1 introduced in our
model. To show this, note that the functions σj ẽj(x), j = 0, 1, 2, . . . form an orthonormal basis in
HQ and for any u ∈ H = L2[0; 1] we have:

‖B(u)‖2L2(HQ,H) =
∑

j

‖B(u)σj ẽj‖2 =
∑

j

σ2
j

∫ 1

0
u2(x)ẽj(x) dx ≤ 2

∑

j

σ2
j ‖u‖2,

‖B1(u)‖2L2(HQ,H) =
∑

j

‖B1(u)σj ẽj‖2 =
∑

j

σ2
j 〈ẽj , δ〉2‖u‖2 = 2

∑

j

σ2
j‖u‖2.

4. Conclusion

Introduction of stochastic perturbation into McKendrick–von Foerster model of an age-struc-
tured population requires taking into account certain properties of the oscillations of rates of death
and birth. We have shown that the assumption of independence between the random fluctuations of
per capita amounts of dead individuals in disjoint segments of the age scale or the time line together
with the analogous assumption on the random fluctuations concerning the process of reproduction
in the population lead to a difference equation in the Hilbert space L2[0; 1] with a cylindrical
Wiener process. Due to nonregularity of the latter, we finally obtain a model which has the form
of an operator-differential equation with cylindrical white noises in the space of generalized Hilbert
space-valued random variables satisfying the conditions of the theorem on existence and uniqueness
of solutions.
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Abstract: The paper provides a brief historical analysis of problems that use the Hausdorff distance; provides
an analysis of the existing Hausdorff distance optimization elements for convex polygons; and demonstrates an
optimization approach. The existing algorithm served as the basis to propose low-level optimization with super-
operative memory, ensuring the finding a precise solution by a full search of the corresponding pairs of vertices
and sides of polygons with exclusion of certain pairs of vertices and sides of polygons. This approach allows a
significant acceleration of the process of solving the set problem.
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1. Introduction

Recognition of images is not a new problem in its essence and arises in the most diverse lines
of research, ranging from applied tasks in the field of analog signal security and digitization to
the problems of theories of optimal control and differential games. The most intensive develop-
ment and improvement of methods for solving such problems is observed in the current period.
This is due, above all, to the need to release people from the arising huge information loads and
to use both thinking and perception characteristic of recognition. All these problems are of pro-
nounced interdisciplinary nature and are the basis for the development of a new generation of
specialized and applied technical recognition systems used in various fields, including medicine [21]
and artificial intelligence development. One of the earliest lines of research was optical character
recognition (OCR).

The recognition and comparison of images [4, 5], including recognition and localization [4, 5] is
a relevant problem of the era of digital information processing. As is known, the most important
information about the shape is in the outlines of objects. Many real-world objects can be recognized
from the images of their outlines, and there is no need to use the original gray-scale images. Due of
this, recognition algorithms are most often designed to operate binary, outline, or close to outline
images.

One of the known methods for detecting and analyzing objects in binary outline images dis-
tinguishable from the surrounding context due to their geometric properties is the geometric mea-
surement of the distance between the image points. One of approaches to solving this problem is
to modify the Hausdorff metrics to identify objects geometrically close to arbitrary reference ones
specified by bit masks. In this approach, the image is considered as a set of complex elements
or a set of points in a two-dimensional Euclidean space. For these sets, the measure of mutual
proximity is calculated; in the case of complex elements, the Hausdorff metric is used. Modifica-
tions of the Hausdorff metric in image recognition have been used since 1993 [6]. They have an
intuitive operation principle, an explicit connection to the object geometry, and do not require any
training sample. However, this approach is little known compared with neural networks, although
an increasing number of related publications have been released in recent years.

https://doi.org/10.15826/umj.2018.1.002
mailto:Danilov.dmitry.i@gmail.com
mailto:alexey.lakhtin@urfu.ru
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2. Main Results

The biggest disadvantage of algorithms that use modifications of the Hausdorff metric is a
rather high computational complexity, on the average 2 ∼ 3 times higher than that of the simplest
correlation algorithms. Non-invariance to rotation and scale, which, in the absence of a priori
information on the orientation and size of the objects to be recognized, forces to use the scanning
of a multitude of versions of the standard sample at different turning angles and scales; therefore,
one of the relevant problems is the development of a calculation optimization technology in these
algorithms.

Among the large number of publications dealing with this subject, several review works should
be singled out [2, 4, 5]. These works touch upon both theoretical and applied aspects in terms
of the algorithm development. Back in the 1990s, the works of P. Gruber [4, 5] covering various
faces of approximating convex bodies were released, and the agenda adjacent to this topic was
further developed and studied in [2]. The author emphasizes that along with the development of
the perfect form of classical approaches, outstanding results on attractive sets have been obtained.

The Hausdorff metric [1, 14] denotes distance h : D → R on certain given set D between its
subsets X,Y , where

h(X,Y ) = max
[

max
X

min
Y

d(x, y), max
Y

min
Y

d(x, y)
]

,

where d(x, y) is the distance between elements of subsets of the given set.

The definition of the metric space in [20] was formulated for convex unbounded closed subsets
of a Banach space using the Hausdorff metric, which establishes the differences of the properties of
convex ones with this metric from the properties of the metric space. The research in [20] led to the
important assertion that not every object in the metric space can be approximated by generalized
polyhedra and, therefore, the generalized polyhedron concept was introduced, and approximation
criteria were proposed. It was shown that the uniform continuity of the support function is a
necessary and sufficient condition for approximation.

Another no less important problem of minimizing the Hausdorff metric between two convex
polygons was addressed in [18]. The authors consider two polygons: one fixed and the other
changing its location on the plane (rotation or parallel transfer). Ushakov and Lebedev et al. [11–
13, 18] developed and tested the iterative step-by-step shift and rotation algorithms that ensure
a reduction in the Hausdorff distance between a moving and a fixed object, using the differential
properties of the function of the Euclidean distance to a convex set and the geometric properties of
the Chebyshev center of a compact set, and proved the theorems on the correctness of the developed
algorithms for a wide range of cases. A multiple start-over of the algorithm allows choosing the
best option.

The works of A.B. Kurzhansky [10] and F.L. Chernousko [3] use the approximation of sets of
attainability of differential games with ellipsoids and parallelepipeds in solving problems of the
optimal control of dynamical systems. In this case, the Hausdorff distance is the criterion of
optimality.

Also, the work of A.S. Lakhtin [18] considers the algorithm for obtaining a precise analytic
solution of the problem of minimizing the Hausdorff distance through a full search among a finite
number of options depending on the number of vertices of the given polygons. The options are
pairs or triples of vectors connecting the vertices of two polygons or the vertex of one and the side
of the other polygon.

Having analyzed all the presented ideas and methods, it was decided to take the ideas under-
lying the analytical algorithm from publication [18] and the numerical subgradient method from
publication [18] as the basis for the new proposed algorithm.
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Of all the algorithms already considered, the most suitable for improvement is the analytical
algorithm of the step-by-step displacement between a moving and a fixed object from publica-
tion [18]. For the convenience of the material perception, the ideas that underlie this method are
provided below.

Suppose that two convex polyhedra A,B ∈ R
n are given. It is required to move them so as to

minimize the Hausdorff distance between them, which, as is known, is calculated by formula

d(A,B) = max
{

max
a∈A

min
b∈B

‖a− b‖, max
b∈B

min
a∈A

‖a− b‖
}

.

Assuming that polyhedron A is fixed, and B moves by parallel transfer for vector x ∈ R
n , we

have convex function F (x) = d(A,B + x), the minimum point of which x∗ is sought for, i.e.
F ∗ = F (x∗) = minx∈Rn F (X).

For convenience, a plane case is considered, i.e. A,B ∈ R
2 are convex polygons, but the idea

of the proposed method can be used in spaces of larger dimensions.

It was proven in [18] that ∂F (x) = co {LA(x)
⋃

LB(x)}, where

LA(x) = {−l : ∃i ∈ IA(x) : 〈l, ai − x〉 − ρB(l) = F (x), ‖l‖ = 1}

and

IA(x) = {i : dist (ai, B + x) = F (x)}.

Set LB(x) is defined similarly.
Define sets L∗

A(x
∗) and L∗

B(x
∗) as sets of vectors co-directed to single vectors from sets LA(x

∗)
and LB(x

∗), respectively, with length F ∗ = F (x∗).

Type V vectors are called vectors from set L∗
A(x

∗)
⋃

L∗
B(x

∗), connecting the vertices of different
polygons. Type W vectors are called vectors from set L∗

A(x
∗)
⋃

L∗
B(x

∗), connecting the vertex of
one polygon with the side of the other, where the vector is perpendicular to this side. Note that
any vector from L∗

A(x
∗)
⋃

L∗
B(x

∗) is of either type V or type W .
By definition, any type V vector has the form lk = bjk + x∗ − aik and, therefore, complies with

equality F ∗ = ‖lk‖ = ‖bjk + x∗ − aik‖ = ‖x∗ − (aik − bjk)‖. Geometrically, this corresponds to the
distance from the point with coordinates x∗ to the point with coordinates (aik − bjk).

Let the type W vector be a vector from vertex aik to side (bk+x∗), (bk+1+x∗) then the following
equality is met:

F ∗ = ‖lk‖ =
(x∗ − (aik − bjk)× (bjk+1 − bjk))

(bjk+1 − bjk)
.

Geometrically, this corresponds to the distance from the point with coordinates x∗ to the straight
line passing through points with coordinates (aik − bjk), (aik − bjk+1).

Thus, the problem of finding the minimum point x∗ reduces to a full search among a finite
number of options. The pairs of vertices of different polygons give type V vectors, and the pairwise
consideration of the vertices of the same polygon with the sides of the other gives type W vectors.
In the auxiliary space, it is required each time to solve the problem of optimal placement of point x∗

providing the shortest distances to the corresponding points and straight lines. In other words, it
is required in each case to find the center of a circle passing through given points and tangent to
the given straight lines.

Based on the described work, the algorithm was implemented, which, through a full search
among a finite number of options depending on the number of vertices of the given polygons, finds
a precise analytical solution of the optimization problem posed.

One of the important drawbacks of the described algorithm is the need for a full search, which
leads to a very high computational complexity. But, despite these shortcomings, the algorithm
ensures finding a precise solution for a fixed time.
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The first stage of the work was the implementation of the algorithm itself without any opti-
mization. C++ was chosen as the programming language for the implementation because of the
execution rate, absence of unnecessary calls, similarity with Assembler, as well as abundance of
optimization tools and parallelization of the algorithm execution.

The implementation of this algorithm was divided into several logical parts. The first part was
the creation of data structures, both to store polyhedra, and to optimize the results at each step of
the algorithm, as well as to enable storing and reading data structures from the file. The second part
includes all the auxiliary algorithms that perform the following operations: finding vectors from the
vertex of one polygon to the other, checking algorithms, whether this vertex-vertex and vertex-side
pair of vectors (in both directions) ensures the best optimization. Similarly, the checks for a triple
of vectors from the set of vertex-vertex and vertex-side pairs (in both directions) are performed.
These algorithms include finding the center of a circle using three points, tangent and two points,
two tangents and one point, and three tangents. The third part includes the algorithm for a full
search among all possible pairs and triples of vectors found in other parts of the implementation.

The result obtained is new. Prior to this, there has been only a theoretical justification for the
analytical method, but no ways for its implementation that could be officially referred to could be
found. As a result, this algorithm was implemented. The resulting implementation was tested on a
large number of pairs of convex polygons of various types. This result is of independent value, both
for subsequent testing of any approaches to optimization, and for testing any subgradient methods.

During the operation of the algorithm, which performs a complete search among all possible
pairs and triples of vectors, statistical data about which vectors influence the formation of the final
optimal result were accumulated. Based on the processing results of these data, Hypothesis 1 was
formulated. Its idea is that some groups of vectors can be excluded from the search, since they do
not participate in the formation of the final optimal result. It was suggested that such vectors are
those that go from one polygon to another but intersect any side of the other polygon.

Hypothesis 1 was tested on a set of polygons, based on which the hypothesis was formulated,
see Fig. 1 and Fig. 2. But when the set of polygons was expanded, counter examples were found.
In Fig. 3 the type V vector from vertex 3 to vertex 5 intersects the side beginning at vertex 6 and
ending at vertex 0. In Figure 4, the type V vector from vertex 0 to vertex 3 intersects the side
beginning at vertex 1 and ending at vertex 2. Thus, Hypothesis 1 was not confirmed. Nevertheless,
this heuristic idea is viable, since in quite a large number of cases for polygons without peculiar
features, Hypothesis 1 is fair and provides a substantial reduction in the search options.

Due to finding a counter example for Hypothesis 1, a new hypothesis was required. This
hypothesis was based on the idea of using a support function. To begin with, recall the definition
of the Hausdorff distance through support functions [19]

H(A,B) = max
{

max
a∈A

max
‖l‖=1

(〈l, a〉 − ρB(l)), max
b∈B

max
‖l‖=1

(〈l, b〉 − ρA(l))
}

.

Also, within the framework of the Hausdorff distance determination through support functions, a
minimum is used. Argmin are the elements, to which the minimum is reached. Assume that these
will be the required elements.

Further, the notion of the visible part of a polygon is introduced. Fixing the direction vectors
and looking in this direction at each polygon from the given pair separately, as, for example, is
shown in Fig. 2, shows that only few sides and vertices of the polygons are visible. After this
operation, a set of “visible”vertices and sides is obtained, to which boundary sides are added. The
boundary sides are those sides of the polygon that were not included in the original sample, but
one of the vertices of this side was added. Based on the resulting set of vertices and polygon sides,
a set of vertex-vertex and vertex-side vectors that are involved in the full search algorithm are
built. The first stage of the algorithm has been completed; the output is the set of vectors for the
algorithm under consideration.
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Figure 1. The triple of SSS type vectors compliant with Hypothesis 1

Figure 2. The triple of VVV type vectors compliant with Hypothesis 1

Further, this set of vectors should be reduced to a more limited set. This occurs by crossing the
sets of vectors obtained using the algorithm described in the first step, but with a modified direction
vector. It is necessary to perform the first stage four times, each time turning the direction vector
by 10 degrees relatively to its axis. All the resulting vectors must be crossed to obtain the first part
of the set for the search algorithm, see Fig. 5. To obtain the second part of the set, it is necessary
to execute the algorithm of intersection of sets of pairs, obtained with the algorithm described in
the first step, with direction vectors rotated for 180 degrees, see Fig. 6. The first and second sets
obtained are combined and transferred to the full search algorithm.

To test each of the described algorithms, a testing system was developed that included the
following components. The main component of the algorithms is the generation of convex polygons.
For this purpose, various algorithms that are considered below in more detail were implemented.

The first algorithm is the following one. On a plane, N points are arranged randomly in the
following way: N/4 points with positive abscissas and ordinates, N/4 points with negative abscissas
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Figure 3. The triple of VVV type vectors non-compliant with Hypothesis 1

Figure 4. The triple of VVV type vectors non-compliant with Hypothesis 1

and positive ordinates, N/4 points with positive abscissas and negative ordinates, N/4 points with
negative abscissas and ordinates. The next step is to select the point with the lowest abscissa and
ordinate values. Relatively to this point, the convex hull of the given set is built using the following
algorithm: take the point chosen at the previous stage and choose the next one at the minimum
positive turning angle. This algorithm is repeated until the starting point is reached. As a result,
a convex polygon is obtained. The downside of this algorithm is that the number of vertices of the
polygon obtained at the output cannot be controlled.

The second algorithm is the algorithm for constructing a polygon based on a triangle. At the
first stage, the triangle is constructed by placing three arbitrary points on a plane. The input
data of the algorithm is the number of vertices for the polygon, which should be provided at the
output. To achieve the necessary number of vertices “a point is added to any side of the polygon”
iteratively as follows: firstly, an arbitrary side of the polygon is selected, and then a point is chosen
between the ends of the segment of this side, so that the polygon remains convex with the added
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Figure 5. Selection of the vector vertices to perform a search under Hypothesis 2

Figure 6. Selection of the vector vertices to perform a search under Hypothesis 2

point. This algorithm is iterated until the required number of vertices is reached.

The third method is manual testing. It was decided to take a set of 20 ∼ 30 polygons different in
their construction. The algorithm arbitrarily selects one of them, provided that the second selected
polygon (if any) is not similar to the given one.

The described algorithms are used to generate polygons used in the testing of the Hausdorff
distance minimization algorithm. At each stage, a pair of polygons is generated, which are sent to
the input of one of the algorithms.

To automate the work, the storage systems for the following objects were also created: generated
polygons, results of the optimization algorithm, which include the following parameters: the type
of algorithm used (full search or some other option), the vector of the second polygon displacement
relatively to the first, the type of the set of vectors used to obtain the given displacement vector (V
is the vector to the vertex, S is the vector perpendicular to the side of the polygon; the following sets
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of vectors were considered: V V, V S, SS, V V V, V V S, V SS, SSS), the Hausdorff distance obtained
after minimization, the number of sets of vectors considered before the desired pair or triple of
vectors was found, the list of vectors used in the pair or triple described before. Writing and
reading algorithms were developed for the storage system.

Based on the previously described algorithms and storage systems, automated tests were de-
veloped that could perform the following functions: generating polygon pairs automatically; saving
them to a file for further use; performing a full search algorithm to calculate the costs necessary to
minimize the Hausdorff distance; performing one or more of the optimized algorithms; comparing
the results to verify the validity of the optimized algorithm; and saving the optimization results.

This testing was performed for all possible combinations of pairs of polygons with 3 to 10
vertices inclusive. The test results for Hypothesis 2 are shown in Table 1. Also, the testing was
selectively carried out for polygons with more than 10 vertices. Based on the testing results, the
statistical data described in Table 1 were collected, including the number of vertices of polygons A
and B, as well as the information about how fewer steps were taken, in percentage of the number
of steps in the analytical algorithm, was deleted to find the position, at which the minimum
Hausdorff distance is reached.

n/m 3 4 5 6 7 8 9 10
3 0% 0-15 % 0-15% 5-15 % 5-15% 10-30% 10-30% 10-30%
4 0-15% 0-20 % 0-20% 0-20 % 0-20% 10-30% 10-30% 15-30%
5 0-15% 10-20 % 10-20% 10-20 % 10-25% 10-30% 10-30% 15-30%
6 5-15% 10-20 % 10-20% 10-20 % 10-25% 10-30% 10-30% 15-30%
7 5-15% 10-20 % 10-20% 10-20 % 10-25% 10-30% 10-30% 15-30%
8 10-30% 10-30 % 10-30% 10-30 % 10-30% 10-30% 10-30% 15-30%
9 10-30% 10-30 % 10-30% 10-30 % 10-30% 10-30% 10-30% 15-30%
10 10-30% 15-30 % 15-30% 15-30 % 15-30% 15-30% 15-30% 15-30%

Table 1. Statistical data obtained by testing Hypothesis 2

The results show that the improvement degree depends on both the geometric features of the
polygons and their location. Therefore, the degree of reduction in the number of search steps
can vary with the same number of vertices. When selecting polygons, the number of vertices of
which does not exceed 10, the reduction in the number of the algorithm steps reaches 30%. The
percentage by the average value of which pair of the number of vertices of the polygon A and B
grows monotonically. The overall result is a significant acceleration of the algorithm with a number
of vertices equal to six or more.

3. Conclusion

As a result, the analytical algorithm was implemented. This result is of independent value,
both for subsequent testing of any approaches to optimization, and for any subgradient methods.
Two hypotheses were tested. The test of first hypothesis resulted in finding a counter example. As
a consequence, the second hypothesis was implemented, for which no counter examples were found
on a large and diverse sampling of polygon pairs.

As a result, the algorithm was developed, which ensures finding the precise optimal mutual
arrangement of polygons in all the cases tested, despite a significant reduction in the search scope.
The advantages achieved are as follows: the ability to solve a large number of practical problems not
only accurately, but also quickly; the implemented algorithm combines speed and quality. The only
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drawback of the algorithm is the absence of a rigorous proof of the fact that vectors determining
the optimal position of the polygons will not be ignored in the process of the search reduction. The
research can be continued in this direction.

The results of this work can be applied in comparing images [6, 7], recognizing images, recog-
nizing and localizing human faces [8, 9] and emotions on faces [16], as well as in one of the methods
of medical imaging based on wave transformation using the Hausdorff distance [21].
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Abstract: The non-elementary integrals Siβ,α =
∫
[sin (λxβ)/(λxα)]dx, β ≥ 1, α ≤ β + 1 and Ciβ,α =∫

[cos (λxβ)/(λxα)]dx, β ≥ 1, α ≤ 2β + 1, where {β, α} ∈ R, are evaluated in terms of the hypergeometric
functions 1F2 and 2F3, and their asymptotic expressions for |x| ≫ 1 are also derived. The integrals of the form∫
[sinn (λxβ)/(λxα)]dx and

∫
[cosn (λxβ)/(λxα)]dx, where n is a positive integer, are expressed in terms Siβ,α

and Ciβ,α, and then evaluated. Siβ,α and Ciβ,α are also evaluated in terms of the hypergeometric function 2F2.
And so, the hypergeometric functions, 1F2 and 2F3, are expressed in terms of 2F2. The exponential integral

Eiβ,α =
∫
(eλx

β
/xα)dx where β ≥ 1 and α ≤ β + 1 and the logarithmic integral Li =

∫ x
µ
dt/ ln t, µ > 1, are

also expressed in terms of 2F2, and their asymptotic expressions are investigated. For instance, it is found
that for x ≫ 2, Li ∼ x/lnx + ln (lnx/ln 2) − 2 − ln 2 2F2(1, 1; 2, 2; ln 2), where the term ln (lnx/ln 2) − 2 −
ln 2 2F2(1, 1; 2, 2; ln 2) is added to the known expression in mathematical literature Li ∼ x/lnx. The method
used in this paper consists of expanding the integrand as a Taylor and integrating the series term by term, and
can be used to evaluate the other cases which are not considered here. This work is motivated by the applications
of sine, cosine exponential and logarithmic integrals in Science and Engineering, and some applications are given.

Key words: Non-elementary integrals, Sine integral, Cosine integral, Exponential integral, Logarithmic
integral, Hyperbolic sine integral, Hyperbolic cosine integral, Hypergeometric functions, Asymptotic evaluation,
Fundamental theorem of calculus.

1. Introduction

Definition 1. An elementary function is a function of one variable constructed using that

variable and constants, and by performing a finite number of repeated algebraic operations involving

exponentials and logarithms. An indefinite integral which can be expressed in terms of elementary

functions is an elementary integral. And if, on the other hand, it cannot be evaluated in terms of

elementary functions, then it is non-elementary [6, 10].

Liouville 1938’s Theorem gives conditions to determine whether a given integral is elemen-
tary or non-elementary [6, 10]. For instance, it was shown in [6, 10], using Liouville 1938’s The-
orem, that the integral Si1,1 =

∫

(sinx/x)dx is non-elementary. With similar arguments as in
[6, 10], One can show that Ci1,1 =

∫

(cos x/x)dx is also non-elementary. Using the Euler formulas
e±ix = cos x± i sin x, and noticing that if the integral of a function g(x) is elementary, then both
its real and imaginary parts are elementary [6], one can, for instance, prove that the integrals
Siβ,α =

∫

[sin (λxβ)/(λxα)]dx, β ≥ 1, α ≥ 1, and Ciβ,α =
∫

[cos (λxβ)/(λxα)]dx, where β ≥ 1 and
α ≥ 1, are non-elementary by using the fact that their real and imaginary parts are non-elementary.
The integrals

∫

[sinn (λxβ)/(λxα)]dx and
∫

[cosn (λxβ)/(λxα)]dx, where n is a positive integer, are
also non-elementary since they can be expressed in terms of Siβ,α and Ciβ,α.

To my knowledge, no one has evaluated these integrals before. To this end, in this paper, for-
mulas for these non-elementary integrals are expressed in terms of the hypergeometric functions 1F2

and 2F3 whose properties, for example, the asymptotic expansions for large argument (|λx| ≫ 1),

https://doi.org/10.15826/umj.2018.1.003
mailto:victornijimbere@gmail.com
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are known [9]. We do so by expanding the integrand in terms of its Taylor series and by integrat-
ing the series term by term as in [7]. And therefore, their corresponding definite integrals can be
evaluated using the Fundamental Theorem of Calculus (FTC). For example, the sine integral

Siβ,α =

B
∫

A

sin (λxβ)

(λxα)
dx, β ≥ 1, α ≤ β + 1,

is evaluated for any A and B using the FTC.
On the other hand, the integrals Eiβ,α =

∫

(eλx
β
/xα)dx and

∫

dx/ ln x, are expressed in terms
of the hypergeometric function 2F2. This is quite important since one may re-investigate the
asymptotic behavior of the exponential (Ei) and logarithmic (Li) integrals [3] using the asymptotic
expressions of the hypergeometric function 2F2 which are known [9].

Some other non-elementary integrals which can be written in terms of Eiβ,α or
∫

dx/ ln x are

also evaluated. For instance, as a result of substitution, the integral
∫

eλe
βx
dx is written in terms

of Eiβ,1 =
∫

(eλx
β
/x)dx and then evaluated in terms of 2F2, and using integration by parts, the

integral
∫

ln(lnx)dx is written in terms of
∫

dx/ ln x and then evaluated in terms of 2F2 as well.
Using the Euler identity e±ix = cos(x) ± i sin(x) or the hyperbolic identity e±x = cosh(x) ±

sinh(x), Siβ,α and Ciβ,α are evaluated in terms Eiβ,α. And hence, the hypergeometric functions 1F2

and 2F3 are expressed in terms of the hypergeometric 2F2.
This type of integrals find applications in many fields in Science and Engineering. For instance,

in wireless telecommunications, the random attenuation capacity of a channel, known as fading
capacity, is calculated as [11]

Cfading = E[log2(1 + P |H|2)] =
∞
∫

0

log2(1 + Pξ)e−ξdξ =
1

ln 2
e1/P

[

E1,1 (∞)− E1,1

(

1

P

)]

,

where the fading coefficient H is a complex Gaussian random variable, and E
(

|X|2 ≤ P
)

is the
maximum average transmitted power of a complex-valued channel input X. In number theory, the
prime number theorem states that [3]

π(x) ∼ Li(x) =

x
∫

µ

dx

lnx
, µ > 1,

where π(x) denotes the number of primes small than or equal to x. Moreover, there are applications
of sine and cosine integrals in electromagnetic theory, see for example Lebedev [5]. Therefore, it is
quite important to adequately evaluate these integrals.

For that reason, the main goal of this paper is to evaluate non-elementary integrals of sine,
cosine, exponential and logarithmic integrals type in terms of elementary and special functions
with well known properties so that the fundamental theorem of calculus can be used so that we
can avoid to use numerical integration.

Part I is indeed devoted to the cases Siβ,α =
∫

[sin (λxβ)/(λxα)]dx, β ≥ 1, α ≤ β + 1,

Ciβ,α =
∫

[cos (λxβ)/(λxα)]dx, β ≥ 1, α ≤ 2β + 1 and Eiβ,α =
∫

(eλx
β
/xα)dx where β ≥ 1,

α ≤ β + 1, where {β, α} ∈ R. The other cases Siβ,α =
∫

[sin (λxβ)/(λxα)]dx, β ≥ 1, α > β + 1,

Ciβ,α =
∫

[cos (λxβ)/(λxα)]dx, β ≥ 1, α > 2β + 1 and Eiβ,α =
∫

(eλx
β
/xα)dx where β ≥ 1,

α > β + 1, where {β, α} ∈ R, which may involve series whose properties are not necessary known
will be considered in Part 2 [8].

Before we proceed to the objectives of this paper (see sections 2, 3, 4 and 5), we first define the
generalized hypogeometric function as it is an important mathematical that we are going to use
throughout the paper.
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Definition 2. The generalized hypergeometric function, denoted as pFq, is a special function

given by the series [1, 9]

pFq(a1, a2, · · · , ap; b1, b2, · · · , bq;x) =
∞
∑

n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

xn

n!
,

where a1, a2, · · · , ap and ; b1, b2, · · · , bq are arbitrary constants, (ϑ)n = Γ(ϑ + n)/Γ(ϑ) (Pochham-

mer’s notation [1]) for any complex ϑ, with (ϑ)0 = 1, and Γ is the standard gamma function [1, 9].

2. Evaluation of the sine integral and related integrals

Proposition 1. The function G(x) = x 1F2

(

1

2
;
3

2
,
3

2
;−λ2x2

4

)

, where 1F2 is a hypergeometric

function [1] and λ is an arbitrarily constant, is the antiderivative of the function g(x) =
sin (λx)

λx
.

Thus,
∫

sin (λx)

λx
dx = x 1F2

(

1

2
;
3

2
,
3

2
;−λ2x2

4

)

+ C.

P r o o f. To prove Proposition 1, we expand g(x) as Taylor series and integrate the series term
by term. We also use the gamma duplication formula [1]

Γ(2α) = (2π)−
1

2 22α−
1

2Γ(α)Γ

(

α+
1

2

)

, α ∈ C,

the Pochhammer’s notation for the gamma function [1],

(α)n = α(α + 1) · · · (α+ n− 1) =
Γ(α+ n)

Γ(α)
, α ∈ C,

and the property of the gamma function Γ(α+1) = αΓ(α) (eg., Γ (n+ 3/2) = (n+ 1/2) Γ (n+ 1/2)
for any real n). We then obtain

∫

g(x)dx=

∫

sin (λx)

λx
dx=

∫

1

λx

∞
∑

n=0

(−1)n
(λx)2n+1

(2n + 1)!
dx = λ

∞
∑

n=0

(−1)n
λ2n

(2n + 1)!

x2n+1

2n+ 1
+ C

=
x

2

∞
∑

n=0

(−1)n
λ2n

(2n+ 1)!

x2n

n+ 1/2
+ C =

x

2

∞
∑

n=0

Γ (n+ 1/2)

Γ(2n + 2)Γ (n+ 3/2)
(−λ2x2)n + C

= x

∞
∑

n=0

(1/2)n
(3/2)n (3/2)n

(

−λ2x2/4
)n

n!
+ C = x 1F2

(

1

2
;
3

2
,
3

2
;−λ2x2

4

)

+ C = G(x) + C.

�

In the following lemma, we assume that the function G(x) is unknown and therefore we establish
its properties such as the inflection points and its behaviour as x → ±∞.

Lemma 1. Let G(x) be the antiderivative for g(x) =
sinx

x
(λ = 1), and G(0) = 0.
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1. Then G(x) is linear around x = 0 and the point (0, G(0)) = (0, 0) is an inflection point of

the curve Y = G(x), x ∈ R.

2. And lim
x→−∞

G(x) = −θ while lim
x→+∞

G(x) = θ, where θ is a positive finite constant.

P r o o f.

1. The series

g(x) =
sinx

x
=

∞
∑

n=0

(−1)n
(λx)2n

(2n + 1)!

gives G′(0) = g(0) = 1. Then, around x = 0, G(x) ∼ x since G′(0) = g(0) = 1 and G(0) = 0.
Moreover,

G′′(x) = g′(x) =

(

sinx

x

)′

= −λ2x
∞
∑

n=0

(−1)n
(2n + 2)(λx)2n

(2n+ 3)!
,

and so G′′(0) = g′(0) = 0. Hence, by the second derivative test, the point (0, G(0)) = (0, 0)
is an inflection point of the curve Y = G(x).

2. It is straight forward, using Squeeze theorem, to obtain lim
x→−∞

g(x) = lim
x→+∞

g(x) = 0. And

since both g(x) and G(x) are analytic on R, then G(x) has to be constant as x → ±∞ by
Liouville Theorem (section 3.1.3 in [4]) since if a complex function is entire on C then both
its imaginary and real parts are analytic on the real line R including at x → ±∞. Also,
there exists some numbers δ > 0 and ǫ such that if |x| > δ then || sinx|/x − 1/x| < ǫ, and
lim

x→−∞
(| sinx|/x)/(1/x) = lim

x→+∞
(| sin x|/x)/(1/x) = ±1. This makes the function g1(x) =

−1/x an envelop of g(x) away from x = 0 if sinx < 0 and g2(x) = 1/x an envelop of g(x)
away from x = 0 if sinx > 0. Moreover, on one hand, g′2 ≤ G′′ ≤ g′1 if x < −δ, and g′1 and g′2
do not change signs. While on another hand, g′1 ≤ G′′ ≤ g′2 if x > δ, and also g′1 and g′2 do
not change signs. Therefore there exists some number θ > 0 such G(x) oscillates about θ if
x > δ and G(x) oscillates about −θ if x < −δ. And |G(x)| ≤ θ if |x| ≤ δ. �

Example 1. For instance, if λ = 1, then

∫

sinx

x
dx = x 1F2

(

1

2
;
3

2
,
3

2
;−x2

4

)

+ C. (2.1)

By Proposition 1, the antiderivative of g(x) =
sinx

x
is G(x) = x 1F2

(

1

2
;
3

2
,
3

2
;−x2

4

)

, and the

graph of G(x) is shown in Figure 1. It is in agreement with Lemma 1. It is seen in Figure 1 that
(0, G(0)) = (0, 0) is an inflection point and that G attains some constants as x → ±∞ as predicted
by Lemma 1.

In the following lemma, we obtain the values of G(x), the antiderivative of the function
g(x) = sin (λx)/(λx), as x → ±∞ using the asymptotic expansion of the hypergeometric func-
tion 1F2.

Lemma 2. Consider G(x) in Proposition 1,and preferably assume that λ > 0.
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Figure 1. G(x) is the antiderivative of sin(x)/x given in (2.1).

1. Then,

G(−∞) = lim
x→−∞

G(x) = lim
x→∞

x 1F2

(

1

2
;
3

2
,
3

2
;−λ2x2

4

)

= − π

2λ
, (2.2)

and

G(+∞) = lim
x→+∞

G(x) = lim
x→∞

x 1F2

(

1

2
;
3

2
,
3

2
;−λ2x2

4

)

=
π

2λ
. (2.3)

2. And by the FTC,

∞
∫

−∞

sin (λx)

λx
dx = G(+∞)−G(−∞) =

π

2λ
−
(

−
√
π

2λ

)

=
π

λ
. (2.4)

P r o o f.

1. To prove (2.2) and (2.3), we use the asymptotic formula for the hypergeometric function 1F2

which is valid for |z| ≫ 1 and −π ≤ arg z ≤ π, where arg z is the argument of z in the
complex plane. It can be derived using formulas (16.11.1), (16.11.2) and (16.11.8) in [9] and
is given by

1F2 (a1; b1, b2;−z) =

Γ(b1)Γ(b2)z
−a1

{

R−1
∑

n=0

(a1)n
Γ(b1 − a1 − n)Γ(b2 − a1 − n)

(−z)−n

n!
+O(|z|−R)

}

+
Γ(b1)Γ(b2)

Γ(a1)
+

e2z
1/2e−iπ/2

(ze−iπ)(a1−b1−b2+1/2)/2

√
π

{

S−1
∑

n=0

µn

2n+1
(ze−iπ)−n +O(|z|−S)

}

+
Γ(b1)Γ(b2)

Γ(a1)

e2z
1/2eiπ/2

(zeiπ)(a1−b1−b2+1/2)/2

√
π

{

S−1
∑

n=0

µn

2n+1
(zeiπ)−n +O(|z|−S)

}

,

(2.5)

where a1, b1 and b2 are constants and the coefficient µn is given by formula (16.11.4) in [9].

We then set z = λ2x2/4, a1 = 1/2, b1 = 3/2 and b2 = 3/2, and we obtain

1F2

(

1

2
;
3

2
,
3

2
;−λ2x2

4

)

=
π

2

(

λ2x2
)−1/2

{

R−1
∑

n=0

(1/2)n
n!

(

i
λx

2

)−2n

+O

(

∣

∣

∣

∣

λx

2

∣

∣

∣

∣

−2R
)}
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−
√
π

λ2x2
e−iλx

2

{

S−1
∑

n=0

µn

2n

(

−i
λx

2

)−2n

+O

(

∣

∣

∣

∣

λx

2

∣

∣

∣

∣

−2S
)}

−
√
π

λ2x2
eiλx

2

{

S−1
∑

n=0

µn

2n

(

i
λx

2

)−2n

+O

(

∣

∣

∣

∣

λx

2

∣

∣

∣

∣

−2S
)}

.

Then, for |x| ≫ 1,

π

2

(

λ2x2
)−1/2

{

R−1
∑

n=0

(1/2)n
n!

(

i
λx

2

)−2n

+O

(

∣

∣

∣

∣

λx

2

∣

∣

∣

∣

−2R
)}

∼ π

2λ|x| ,

while

−
√
π

λ2x2
eiλx

2

{

S−1
∑

n=0

µn

2n

(

−i
λx

2

)−2n

−
S−1
∑

n=0

µn

2n

(

i
λx

2

)−2n

+O

(

∣

∣

∣

∣

λx

2

∣

∣

∣

∣

−2S
)}

∼
√
π

(λx)2
eiλx + e−iλx

2
=

√
π
cos (λx)

(λx)2
.

We then obtain,

x1F2

(

1

2
;
3

2
,
3

2
;−λ2x2

4

)

∼ π

2λ

x

|x| −
√
π

λ

cos (λx)

λx
, |x| → ∞.

Hence,

G(−∞) = lim
x→−∞

x1F2

(

1

2
;
3

2
,
3

2
;−λ2x2

4

)

= lim
x→−∞

(

π

2λ

x

|x| −
√
π

λ

cos (λx)

λx

)

= − π

2λ

and

G(+∞) = lim
x→+∞

x1F2

(

1

2
;
3

2
,
3

2
;−λ2x2

4

)

= lim
x→+∞

(

π

2λ

x

|x| −
√
π

λ

cos (λx)

λx

)

=
π

2λ
.

2. By the FTC,

+∞
∫

−∞

sin (λx)

λx
dx = lim

y→−∞

0
∫

y

sin (λx)

λx
dx+ lim

y→+∞

y
∫

0

sin (λx)

λx
dx = G(+∞)−G(−∞)

= lim
y→+∞

y 1F2

(

1

2
;
3

2
,
3

2
;−λ2y2

4

)

− lim
y→−∞

y 1F2

(

1

2
;
3

2
,
3

2
;−λ2y2

4

)

=
π

λ
.

We now verify whether this is correct or not using Fubini’s Theorem [2]. We first observe that

+∞
∫

−∞

sin (λx)

λx
dx = 2

+∞
∫

0

sin (λx)

λx
dx

since the integrand is an even function. We have in terms of double integrals and using Fubini’s
Theorem that

+∞
∫

0

sin (λx)

λx
dx =

1

λ

+∞
∫

0

+∞
∫

0

e−sxsin (λx)dsdx =

+∞
∫

0

+∞
∫

0

e−sxsin (λx)dxds. (2.6)
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Now using the fact that the inside integral in (2.6) is the Laplace transform of sin (λx) [1] yields

+∞
∫

0

+∞
∫

0

e−sxsin (λx)dxds =

+∞
∫

0

λ

s2 + λ2
ds = arctan (+∞)− arctan 0 =

π

2
.

Hence,
+∞
∫

−∞

sin (λx)

λx
dx = 2

+∞
∫

0

sin (λx)

λx
dx =

2

λ

+∞
∫

0

+∞
∫

0

e−sxsin (λx)dsdx = 2
π

2λ
=

π

λ

as before. �

Setting λ = 1 as in Example 1, Lemma 2 gives lim
x→−∞

G(x) = −θ = −π/2 while lim
x→+∞

G(x) =

θ = π/2. And these are the exact values of G(x) as x → ±∞ in Figure 1.

Theorem 1. If β ≥ 1 and α < β + 1, then the function

G(x) =
xβ−α+1

β − α+ 1
1F2

(

− α

2β
+

1

2β
+

1

2
;− α

2β
+

1

2β
+

3

2
,
3

2
;−λ2x2β

4

)

,

where 1F2 is a hypergeometric function [1] and λ is an arbitrarily constant, is the antiderivative of

the function g(x) =
sin (λxβ)

λxα
. Thus,

Siβ,α =

∫

sin (λxβ)

λxα
dx =

xβ−α+1

β − α+ 1
1F2

(

− α

2β
+

1

2β
+

1

2
;− α

2β
+

1

2β
+

3

2
,
3

2
;−λ2x2β

4

)

+C.

(2.7)

And for |x| ≫ 1,

xβ−α+1

β − α+ 1
1F2

(

− α

2β
+

1

2β
+

1

2
;− α

2β
+

1

2β
+

3

2
,
3

2
;−λ2x2β

4

)

∼ (2/λ)1+1/β−α/β

β − α+ 1

Γ (−α/(2β) + 1/(2β) + 3/2)

Γ (1 + α/(2β) − 1/(2β))

√
π

2

xβ−α+1

|x|β−α+1
− β − α+ 1

β

√
π

λ2

cos
(

λxβ
)

xβ+α−1
.

(2.8)

P r o o f.

Siβ,α =

∫

g(x)dx =

∫

sin (λxβ)

λxα
dx =

∫

1

λxα

∞
∑

n=0

(−1)n
(λxβ)2n+1

(2n + 1)!
dx

=
∞
∑

n=0

(−1)n
λ2n

(2n + 1)!

∫

x2βn+β−αdx = λ
∞
∑

n=0

(−1)n
λ2n

(2n+ 1)!

∫

x2βn+β−αdx

=

∞
∑

n=0

(−1)n
λ2n

(2n + 1)!

x2βn+β−α+1

2βn+ β − α+ 1
+ C

=
xβ−α+1

2β

∞
∑

n=0

(−1)n
λ2n

(2n+ 1)!

x2βn

n− α/(2β) + 1/(2β) + 1/2
+ C
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=
xβ−α+1

2β

∞
∑

n=0

Γ (n− α/(2β) + 1/(2β) + 1/2)

Γ(2n + 2)Γ (n− α/(2β) + 1/(2β) + 3/2)
(−λ2x2β)n +C

=
xβ−α+1

β − α+ 1

∞
∑

n=0

(−α/(2β) + 1/(2β) + 1/2)n
(3/2)n (−α/(2β) + 1/(2β) + 3/2)n

(

−λ2x2β/4
)n

n!
+ C

=
xβ−α+1

β − α+ 1
1F2

(

− α

2β
+

1

2β
+

1

2
;− α

2β
+

1

2β
+

3

2
,
3

2
;−λ2x2β

4

)

+ C = G(x) + C.

To prove (2.8), we use the asymptotic formula for the hypergeometric function 1F2 in equation
(2.5), and proceed as in Lemma 2. �

Beside, we can show as above that if β ≥ 1 and α < β + 1, then

∫

sinh (λxβ)

λxα
dx =

xβ−α+1

β − α+ 1
1F2

(

− α

2β
+

1

2β
+

1

2
;− α

2β
+

1

2β
+

3

2
,
3

2
;
λ2x2β

4

)

+ C. (2.9)

Corollary 1. Let β = α. If α ≥ 1, then

0
∫

−∞

sin (λxα)

λxα
dx = G(0)−G(−∞) =

(

2

λ

)1/α Γ (1/(2α) + 1)

Γ (3/2− 1/(2α))

√
π

2
, (2.10)

+∞
∫

0

sin (λxα)

λxα
dx = G(+∞)−G(0) =

(

2

λ

)1/α Γ (1/(2α) + 1)

Γ (3/2 − 1/(2α))

√
π

2
(2.11)

and
+∞
∫

−∞

sin (λxα)

λxα
dx = G(+∞)−G(−∞) =

(

2

λ

)1/α Γ (1/(2α) + 1)

Γ (3/2− 1/(2α))

√
π. (2.12)

P r o o f. If β = α, Theorem 1 gives

G(−∞) = lim
x→−∞

x1F2

(

1

2α
;
1

2α
+ 1,

3

2
;−λ2x2α

4

)

= lim
x→−∞

(

(

2

λ

)1/α √
π

2

Γ (1/(2α) + 1)

Γ (3/2− 1/(2α))

x

|x| −
√
π

αλ2

cos (λxα)

x2α−1

)

= −
(

2

λ

)1/α Γ (1/(2α) + 1)

Γ (3/2− 1/(2α))

√
π

2

and

G(+∞) = lim
x→+∞

x1F2

(

1

2α
;
1

2α
+ 1,

3

2
;−λ2x2α

4

)

= lim
x→+∞

(

(

2

λ

)1/α √
π

2

Γ (1/(2α) + 1)

Γ (3/2 − 1/(2α))

x

|x| −
√
π

αλ2

cos (λxα)

x2α−1

)

=

(

2

λ

)1/α Γ (1/(2α) + 1)

Γ (3/2 − 1/(2α))

√
π

2
.
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Hence, by the FTC,

0
∫

−∞

sin (λxα)

λxα
dx = G(0) −G(−∞) = 0−

(

−
(

2

λ

)1/α Γ (1/(2α) + 1)

Γ (3/2 − 1/(2α))

√
π

2

)

=

(

2

λ

)1/α Γ (1/(2α) + 1)

Γ (3/2 − 1/(2α))

√
π

2
, (2.13)

+∞
∫

0

sin (λxα)

λxα
dx = G(+∞)−G(0) =

(

2

λ

)1/α Γ (1/(2α) + 1)

Γ (3/2 − 1/(2α))

√
π

2
− 0

=

(

2

λ

)1/α Γ (1/(2α) + 1)

Γ (3/2 − 1/(2α))

√
π

2
. (2.14)

And combining (2.13) and (2.14) gives (2.12). �

Theorem 2. If β ≥ 1 and α < β + 1, then the FTC gives

B
∫

A

sin (λxβ)

λxα
dx = G(B)−G(A), (2.15)

for any A and any B, and where G is given in Theorem 1.

P r o o f. Equation (2.15) holds by Theorem 1, Corollary 1 and Lemma 2. Since the FTC
works for A = −∞ and B = 0 in (2.10), A = 0 and B = +∞ in (2.11) and A = −∞ and B = +∞
in (2.12) by Corollary 1 for any β = α ≥ 1 and by Lemma 2 for β = α = 1, then it has to work
for other values of A,B ∈ R and for β ≥ 1 and α < β + 1 since the case with β = α ≥ 1 is derived
from the case with β ≥ 1 and α < β + 1. �

Theorem 3. Let β ≥ 1, then the function

G(x) = ln |x| −

(

λxβ/2
)2

6β
2F3

(

1, 1; 2, 2,
5

2
;−λ2x2β

4

)

,

where 2F3 is a hypergeometric function [1] and λ is an arbitrarily constant, is the antiderivative of

the function g(x) =
sin (λxβ)

λxβ+1
. Thus,

Siβ,β+1 =

∫

sin (λxβ)

λxβ+1
dx = ln |x| −

(

λxβ/2
)2

6β
2F3

(

1, 1; 2, 2,
5

2
;−λ2x2β

4

)

+ C.

P r o o f.

Siβ,β+1 =

∫

g(x)dx =

∫

sin (λxβ)

λxβ+1
dx =

∫

1

λxβ+1

∞
∑

n=0

(−1)n
(λxβ)2n+1

(2n + 1)!
dx

=
∞
∑

n=0

(−1)n
λ2n

(2n+ 1)!

∫

x2βn−1dx =

∫

dx

x
+

∞
∑

n=1

(−1)n
λ2n

(2n + 1)!

∫

x2βn−1dx

= ln |x|+
∞
∑

n=0

(−1)n+1 λ2n+2

(2n + 3)!

x2βn+2β

2βn+ 2β
+ C

= ln |x| − λ2x2β

2β

∞
∑

n=0

(−1)n
λ2n

(2n + 3)!

x2βn

n+ 1
+ C
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= ln |x| − λ2x2β

2β

∞
∑

n=0

(Γ (n+ 1))2

Γ(2n+ 4)Γ (n+ 2)

(

−λ2x2β
)n

n!
+ C

= ln |x| −
(

λxβ/2
)2

6β

∞
∑

n=0

(1)n(1)n
(2)n(2)n (5/2)n

(

−λ2x2β/4
)n

n!
+C

= ln |x| −
(

λxβ/2
)2

6β
2F3

(

1, 1; 2, 2,
5

2
;−λ2x2β

4

)

+ C = G(x) + C.

�

3. Evaluation of the cosine integral and related integrals

Theorem 4. If β ≥ 1 and α < 2β + 1, then the function

G(x) =
1

λ

x1−α

1− α
− λx2β−α+1

2β − α+ 1
2F3

(

1,− α

2β
+

1

2β
+ 1;− α

2β
+

1

2β
+ 2,

3

2
, 2;−λ2x2β

4

)

,

where 2F3 is a hypergeometric function [1] and λ is an arbitrarily constant, is the antiderivative of

the function g(x) =
cos (λxβ)

λxα
. Thus,

∫

cos (λxβ)

λxα
dx =

1

λ

x1−α

1− α
− 1

2

λx2β−α+1

2β − α+ 1
2F3

(

1,− α

2β
+

1

2β
+ 1;− α

2β
+

1

2β
+ 2,

3

2
, 2;−λ2x2β

4

)

+ C,

(3.16)

and for |x| ≫ 1,

λx2β−α+1

2β − α+ 1
2F3

(

1,− α

2β
+

1

2β
+ 1;− α

2β
+

1

2β
+ 2,

3

2
, 2;−λ2x2β

4

)

∼
√
πλ

2β
Γ

(

− α

2β
+

1

2β
+ 1

)(

2

λ

)−α/β+1/β+2

+

√
π

λβ
x−α+1 +

2

λ2β

cos(λxβ)

xβ+α−1
.

(3.17)

P r o o f. If β ≥ 1 and α < 2β + 1,
∫

g(x)dx =

∫

cos (λxβ)

λxα
dx =

∫

1

λxα

∞
∑

n=0

(−1)n
(λxβ)2n

(2n)!
dx

=

∫

1

λxα
dx+

1

λ

∫ ∞
∑

n=1

(−1)n
λ2n

(2n)!
x2βn−αdx

=
1

λ

x1−α

1− α
− 1

λ

∞
∑

n=0

(−1)n
λ2n+2

(2n+ 2)!

∫

x2βn+2β−αdx

=
1

λ

x1−α

1− α
− λ

∞
∑

n=0

(−1)n
λ2n

(2n + 2)!

x2βn+2β−α+1

2βn+ 2β − α+ 1
+ C

=
1

λ

x1−α

1− α
− λx2β−α+1

2β

∞
∑

n=0

Γ (n− α/(2β) + 1/(2β) + 1)

Γ(2n+ 3)Γ (n− α/(2β) + 1/(2β) + 2)
(−λ2x2β)n + C

=
1

λ

x1−α

1− α
− 1

2

λx2β−α+1

2β − α+ 1
−

∞
∑

n=0

(1)n (−α/(2β) + 1/(2β) + 1)n
(3/2)n (2)n (−α/(2β) + 1/(2β) + 2)n

(

−λ2x2β/4
)n

n!
+ C

=
1

λ

x1−α

1− α
− 1

2

λx2β−α+1

2β − α+ 1
2F3

(

1,− α

2β
+

1

2β
+ 1;− α

2β
+

1

2β
+ 2,

3

2
, 2;−λ2x2β

4

)

+ C.
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To prove (3.17), we use the asymptotic expression of 2F3 (a1, a2; b1, b2, b3;−z) for |z| ≫ 1, where
a1, a2, b1, b2 and b3 are constants, and −π ≤ arg z ≤ π . It can be obtained using formulas 16.11.1,
16.11.2 and 16.11.8 in [9] and is given by

2F3 (a1, a2; b1, b2, b3;−z) =

Γ(b1)Γ(b2)Γ(b3)

Γ(a2)
z−a1

{

R−1
∑

n=0

(a1)nΓ(a1 − a2 − n)

Γ(b1 − a1 − n)Γ(b2 − a1 − n)Γ(b3 − a1 − n)

(−z)−n

n!
+O(|z|−R)

}

+
Γ(b1)Γ(b2)Γ(b3)

Γ(a1)
z−a2

{

R−1
∑

n=0

(a2)nΓ(a2 − a1 − n)

Γ(b1 − a2 − n)Γ(b2 − a2 − n)Γ(b3 − a2 − n)

(−z)−n

n!
+O(|z|−R)

}

+
Γ(b1)Γ(b2)Γ(b3)

Γ(a1)Γ(a2)

e2z
1/2e−iπ/2

(ze−iπ)(a1+a2−b1−b2−b3+1/2)/2

√
π

{

S−1
∑

n=0

µn

2n+1
(ze−iπ)−n +O(|z|−S)

}

+
Γ(b1)Γ(b2)Γ(b3)

Γ(a1)Γ(a2)

e2z
1/2eiπ/2

(zeiπ)(a1+a2−b1−b2−b3+1/2)/2

√
π

{

S−1
∑

n=0

µn

2n+1
(zeiπ)−n +O(|z|−S)

}

,

(3.18)

where the coefficient µn is given by formula 16.11.4 in [9].

We now set z =
λ2x2β

4
, a1 = 1, a2 = − α

2β
+

1

2β
+ 1, b1 = − α

2β
+

1

2β
+ 2, b2 =

3

2
and b3 = 2 in

(3.18) to obtain

2F3

(

1,− α

2β
+

1

2β
+ 1;− α

2β
+

1

2β
+ 2,

3

2
, 2;−λ2x2β

4

)

∼
√
π

λ2

(

−α

β
+

1

β
+ 2

)

1

x2β
+

√
π

2
Γ

(

− α

2β
+

1

2β
+ 2

)(

2

λxβ

)−α/β+1/β+2

+
2

λ3

(

−α

β
+

1

β
+ 2

)

cos(λxβ)

x3β
.

(3.19)

Hence, multiplying (3.19) with λx2β−α+1/(2β − α+ 1) gives (3.17). �

On the other hand, we can show as above that if β ≥ 1 and α < 2β + 1, then
∫

cosh (λxβ)

λxα
dx =

1

λ

x1−α

1− α
+
1

2

λx2β−α+1

2β − α+ 1
2F3

(

1,− α

2β
+

1

2β
+ 1;− α

2β
+

1

2β
+ 2,

3

2
, 2;

λ2x2β

4

)

+C.

Theorem 5. Let β ≥ 1, then the function

G(x) = − 1

2λβx2β
− λ

2
ln |x|+ λ

6β

(

λxβ

4

)2

2F3

(

1, 1; 2,
5

2
, 3;−λ2x2β

4

)

,

where 2F3 is a hypergeometric function [1] and λ is an arbitrarily constant, is the antiderivative of

the function g(x) =
cos (λxβ)

λx2β+1
. Thus,

Ciβ,2β+1 =

∫

cos (λxβ)

λx2β+1
dx = − 1

2λβx2β
− λ

2
ln |x|+ λ

6β

(

λxβ

4

)2

2F3

(

1, 1; 2,
5

2
, 3;−λ2x2β

4

)

+ C.

(3.20)
We also have,

Ciβ,1 =

∫

cos (λxβ)

λx
dx =

1

λ
ln |x| − λx2β

4β
2F3

(

1, 1;
3

2
, 2, 2;−λ2x2β

4

)

+ C. (3.21)
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P r o o f.

Ciβ,2β+1 =

∫

g(x)dx =

∫

cos (λxβ)

λx2β+1
dx =

∫

1

λx2β+1

∞
∑

n=0

(−1)n
(λxβ)2n

(2n)!
dx

=

∫

1

λx2β+1
dx+

1

λ

∫ ∞
∑

n=1

(−1)n
λ2n

(2n)!
x2βn−2β−1dx

= − 1

2λβx2β
− 1

λ

∞
∑

n=0

(−1)n
λ2n+2

(2n + 2)!

∫

x2βn−1dx

= − 1

2λβx2β
− λ

2

∫

dx

x
− λ

∞
∑

n=1

(−1)n
λ2n

(2n+ 2)!

∫

x2βn−1dx

= − 1

2λβx2β
− λ

2
ln |x|+ λ3

∞
∑

n=0

(−1)n
λ2n

(2n + 4)!

∫

x2βn+2β−1dx

= − 1

2λβx2β
− λ

2
ln |x|+ λ3

∞
∑

n=0

(−1)n
λ2n

(2n+ 4)!

x2βn+2β

2βn + 2β
+ C

= − 1

2λβx2β
− λ

2
ln |x| − λ3x2β

2β

∞
∑

n=0

(Γ (n+ 1))2

Γ(2n+ 5)Γ (n+ 2)

(−λ2x2β)n

n!
+ C

= − 1

2λβx2β
− λ

2
ln |x|+ λ

6β

(

λxβ

4

)2 ∞
∑

n=0

(1)n (1)n
(2)n (5/2)n (3)n

(

−λ2x2β/4
)n

n!
+ C

= − 1

2λβx2β
− λ

2
ln |x|+ λ

6β

(

λxβ

4

)2

2F3

(

1, 1; 2,
5

2
, 3;−λ2x2β

4

)

+ C.

The proof of (3.21) is similar, we do not show it here. �

4. Evaluation of some integrals involving Siα,β and Ciα,β

The integral

∫

cosn (λxβ)

λxα
dx, where n is a positive integer and β ≥ 1, α < 2β + 1, can be

written in terms of (3.16) and then evaluated.

Example 2. In this example, the integral
∫ cos4 (λxβ)

λxα
dx is evaluated by linearizing cos4 (λxβ).

∫

cos4 (λxβ)

λxα
dx =

1

8

∫

cos (4λxβ)

λxα
dx+

1

2

∫

cos (2λxβ)

λxα
dx+

3

8

∫

dx =

1

8λ

x1−α

1− α
− 1

4

λx2β−α+1

2β − α+ 1
2F3

(

1,− α

2β
+

1

2β
+ 1;− α

2β
+

1

2β
+ 2,

3

2
, 2;−4λ2x2β

)

+
1

2λ

x1−α

1− α
− 1

2

λx2β−α+1

2β − α+ 1
2F3

(

1,− α

2β
+

1

2β
+ 1;− α

2β
+

1

2β
+ 2,

3

2
, 2;−λ2x2β

)

+
3x

8
+C.

If β ≥ 1 and α < β + 1, the integral
∫ sinn (λxβ)

λxα
dx, where n is a positive integer, can be written

either in terms of (2.7) if n odd, and then evaluated.
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Example 3. In this example, the integral
∫ sin3 (λxβ)

λxα
dx is evaluated by linearizing sin3 (λxβ).

∫

sin3 (λxβ)

λxα
dx = −1

4

∫

sin (3λxβ)

λxα
dx+

3

4

∫

sin (λxβ)

λxα
dx

= −1

4

xβ−α+1

β − α+ 1
1F2

(

− α

2β
+

1

2β
+

1

2
;− α

2β
+

1

2β
+

3

2
,
3

2
;−9λ2x2β

4

)

+
3

4

xβ−α+1

β − α+ 1
1F2

(

− α

2β
+

1

2β
+

1

2
;− α

2β
+

1

2β
+

3

2
,
3

2
;−λ2x2β

4

)

+ C.

Example 4. Let us now evaluate the integrals
∫

sin (λ/xµ)dx and
∫

cos (λ/xµ)dx.

1. The integral
∫

sin (λ/xµ)dx is evaluated using the substitution u = 1/x and Theorem 1 if
µ > 1. Then, we have

∫

sin

(

λ

xµ

)

dx = −
∫

sin (λuµ)

u2
du = −λuµ−1

µ− 1
1F2

(

− 1

2µ
+

1

2
;− 1

2µ
+

3

2
,
3

2
;−λ2u2µ

4

)

= −λ (1/x)µ−1

µ− 1
1F2

(

− 1

2µ
+

1

2
;− 1

2µ
+

3

2
,
3

2
;− λ2

4x2µ

)

+ C, µ > 1.

(4.22)

The integral
∫

sin (λ/xµ)dx is evaluated using the substitution u = 1/x and Theorem 3 if
µ = 1. Then, we have

∫

sin

(

λ

x

)

dx = −
∫

sin (λu)

u2
du = − ln |u|+ (λu/2)2

6
2F3

(

1, 1; 2, 2,
5

2
;−λ2u2

4

)

= ln |x|+ (λ/(2x))2

6
2F3

(

1, 1; 2, 2,
5

2
;− λ2

4x2

)

+ C.

2. Making the substitution u = 1/x and applying Theorem 4 gives

∫

cos

(

λ

xµ

)

dx = −
∫

cos (λuµ)

u2
du =

1

u
+

λu2µ−1

2µ − 1
2F3

(

1,− 1

2µ
+ 1;− 1

2µ
+ 2,

3

2
, 2;−λ2u2µ

4

)

= x+
λ (1/x)2µ−1

2µ− 1
2F3

(

1,− 1

2µ
+ 1;− 1

2µ
+ 2,

3

2
, 2;− λ2

4x2µ

)

+ C, µ > 1.

(4.23)

Making the substitution u = 1/x and applying Theorem 5, then for µ = 1, we have

∫

cos

(

λ

x

)

dx = −
∫

cos (λu)

u2
du =

1

2λu2
+

λ

2
ln |u| − λ

6

(

λu

4

)2

2F3

(

1, 1; 2,
5

2
, 3;−λ2x2

4

)

=
x2

2λ
− λ

2
ln |x| − λ

6

(

λ

4x

)2

2F3

(

1, 1; 2,
5

2
, 3;− λ2

4x2

)

+ C.

5. Evaluation of exponential (Ei) and logarithmic (Li) integrals

Theorem 6. If β ≥ 1, then for any constant λ,

∫

eλx
β

x
dx = ln |x|+ λxβ

β
2F2(1, 1; 2, 2;λx

β ) + C,
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and

λxβ 2F2(1, 1; 2, 2;λx
β ) ∼ −2 +

eλx
β

λxβ
, |x| ≫ 1. (5.24)

P r o o f.
∫

eλx
β

x
dx =

∫

1

x

∞
∑

n=0

(λxβ)n

n!
dx =

∫

dx

x
+

∫ ∞
∑

n=1

λnxβn−1

n!
dx = ln |x|+

∞
∑

n=1

λn

n!

∫

xβn−1dx

= ln |x|+
∞
∑

n=1

λn

n!

xβn

βn
= ln |x|+

∞
∑

n=0

λn+1

(n+ 1)!

xβn+β

βn+ β

= ln |x|+ λxβ

β

∞
∑

n=0

Γ(n+ 1)

Γ(n+ 2)Γ(n + 2)
(λxβ)n + C

= ln |x|+ λxβ

β

∞
∑

n=0

(1)n(1)n
(2)n(2)n

(λxβ)n

n!
+ C = ln |x|+ λxβ

β
2F2(1, 1; 2, 2;λx

β ) + C.

To derive the asymptotic expression of λxβ 2F2(1, 1; 2, 2;λx
β ), |x| ≫ 1, we use the asymptotic

expression of the hypergeometric function 2F2 (a1, a2; b1, b2; z) for |z| ≫ 1, where z ∈ C, and
a1, a2, b1 and b2 are constants. It can be obtained using formulas 16.11.1, 16.11.2 and 16.11.7 in [9]
and is given by

2F2 (a1, a2; b1, b2; z) =

=
Γ(b1)Γ(b2)

Γ(a2)
(ze±iπ)−a1

{

R−1
∑

n=0

(a1)nΓ(a1 − a2 − n)

Γ(b1 − a1 − n)Γ(b2 − a1 − n)n

(ze±iπ)−n

n!
+O(|z|−R)

}

+
Γ(b1)Γ(b2)

Γ(a1)
(ze±iπ)−a2

{

R−1
∑

n=0

(a2)nΓ(a2 − a1 − n)

Γ(b1 − a2 − n)Γ(b2 − a2 − n)n

(ze±iπ)−n

n!
+O(|z|−R)

}

+
Γ(b1)Γ(b2)

Γ(a1)Γ(a2)
ezza1+a2−b1−b2

{

S−1
∑

n=0

µn

2n
z−n +O(|z|−S)

}

,

(5.25)

where the coefficient µn is given by formula 16.11.4. And the upper or lower signs are chosen
according as z lies in the upper (above the real axis) or lower half-plane (below the real axis).

Setting z = λxβ, a1 = 1, a2 = 1, b1 = 2 and b2 = 2 in (5.25) yields

2F2(1, 1; 2, 2;λx
β ) ∼ −2

λxβ
+

eλx
β

λ2x2β
, |x| ≫ 1.

Hence,

λxβ 2F2(1, 1; 2, 2;λx) ∼ −2 +
eλx

β

λxβ
, |x| ≫ 1.

This ends the proof. �

Example 5. The random attenuation capacity of a channel or fading capacity [11] can now be
evaluated in terms of the natural logarithm ln and the hypergeometric function 2F2 as

Cfading = E[log2(1 + P |H|2)] = 1

ln 2
e1/P

[

E1,1 (∞)− E1,1

(

1

P

)]

=
1

ln 2
e1/P

[

lnP +
1

P
2F2

(

1, 1; 2, 2;− 1

P

)]
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Example 6. One can now evaluate
∫

eλe
βx
dx in terms of 2F2 using the substitution u = ex, and

obtain

∫

eλe
βx
dx =

∫

eλu
β

u
du = lnu+

λuβ

β
2F2(1, 1; 2, 2;λu

β ) + C = x+
λeβx

β
2F2(1, 1; 2, 2;λe

βx) +C.

Theorem 7. The logarithmic integral is given by

Li =

x
∫

µ

dt

ln t
= ln

(

lnx

lnµ

)

+ lnx 2F2(1, 1; 2, 2; ln x)− lnµ 2F2(1, 1; 2, 2; ln µ), µ > 1.

And for x ≫ µ,

Li =

x
∫

µ

dt

ln t
∼ x

lnx
+ ln

(

lnx

lnµ

)

− 2− lnµ 2F2(1, 1; 2, 2; ln µ). (5.26)

P r o o f. Making the substitution u = lnx and using (4.22) gives

x
∫

µ

dx

lnx
=

lnx
∫

lnµ

eu

u
du = [lnu+ u 2F2(1, 1; 2, 2;u)]

lnx
lnµ

= ln

(

lnx

lnµ

)

+ lnx 2F2(1, 1; 2, 2; ln x)− lnµ 2F2(1, 1; 2, 2; ln µ).

Now setting z = lnx, a1 = 1, a2 = 1, b1 = 2 and b2 = 2 in (5.24) or in (4.23) yields

2F2(1, 1; 2, 2; ln x) ∼ −2

lnx
+

x

(ln x)2
, x ≫ 1.

This gives

lnx 2F2(1, 1; 2, 2; ln x) ∼ −2 +
x

lnx
, x ≫ 1.

Hence for x ≫ µ,

Li =

x
∫

µ

dt

ln t
∼ x

lnx
+ ln

(

lnx

lnµ

)

− 2− lnµ 2F2(1, 1; 2, 2; ln µ).

�

We importantly note that Theorem 7 adds the term ln (lnx/lnµ) − 2 − lnµ 2F2(1, 1; 2, 2; ln µ)
to the known asymptotic expression of the logarithmic integral in mathematical literature,
Li ∼ x/ln x [1, 9]. And this term is negligible if x ∼ O(106) or higher.

We can now slightly improve the prime number Theorem [3] as following,

Corollary 2. Let π(x) denotes the number of primes small than or equal to x and µ > 1. Then
for x ≫ µ,

π(x)− x

lnx
∼ ln

(

lnx

lnµ

)

− 2− lnµ 2F2(1, 1; 2, 2; ln µ).
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The proof follows directly from equation (5.26) in Theorem 7.

Example 7. One can now evaluate
∫

ln (ln x)dx using integration by parts.
∫

ln (ln x)dx = x ln (lnx)−
∫

1

lnx
dx

= x ln (ln x)− ln (lnx)− lnx 2F2(1, 1; 2, 2; ln x) + C.

Theorem 8. For β ≥ 1 and α < β + 1, we have

Eiβ,α =

∫

eλx
β

λxα
dx =

1

λ

x1−α

1− α
+

xβ−α+1

β − α+ 1
2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2;λxβ

)

+ C,

and for |x| ≫ 1,

λxβ−α+1

β − α+ 1
2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2;λx

)

∼ λ

β
Γ

(

−α

β
+

1

β
+ 1

)(

− 1

λ

)−α/β+1/β+1

− x−α+1

β
+

1

λβ

eλx
β

xβ+α−1
.

(5.27)

We also have,

Eiβ,β+1 =

∫

eλx
β

λxβ+1
dx = − 1

βxβ
+ ln(|x|) + λxβ

2β
2F2

(

1, 1; 2, 2;λxβ
)

+ C. (5.28)

P r o o f.

Eiβ,α =

∫

eλx
β

λxα
dx =

∫

1

λxα

∞
∑

n=0

(λxβ)n

n!
dx =

1

λ

∫

dx

xα
+ =

1

λxα

∫ ∞
∑

n=1

(λxβ)n

n!
dx

=
1

λ

x1−α

1− α
+

1

λ

∞
∑

n=1

λn

n!

∫

xβn−αdx =
1

λ

x1−α

1− α
+

∞
∑

n=0

λn

(n+ 1)!

xβn+β−α+1

βn+ β − α+ 1
+ C

=
1

λ

x1−α

1− α
+

xβ−α+1

β

∞
∑

n=0

Γ

(

n− α

β
+

1

β
+ 1

)

Γ(n+ 2)Γ

(

n− α

β
+

1

β
+ 2

)

(

λxβ
)n

+ C

=
1

λ

x1−α

1− α
+

xβ−α+1

β − α+ 1

∞
∑

n=0

(1)n

(

−α

β
+

1

β
+ 1

)

n

(2)n

(

−α

β
+

1

β
+ 2

)

n

(

xβ
)n

n!
+ C

=
1

λ

x1−α

1− α
+

xβ−α+1

β − α+ 1
2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2;λxβ

)

+ C.

Now setting a1 = 1, a2 = −α

β
+

1

β
+ 1, b1 = 2, b2 = −α

β
+

1

β
+ 2 and z = λxβ in (5.25) gives,

2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2;λxβ

)

∼ −
(

−α

β
+

1

β
+ 1

)

1

λxβ
+ Γ

(

−α

β
+

1

β
+ 2

)(

1

λxβ

)−α/β+1/β+1

+
eλx

β

λ2x2β
.

(5.29)
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Hence, multiplying (5.29) with
λxβ−α+1

β − α+ 1
gives (5.27). The proof of (5.28) is similar to that

of (3.20). �

Theorem 9. For any constants α, β and λ,

1F2

(

− α

2β
+

1

2β
+

1

2
;− α

2β
+

1

2β
+

3

2
,
3

2
;−λ2x2β

4

)

=

1

2

[

2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2; iλxβ

)

+ 2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2;−iλxβ

)

]

,

(5.30)

or

1F2

(

− α

2β
+

1

2β
+

1

2
;− α

2β
+

1

2β
+

3

2
,
3

2
;
λ2x2β

4

)

=

1

2

[

2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2;λxβ

)

+ 2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2;−λxβ

)

]

.

(5.31)

P r o o f. Using Theorem 8, we obtain

∫

sin (λxβ)

xα
dx =

1

2i

∫

eiλx
β − e−iλxβ

xα
dx

=
1

2

λxβ−α+1

β − α+ 1

[

2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2; iλxβ

)

+ 2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2;−iλxβ

)

]

+ C.

(5.32)

Hence, comparing (2.7) with (5.32) gives (5.30). Or on the other hand,

2

∫

sinh (λxβ)

xα
dx =

∫

eλx
β − e−λxβ

xα
dx =

λxβ−α+1

β − α+ 1
×

[

2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2;λxβ

)

+2 F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2;−λxβ

)

]

+ C.

(5.33)

Hence, comparing (2.9) with (5.33) gives (5.31). �

Theorem 10. For any constants α, β and λ,

ix2β−α+1

2β − α+ 1
2F3

(

1,− α

2β
+

1

2β
+ 1;− α

2β
+

1

2β
+ 2,

3

2
, 2;−λ2x2β

4

)

=
xβ−α+1

β − α+ 1
×

[

2F2

(

1,−α

β
− 1

β
+ 1; 2,−α

β
+

1

β
+ 2; iλxβ

)

− 2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2;−iλxβ

)

]

.

(5.34)
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Or,

x2β−α+1

2β − α+ 1
2F3

(

1,− α

2β
+

1

2β
+ 1;− α

2β
+

1

2β
+ 2,

3

2
, 2;

λ2x2β

4

)

=
xβ−α+1

β − α+ 1

[

2F2

(

1,−α

β
− 1

β
+ 1; 2,−α

β
+

1

β
+ 2;λxβ

)

+ 2F2

(

1,−α

β
+

1

β
+ 1; 2,−α

β
+

1

β
+ 2;−λxβ

)

]

.

(5.35)

We prove Theorem 10 as Theorem 9 using Theorems 4 and 8.

6. Conclusion

Siβ,α =
∫

[sin (λxβ)/(λxα)]dx, β ≥ 1, α ≤ β + 1, and Ciβ,α =
∫

[cos (λxβ)/(λxα)]dx, β ≥ 1,
α ≤ 2β + 1, were expressed in terms of the hypergeometric functions 1F2 and 2F3 respectively,
and their asymptotic expressions for |x| ≫ 1 were obtained (see Theorems 1,2, 3, 4 and 5). Once
derived, formulas for the hyperbolic sine and hyperbolic cosine integrals were readily deduced from
those of the sine and cosine integrals.

On the other hand, the exponential integral Eiβ,α =
∫

(eλx
β
/xα)dx, β ≥ 1, α ≤ β + 1, and the

logarithmic integral
∫

dx/ ln x were expressed in terms of the hypergeometric function 2F2, and their
asymptotic expressions for |x| ≫ 1 were also obtained (see Theorems 6, 7 and 8). Therefore, their
corresponding definite integrals can now be evaluated using the FTC rather than using numerical
integration.

Using the Euler and hyperbolic identities Siβ,α and Ciβ,α were expressed in terms of Eiβ,α. And
hence, some expressions of the hypergeometric functions 1F2 and 2F3 in terms of 2F2 were derived
(see Theorems 9 and 10).

The evaluation of the logarithmic integral
∫

dx/ ln x in terms of the function 2F2 and its asymp-
totic expression 2F2 for |x| ≫ 1 allowed us to add the term ln (lnx/ln µ)−2−lnµ 2F2(1, 1; 2, 2; ln µ),
µ > 1, to the known asymptotic expression of the logarithmic integral, which is Li =

∫ x
2 dt/ ln t ∼

x/lnx [1, 9], so that it is given by Li =
∫ x
µ dt/ln t ∼ x/ln x+ln (lnx/lnµ)−2−lnµ 2F2(1, 1; 2, 2; ln µ)

in Theorem 7. Beside, this leads to Corollary 2 which is an improvement of the prime number The-
orem [3].

In addition, other non-elementary integrals which can be written in terms of Eiβ,1 and
∫

dx/ ln x

and then evaluated were given as examples. For instance, using substitution, the
∫

eλe
βx
dx was

written in terms of Eiβ,1 and therefore evaluated in terms of 2F2, and using integration by parts,
the non-elementary integral

∫

ln(ln x)dx was written in terms of
∫

dx/ ln x and therefore evaluated
in terms of 2F2.
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Abstract: The non-elementary integrals Siβ,α =
∫
[sin (λxβ)/(λxα)]dx, β ≥ 1, α > β + 1 and Ciβ,α =∫

[cos (λxβ)/(λxα)]dx, β ≥ 1, α > 2β + 1, where {β, α} ∈ R, are evaluated in terms of the hypergeometric

function 2F3. On the other hand, the exponential integral Eiβ,α =
∫
(eλx

β
/xα)dx, β ≥ 1, α > β + 1 is

expressed in terms of 2F2. The method used to evaluate these integrals consists of expanding the integrand as
a Taylor series and integrating the series term by term.

Key words: Non-elementary integrals, Sine integral, Cosine integral, Exponential integral, Hyperbolic sine
integral, Hyperbolic cosine integral, Hypergeometric functions.

1. Introduction

Let us first give the definition of the non-elementary integral. This definition is also given in
Part I [6], we repeat it here for reference.

Definition 1. An elementary function is a function of one variable constructed using that

variable and constants, and by performing a finite number of repeated algebraic operations involving

exponentials and logarithms. An indefinite integral which can be expressed in terms of elementary

functions is an elementary integral. And if, on the other hand, it cannot be evaluated in terms of

elementary functions, then it is non-elementary [4, 9].

The cases consisting of the non-elementary integrals Siβ,α =
∫

[sin (λxβ)/(λxα)]dx, β ≥ 1,
α ≤ β + 1 and Ciβ,α =

∫

[cos (λxβ)/(λxα)]dx, β ≥ 1, α ≤ 2β + 1, where {β, α} ∈ R, were
considered and evaluated in terms of the hypergeometric functions 1F2 and 2F3 in Part I [6], and
their asymptotic expressions for |x| ≫ 1 were derived too in Part I [6]. The exponential integral

Eiβ,α =
∫

(eλx
β

/xα)dx where β ≥ 1 and α ≤ β+1 was expressed in terms of 2F2, and its asymptotic
expression for |x| ≫ 1 was derived as well in Part I [6].

Here, we investigate other cases which were not treated neither in Part I [6] nor elsewhere.
We evaluate Siβ,α =

∫

[sin (λxβ)/(λxα)]dx, β ≥ 1, α > β + 1 and Ciβ,α =
∫

[cos (λxβ)/(λxα)]dx,

β ≥ 1, α > 2β + 1 and Eiβ,α =
∫

(eλx
β

/xα)dx, β ≥ 1, α > β + 1. In order to take into ac-
count all possibilities, we write these integrals as Siβ,β+α =

∫

[sin (λxβ)/(λxβ+α)]dx, β ≥ 1, α > 1,

Ciβ,2β+α =
∫

[cos (λxβ)/(λx2β+α)]dx, β ≥ 1, α > 1, and Eiβ,β+α =
∫

(eλx
β

/xβ+α)dx, β ≥ 1, α > 1
where {β, α} ∈ R. On one hand, Siβ,β+α and Ciβ,2β+α are expressed in terms of the hypergeo-
metric function 2F3, while on another hand, Eiβ,β+α is expressed in terms of the hypergeometric
function 2F2.

These integrals involving a power function xβ in the argument of the numerator are the general-
izations of the exponential, sine and cosine integrals in [7] (see sections 8.19 and 8.21 respectively),

https://doi.org/10.15826/umj.2018.1.004
mailto:victornijimbere@gmail.com
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which have applications in different fields in science, applied sciences and engineering including
physics, nuclear technology, mathematics, probability, statistics, and so on. For instance, the gen-
eralized exponential integral E1,1+α is used in fluidodynamics and transport theory, where it is
applied to the solution of Milne’s integral equations [2], there are also used in modeling radiative
transfer processes in the atmosphere and in nuclear reactors [10], etc. Exponential asymptotics
involving generalized exponential integrals are used in probability theory, see for example [3]. On
the hand, generalized sine and cosine integrals are frequently utilized in Fourier analysis and related
domains [8]. Therefore, we are justified to further generalize these functions and their connections
to hypergeometric functions.

Before we proceed to the main objectives of this paper consisting of evaluating the above
interesting cases of non-elementary integrals (see sections 2, 3 and 4), we first define the generalized
hypergeometric function as it is an important tool that we are going to use in the paper.

Definition 2. The generalized hypergeometric function, denoted as pFq, is a special function

given by the series [1, 7]

pFq(a1, a2, · · · , ap; b1, b2, · · · , bq;x) =
∞
∑

n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

xn

n!
,

where a1, a2, · · · , ap and ; b1, b2, · · · , bq are arbitrary constants, (ϑ)n = Γ(ϑ + n)/Γ(ϑ) (Pochham-

mer’s notation [1, 7]) for any complex ϑ, with (ϑ)0 = 1, and Γ is the standard gamma function [1].

2. Evaluation of the sine integral Siβ,β+α, β ≥ 1, α > 1

Theorem 1. Let β ≥ 1 and α > 1, and let α = mβ + ǫ, where m is an integer (m ∈ N) and

−β < ǫ < β.

1. If ǫ = 0, then

Siβ,β+α =

∫

sin (λxβ)

λxβ+α
dx =

−1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)

x2βn+1

2βn + 1

+
(−1)mλ2mx

2m+1
√
πΓ(m+ 1)Γ (m+ 3/2) (2β + 1)

2F3

(

1, 1 +
1

2β
;m+ 1,m+

3

2
, 2 +

1

2β
;−λ2x2β

4

)

+ C,

(2.1)

where m = α/β.

2. If ǫ = 1, then

Siβ,β+α=

∫

sin (λxβ)

λxβ+α
dx=(−1)m

λ2m

Γ(2m+ 2)
ln |x|+

−1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n + 2m+ 2)

x2βn

2βn

+
(−1)m+1λ2m+2x2β

22m+4
√
πΓ(m+ 2)Γ (m+ 5/2) β

2F3

(

1, 1;m + 2,m+
5

2
, 2;−λ2x2β

4

)

+ C,

(2.2)

where m = (α− 1)/β.
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3. Finally, if ǫ ∈ (−β, 0) ∪ (0, 1) ∪ (1, β), we have

∫

sin (λxβ)

λxβ+α
dx = (−1)m

λ2m

Γ(2m+ 2)

x1−ǫ

1− ǫ
+

−1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n + 2m+ 2)

x2βn−ǫ+1

2βn− ǫ+ 1

+
(−1)m+1λ2m+2x2β−ǫ+1

22m+3
√
πΓ(m+ 2)Γ (m+ 5/2) (2β − ǫ+ 1)

×

×2F3

(

1, 1 +
1− ǫ

2β
;m+ 2,m+

5

2
, 2 +

1− ǫ

2β
;−λ2x2β

4

)

+ C,

(2.3)

where m = (α− ǫ)/β.

P r o o f. We proceed as in [5, 6]. We expand g(x) as Taylor series and integrate the series
term by term. We use the gamma duplication formula[1], the gamma property Γ(α + 1) = αΓ(α)
and Pochhammer’s notation (see Definition 2). We also set α = mβ + ǫ, and then we obtain

∫

sin (λxβ)

λxβ+α
dx =

∫

1

λxβxα

∞
∑

n=0

(−1)n
(λxβ)2n+1

(2n + 1)!
dx =

∫ ∞
∑

n=0

(−1)n
λ2n

(2n + 1)!
x2βn−αdx

=

∫ m−1
∑

n=0

(−1)n
λ2n

(2n+ 1)!
x2βn−2βm−ǫdx+

∫ ∞
∑

n=m

(−1)n
λ2n

(2n+ 1)!
x2βn−2βm−ǫdx

=

∫ m−1
∑

n=0

(−1)n
λ2n

(2n + 1)!
x2β(n−m)−ǫdx+

∫ ∞
∑

n=m

(−1)n
λ2n

(2n+ 1)!
x2β(n−m)−ǫdx

=

∫ −1
∑

n=−m

(−1)n+m λ2n+2m

(2n+ 2m+ 1)!
x2βn−ǫdx+

∫ ∞
∑

n=0

(−1)n+m λ2n+2m

(2n+ 2m+ 1)!
x2βn−ǫdx

=

∫ −1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)
x2βn−ǫdx+

∫ ∞
∑

n=0

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)
x2βn−ǫdx

= (−1)m
λ2m

Γ(2m+ 2)

∫

dx

xǫ
+

∫ −1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)
x2βn−ǫdx

+

∫ ∞
∑

n=1

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)
x2βn−ǫdx

= (−1)m
λ2m

Γ(2m+ 2)

∫

dx

xǫ
+

∫ −1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)
x2βn−ǫdx

+

∫ ∞
∑

n=0

(−1)n+m+1 λ2n+2m+2

Γ(2n + 2m+ 4)
x2βn+2β−ǫdx

= (−1)m
λ2m

Γ(2m+ 2)

∫

dx

xǫ
+

−1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)

x2βn−ǫ+1

2βn− ǫ+ 1

+
∞
∑

n=0

(−1)n+m+1 λ2n+2m+2

Γ(2n + 2m+ 4)

x2βn+2β−ǫ+1

2βn+ 2β − ǫ+ 1
+ C1

= (−1)m
λ2m

Γ(2m+ 2)

∫

dx

xǫ
+

−1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)

x2βn−ǫ+1

2βn− ǫ+ 1

(2.4)
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+
(−1)m+1λ2m+2x2β−ǫ+1

22m+3
√
πΓ(m+2)Γ (m+5/2) (2β−ǫ+1)

∞
∑

n=0

(1)n (1+(1−ǫ)/(2β))n
(m+2)n (m+5/2)n (2+(1−ǫ)/(2β))n

(

−λ2x2β/4
)n

n!
+C1

= (−1)m
λ2m

Γ(2m+ 2)

∫

dx

xǫ
+

−1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)

x2βn−ǫ+1

2βn − ǫ+ 1

+
(−1)m+1λ2m+2x2β−ǫ+1

22m+3
√
πΓ(m+ 2)Γ (m+ 5/2) (2β − ǫ+ 1)

×

×2F3

(

1, 1 +
1− ǫ

2β
;m+ 2,m+

5

2
, 2 +

1− ǫ

2β
;−λ2x2β

4

)

+ C1.

1. For ǫ = 0, we substitute ǫ = 0 in (2.4), and hence, we obtain

∫

sin (λxβ)

λxβ+α
dx =

∫

1

λxβxα

∞
∑

n=0

(−1)n
(λxβ)2n+1

(2n + 1)!
dx

=

∫ −1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)
x2βndx+

∫ ∞
∑

n=0

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)
x2βndx

=

−1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)

x2βn+1

2βn+ 1
+

∞
∑

n=0

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)

x2βn+1

2βn + 1

=

−1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)

x2βn+1

2βn + 1

+
(−1)mλ2mx

2m+1
√
π(2β + 1)Γ(m+ 1)Γ (m+ 3/2)

∞
∑

n=0

(1)n (1 + 1/(2β))n
(m+ 1)n (m+ 3/2)n (2 + 1/(2β))n

(

−λ2x2β/4
)n

n!

=

−1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)

x2βn+1

2βn + 1

+
(−1)mλ2mx

2m+1
√
πΓ(m+ 1)Γ (m+ 3/2) (2β + 1)

2F3

(

1, 1 +
1

2β
;m+ 1,m+

3

2
, 2 +

1

2β
;−λ2x2β

4

)

+ C,

which is (2.1), and where m = α/β.

2. For ǫ = 1, we set ǫ = 1 in (2) and obtain

∫

sin (λxβ)

λxβ+α
dx = (−1)m

λ2m

Γ(2m+ 2)
ln |x|+

−1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n+ 2m+ 2)

x2βn

2βn

+
(−1)m+1λ2m+2x2β

22m+4
√
πΓ(m+ 2)Γ (m+ 5/2) β

2F3

(

1, 1;m + 2,m+
5

2
, 2;−λ2x2β

4

)

+ C,

which is (2.2), and where m = (α − 1)/β.

3. For ǫ ∈ (−β, 0) ∪ (0, 1) ∪ (1, β), (2) gives

∫

sin (λxβ)

λxβ+α
dx = (−1)m

λ2m

Γ(2m+ 2)

x1−ǫ

1− ǫ
+

−1
∑

n=−m

(−1)n+m λ2n+2m

Γ(2n + 2m+ 2)

x2βn−ǫ+1

2βn− ǫ+ 1

+
(−1)m+1λ2m+2x2β−ǫ+1

22m+3
√
πΓ(m+ 2)Γ (m+ 5/2) (2β − ǫ+ 1)

×

×2F3

(

1, 1 +
1− ǫ

2β
;m+ 2,m+

5

2
, 2 +

1− ǫ

2β
;−λ2x2β

4

)

+ C,
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which is (2.3), and where m = (α − ǫ)/β. �

Example 1. In this example, we evaluate
∫ [

sin(x2)/x3.5
]

dx. We first observe that λ = 1 and
β = 2. We also have 3.5 = β + α = 2 + 1.5 = 2 + (1)2 − 0.5 = β + mβ + ǫ, and so m = 1 and
ǫ = −0.5. Substituting λ = 1, β = 2,m = 1 and ǫ = −0.5 in (2.3) gives

∫

sin(x2)

x3.5
dx = −x1.5

9
− x−2.5

2.5
+

x5.5

540π
2F3

(

1,
9

8
; 3,

7

2
,
17

8
;−x4

4

)

+ C.

We can use the same procedure for the hyperbolic sine integral, the results are stated in the
following theorem. Its proof is similar to that of Theorem 1, we will omit it.

Theorem 2. Let β ≥ 1 and α > 1, and let α = mβ + ǫ, where m is an integer (m ∈ N) and

−β < ǫ < β.

1. If ǫ = 0, then

∫

sinh (λxβ)

λxβ+α
dx =

−1
∑

n=−m

λ2n+2m

Γ(2n+ 2m+ 2)

x2βn+1

2βn+ 1

+
λ2mx

2m+1
√
πΓ(m+ 1)Γ (m+ 3/2) (2β + 1)

2F3

(

1, 1 +
1

2β
;m+ 1,m+

3

2
, 2 +

1

2β
;
λ2x2β

4

)

+ C,

where m = α/β.

2. If ǫ = 1, then

∫

sinh (λxβ)

λxβ+α
dx =

λ2m

Γ(2m+ 2)
ln |x|+

−1
∑

n=−m

λ2n+2m

Γ(2n+ 2m+ 2)

x2βn

2βn

+
λ2m+2x2β

22m+4
√
πΓ(m+ 2)Γ (m+ 5/2) β

2F3

(

1, 1;m + 2,m+
5

2
, 2;

λ2x2β

4

)

+ C,

where m = (α− 1)/β.

3. Finally, if ǫ ∈ (−β, 0) ∪ (0, 1) ∪ (1, β), we have

∫

sinh (λxβ)

λxβ+α
dx =

λ2m

Γ(2m+ 2)

x1−ǫ

1− ǫ
+

−1
∑

n=−m

λ2n+2m

Γ(2n + 2m+ 2)

x2βn−ǫ+1

2βn− ǫ+ 1

+
λ2m+2x2β−ǫ+1

22m+3
√
πΓ(m+ 2)Γ (m+ 5/2) (2β − ǫ+ 1)

×

×2F3

(

1, 1 +
1− ǫ

2β
;m+ 2,m+

5

2
, 2 +

1− ǫ

2β
;
λ2x2β

4

)

+C,

where m = (α− ǫ)/β.
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3. Evaluation of the cosine integral Ciβ,2β+α, β ≥ 1, α > 1

Theorem 3. Let β ≥ 1 and α > 1, and let α = 2βm+ ǫ, where m is an integer (m ∈ N) and

−2β < ǫ < 2β.

1. If ǫ = 0, then

Ciβ,2β+α =

∫

cos (λxβ)

λx2β+α
dx =

1

λ

x1−2β−α

1− 2β − α
+

−1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n+ 2m+ 3)

x2βn+1

2βn+ 1

+
(−1)mλ2mx

2m+2
√
πΓ (m+ 3/2) Γ(m+ 2)(2β + 1)

2F3

(

1, 1+
1

2β
;m+

3

2
,m+2, 2+

1

2β
;−λ2x2β

4

)

+C,

(3.5)

where m = α/(2β).

2. If ǫ = 1, then

∫

cos (λxβ)

λx2β+α
dx =

1

λ

x1−2β−α

1− 2β − α
+

(−1)mλ2m+1

Γ(2m+ 3)
ln |x|+

−1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n + 2m+ 3)

x2βn

2βn

+
(−1)m+1λ2m+3x2β

22m+5
√
πΓ (m+ 5/2) Γ(m+ 3)β

2F3

(

1, 1;m +
5

2
,m+ 3, 2;−λ2x2β

4

)

+ C,

(3.6)

where m = (α− 1)/(2β).

3. Finally, if ǫ ∈ (−2β, 0) ∪ (0, 1) ∪ (1, 2β), we have

∫

cos (λxβ)

λx2β+α
dx =

1

λ

x1−2β−α

1− 2β − α
+

(−1)mλ2m+1

Γ(2m+ 3)

x1−ǫ

1− ǫ

+

−1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n+ 2m+ 3)

x2βn−ǫ+1

2βn − ǫ+ 1

+
(−1)m+1λ2m+3x2β−ǫ+1

22m+4
√
πΓ (m+ 5/2) Γ(m+ 3)(2β − ǫ+ 1)

×

×2F3

(

1, 1 +
1− ǫ

2β
;m+

5

2
,m+ 3, 2 +

1− ǫ

2β
;−λ2x2β

4

)

+ C,

(3.7)

where m = (α− ǫ)/(2β).

P r o o f. We proceed as in Theorem 1. We have

∫

cos (λxβ)

λx2β+α
dx =

∫

1

λx2β+α

∞
∑

n=0

(−1)n
(λxβ)2n

(2n)!
dx

=

∫

1

λx2β+α
dx+

1

λ

∫ ∞
∑

n=1

(−1)n
λ2n

(2n)!
x2βn−2β−αdx

=

∫

1

λx2β+α
dx+

1

λ

∫ ∞
∑

n=0

(−1)n+1 λ2n+2

(2n + 2)!
x2βn−αdx

=

∫

1

λx2β+α
dx+

∫ m−1
∑

n=0

(−1)n+1 λ2n+1

(2n+2)!
x2βn−2βm−ǫdx+

∫ ∞
∑

n=m

(−1)n+1 λ2n+1

(2n+2)!
x2βn−2βm−ǫdx
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=

∫

1

λx2β+α
dx+

∫ m−1
∑

n=0

(−1)n+1 λ2n+1

(2n+2)!
x2β(n−m)−ǫdx+

∫ ∞
∑

n=m

(−1)n+1 λ2n+1

(2n+2)!
x2β(n−m)−ǫdx

=

∫

1

λx2β+α
dx+

∫ −1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

(2n + 2m+ 2)!
x2βn−ǫdx

+

∫ ∞
∑

n=0

(−1)n+m+1 λ2n+2m+1

(2n + 2m+ 2)!
x2βn−ǫdx

=

∫

1

λx2β+α
dx+

∫ −1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n + 2m+ 3)
x2βn−ǫdx

+

∫ ∞
∑

n=0

(−1)n+m+1 λ2n+2m+1

Γ(2n + 2m+ 3)
x2βn−ǫdx

=

∫

1

λx2β+α
dx+ (−1)m+1 λ2m+1

Γ(2m+ 3)

∫

dx

xǫ
+

∫ −1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n+ 2m+ 3)
x2βn−ǫdx

+

∫ ∞
∑

n=1

(−1)n+m+1 λ2n+2m+1

Γ(2n + 2m+ 3)
x2βn−ǫdx

=

∫

1

λx2β+α
dx+ (−1)m+1 λ2m+1

Γ(2m+ 3)

∫

dx

xǫ
+

∫ −1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n+ 2m+ 3)
x2βn−ǫdx

+

∫ ∞
∑

n=0

(−1)n+m λ2n+2m+3

Γ(2n+ 2m+ 5)
x2βn+2β−ǫdx

=
1

λ

x1−2β−α

1− 2β − α
+ (−1)m+1 λ2m+1

Γ(2m+ 3)

∫

dx

xǫ
+

−1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n+ 2m+ 3)

x2βn−ǫ+1

2βn − ǫ+ 1

+
∞
∑

n=0

(−1)n+m λ2n+2m+3

Γ(2n+ 2m+ 5)

x2βn+2β−ǫ+1

2βn+ 2β − ǫ+ 1
+ C1

=
1

λ

x1−2β−α

1− 2β − α
+ (−1)m+1 λ2m+1

Γ(2m+ 3)

∫

dx

xǫ
+

−1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n+ 2m+ 3)

x2βn−ǫ+1

2βn − ǫ+ 1

+
(−1)m+1λ2m+3x2β−ǫ+1

22m+4
√
πΓ (m+5/2) Γ(m+3)(2β−ǫ+1)

∞
∑

n=0

(1)n (1+(1−ǫ)/(2β))n
(m+5/2)n (m+3)n (2+(1−ǫ)/(2β))n

(

−λ2x2β/4
)n

n!
+C1

=
1

λ

x1−2β−α

1− 2β − α
+ (−1)m

λ2m+1

Γ(2m+ 3)

∫

dx

xǫ
+

−1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n+ 2m+ 3)

x2βn−ǫ+1

2βn − ǫ+ 1

+
(−1)m+1λ2m+3x2β−ǫ+1

22m+4
√
πΓ (m+ 5/2) Γ(m+ 3)(2β − ǫ+ 1)

2F3

(

1, 1+
1−ǫ

2β
;m+

5

2
,m+3, 2+

1−ǫ

2β
;−λ2x2β

4

)

+C1.

(3.8)

1. For ǫ = 0, we substitute ǫ = 0 in (3.8), and hence, we obtain

∫

cos (λxβ)

λx2β+α
dx =

∫

dx

λx2β+α
+

∫ −1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n+ 2m+ 3)
x2βndx

+

∫ ∞
∑

n=0

(−1)n+m+1 λ2n+2m+1

Γ(2n + 2m+ 3)
x2βndx =

1

λ

x1−2β−α

1− 2β − α
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+
−1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n+ 2m+ 3)

x2βn+1

2βn + 1
+

∞
∑

n=0

(−1)n+m+1 λ2n+2m+1

Γ(2n+ 2m+ 3)

x2βn+1

2βn+ 1

=
1

λ

x1−2β−α

1− 2β − α
+

−1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n + 2m+ 3)

x2βn+1

2βn+ 1

+
(−1)mλ2mx

2m+2
√
π(2β + 1)Γ (m+ 3/2) Γ(m+ 2)

∞
∑

n=0

(1)n (1 + 1/(2β))n
(m+ 3/2)n (m+ 2)n (2 + 1/(2β))n

(

−λ2x2β/4
)n

n!

=
1

λ

x1−2β−α

1− 2β − α
+

−1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n + 2m+ 3)

x2βn+1

2βn+ 1

+
(−1)mλ2mx

2m+2
√
πΓ (m+ 3/2) Γ(m+ 2)(2β + 1)

2F3

(

1, 1 +
1

2β
;m+

3

2
,m+ 2, 2 +

1

2β
;−λ2x2β

4

)

+ C,

which is (3.5), and where m = α/(2β).

2. For ǫ = 1, we set ǫ = 1 in (3.8) and obtain

∫

cos (λxβ)

λx2β+α
dx =

1

λ

x1−2β−α

1− 2β − α
+

(−1)mλ2m+1

Γ(2m+ 3)
ln |x|+

−1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n + 2m+ 3)

x2βn

2βn

+
(−1)m+1λ2m+3x2β

22m+5
√
πΓ (m+ 5/2) Γ(m+ 3)β

2F3

(

1, 1;m+
5

2
,m+ 3, 2;−λ2x2β

4

)

+ C,

which is (3.6), and where m = (α − 1)/(2β).

3. For ǫ ∈ (−2β, 0) ∪ (0, 1) ∪ (1, 2β), (3.8) gives

∫

cos (λxβ)

λx2β+α
dx =

1

λ

x1−2β−α

1− 2β − α
+

(−1)mλ2m+1

Γ(2m+ 3)

x1−ǫ

1− ǫ

+

−1
∑

n=−m

(−1)n+m+1 λ2n+2m+1

Γ(2n + 2m+ 3)

x2βn−ǫ+1

2βn− ǫ+ 1

+
(−1)m+1λ2m+3x2β−ǫ+1

22m+4
√
πΓ (m+ 5/2) Γ(m+ 3)(2β − ǫ+ 1)

×

×2F3

(

1, 1 +
1− ǫ

2β
;m+

5

2
,m+ 3, 2 +

1− ǫ

2β
;−λ2x2β

4

)

+ C,

which is (3.7), and where m = (α − ǫ)/(2β). �

Example 2. In this example, we evaluate
∫ [

cos(x)/x5
]

dx. We first observe that λ = 1 and β = 1.
We also have 5 = 2β + α = 2 + 3 = 2 + 2(1)(1) + 1 = β + 2βm + ǫ, and so m = 1 and ǫ = 1.
Substituting λ = 1, β = 1, m = 1 and ǫ = 1 in (3.6) gives

∫

cos(x)

x5
dx = −x−4

4
− x−2

4
+

ln |x|
24

+
x2

720π
2F3

(

1, 1;
7

2
, 4, 2;−x2

4

)

+C.

We can use the same procedure for the hyperbolic cosine integral, the results are stated in the
next theorem. Its proof is similar to Theorem 3’s proof, we will omit it.

Theorem 4. Let β ≥ 1 and α > 1, and let α = 2βm+ ǫ, where m is an integer (m ∈ N) and

−2β < ǫ < 2β.
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1. If ǫ = 0, then

∫

cosh (λxβ)

λx2β+α
dx =

1

λ

x1−2β−α

1− 2β − α
+

−1
∑

n=−m

λ2n+2m+1

Γ(2n + 2m+ 3)

x2βn+1

2βn+ 1

+
λ2mx

2m+2
√
πΓ (m+ 3/2) Γ(m+ 2)(2β + 1)

2F3

(

1, 1 +
1

2β
;m+

3

2
,m+ 2, 2 +

1

2β
;
λ2x2β

4

)

+ C,

where m = α/(2β).

2. If ǫ = 1, then

∫

cosh (λxβ)

λx2β+α
dx =

1

λ

x1−2β−α

1− 2β − α
+

λ2m+1

Γ(2m+ 3)
ln |x|+

−1
∑

n=−m

λ2n+2m+1

Γ(2n+ 2m+ 3)

x2βn

2βn

+
λ2m+3x2β

22m+5
√
πΓ (m+ 5/2) Γ(m+ 3)β

2F3

(

1, 1;m +
5

2
,m+ 3, 2;

λ2x2β

4

)

+ C,

where m = (α− 1)/(2β).

3. Finally, if ǫ ∈ (−2β, 0) ∪ (0, 1) ∪ (1, 2β), we have

∫

cos (λxβ)

λx2β+α
dx =

1

λ

x1−2β−α

1− 2β − α
+

(−1)mλ2m+1

Γ(2m+ 3)

x1−ǫ

1− ǫ
+

−1
∑

n=−m

λ2n+2m+1

Γ(2n+ 2m+ 3)

x2βn−ǫ+1

2βn − ǫ+ 1

+
λ2m+3x2β−ǫ+1

22m+4
√
πΓ (m+ 5/2) Γ(m+ 3)(2β − ǫ+ 1)

×

×2F3

(

1, 1 +
1− ǫ

2β
;m+

5

2
,m+ 3, 2 +

1− ǫ

2β
;
λ2x2β

4

)

+C,

where m = (α− ǫ)/(2β).

4. Evaluation of the exponential integral Eiβ,β+α, β ≥ 1, α > 1

Theorem 5. Let β ≥ 1 and α > 1, and let α = βm + ǫ, where m is an integer (m ∈ N) and

−β < ǫ < β.

1. If ǫ = 0, then

Eiβ,β+α =

∫

eλx
β

λxβ+α
dx =

1

λ

x1−β−α

1− β − α
+

−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xβn+1

βn+ 1

+
λmx

Γ(m+ 2)(β + 1)
2F2

(

1, 1 +
1

β
;m+ 2, 2 +

1

β
;λxβ

)

+ C,

(4.9)

where m = α/(β).

2. If ǫ = 1, then

Eiβ,β+α =

∫

eλx
β

λxβ+α
dx =

1

λ

x1−β−α

1− β − α
+

λm

Γ(m+ 2)
ln |x|+

−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xβn

βn

+
λm+1xβ

Γ(m+ 3)β
2F2

(

1, 1;m + 3, 2;λxβ
)

+ C,

(4.10)

where m = (α− 1)/(β).
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3. Finally, if ǫ ∈ (−β, 0) ∪ (0, 1) ∪ (1, β), we have

∫

eλx
β

λxβ+α
dx =

1

λ

x1−β−α

1− β − α
+

λm

Γ(m+ 2)

x1−ǫ

1− ǫ
+

−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xβn−ǫ+1

βn− ǫ+ 1

+
λm+1xβ−ǫ+1

Γ(m+ 3)(β − ǫ+ 1)
2F2

(

1, 1 +
1− ǫ

β
;m+ 3, 2 +

1− ǫ

β
;λxβ

)

+ C,

(4.11)

where m = (α− ǫ)/(β).

P r o o f. We proceed as before. Then, we have

∫

eλx
β

λxβ+α
dx =

∫

1

λxβ+α

∞
∑

n=0

(λxβ)n

n!
dx =

∫

1

λxβ+α
dx+

1

λ

∫ ∞
∑

n=1

λn

n!
xβn−β−αdx

=

∫

1

λxβ+α
dx+

1

λ

∫ ∞
∑

n=0

λn+1

(n + 1)!
xβn−αdx

=

∫

1

λxβ+α
dx+

∫ m−1
∑

n=0

λn

(n+ 1)!
xβn−βm−ǫdx+

∫ ∞
∑

n=m

λn

(n+ 1)!
xβn−βm−ǫdx

=

∫

1

λxβ+α
dx+

∫ m−1
∑

n=0

λn

(n + 1)!
xβ(n−m)−ǫdx+

∫ ∞
∑

n=m

λn

(n+ 1)!
xβ(n−m)−ǫdx

=

∫

1

λxβ+α
dx+

∫ −1
∑

n=−m

λn+m

(n +m+ 1)!
xβn−ǫdx+

∫ ∞
∑

n=0

λn+m

(n+m+ 1)!
xβn−ǫdx

=

∫

1

λxβ+α
dx+

∫ −1
∑

n=−m

λn+m

Γ(n+m+ 2)
xβn−ǫdx+

∫ ∞
∑

n=0

λn+m

Γ(n+m+ 2)
xβn−ǫdx

=

∫

1

λxβ+α
dx+

λm

Γ(m+ 2)

∫

dx

xǫ
+

∫ −1
∑

n=−m

λn+m

Γ(n+m+ 2)
xβn−ǫdx

+

∫ ∞
∑

n=1

λn+m

Γ(n+m+ 2)
xβn−ǫdx =

∫

1

λxβ+α
dx+

λm

Γ(m+ 2)

∫

dx

xǫ

+

∫ −1
∑

n=−m

λn+m

Γ(n+m+ 2)
xβn−ǫdx+

∫ ∞
∑

n=0

λn+m+1

Γ(n+m+ 3)
xβn+β−ǫdx

=
1

λ

x1−β−α

1− β − α
+

λm

Γ(m+ 2)

∫

dx

xǫ
+

−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xβn−ǫ+1

βn− ǫ+ 1

+

∞
∑

n=0

λn+m+1

Γ(n+m+ 3)

xβn+β−ǫ+1

βn+ β − ǫ+ 1
+ C1

=
1

λ

x1−β−α

1− β − α
+

λm

Γ(m+ 2)

∫

dx

xǫ
+

−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xβn−ǫ+1

βn− ǫ+ 1

+
λm+1xβ−ǫ+1

Γ(m+ 3)(β − ǫ+ 1)

∞
∑

n=0

(1)n (1 + (1− ǫ)/β)n
(m+ 3)n (2 + (1− ǫ)/β)n

(

λxβ
)n

n!
+ C1

=
1

λ

x1−β−α

1− β − α
+

λm

Γ(m+ 2)

∫

dx

xǫ
+

−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xβn−ǫ+1

βn− ǫ+ 1

(4.12)
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+
λm+1xβ−ǫ+1

Γ(m+ 3)(β − ǫ+ 1)
2F2

(

1, 1 +
1− ǫ

β
;m+ 3, 2 +

1− ǫ

β
;λxβ

)

+ C1.

1. For ǫ = 0, we substitute ǫ = 0 in (4.12), and hence, we obtain

∫

eλx
β

λxβ+α
dx =

∫

dx

λxβ+α
+

∫ −1
∑

n=−m

λn+m

Γ(n+m+ 2)
xβndx+

∫ ∞
∑

n=0

λn+m

Γ(n+m+ 2)
xβndx

=
1

λ

x1−β−α

1− β − α
+

−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xβn+1

βn+ 1
+

∞
∑

n=0

λn+m

Γ(n+m+ 2)

xβn+1

βn+ 1

=
1

λ

x1−β−α

1− β − α
+

−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xβn+1

βn+ 1

+
λmx

Γ(m+ 2)(β + 1)

∞
∑

n=0

(1)n (1 + 1/β)n
(m+ 2)n (2 + 1/β)n

(

λxβ
)n

n!
=

1

λ

x1−β−α

1− β − α

+
−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xβn+1

βn+ 1
+

λmx

Γ(m+ 2)(β + 1)
2F2

(

1, 1 +
1

β
;m+ 2, 2 +

1

β
;λxβ

)

+ C,

which is (4.9), and where m = α/β.

2. For ǫ = 1, we set ǫ = 1 in (4.12) and obtain

∫

eλx
β

λxβ+α
dx =

1

λ

x1−β−α

1− β − α
+

λm

Γ(m+ 2)
ln |x|+

−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xβn

βn

+
λm+1xβ

Γ(m+ 3)β
2F2

(

1, 1;m + 3, 2;λxβ
)

+ C,

which is (4.10), and where m = (α− 1)/β.

3. For ǫ ∈ (−β, 0) ∪ (0, 1) ∪ (1, β), (4.12) gives

∫

eλx
β

λxβ+α
dx =

1

λ

x1−β−α

1− β − α
+

λm

Γ(m+ 2)

x1−ǫ

1− ǫ
+

−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xβn−ǫ+1

βn− ǫ+ 1

+
λm+1xβ−ǫ+1

Γ(m+ 3)(β − ǫ+ 1)
2F2

(

1, 1 +
1− ǫ

β
;m+ 3, 2 +

1− ǫ

β
;λxβ

)

+ C,

which is (4.11), and where m = (α− ǫ)/β. �

Example 3. In this example, we evaluate
∫

(e−x2

/x4)dx. We first observe that λ = −1 and β = 2.
We also have 4 = β+α = 2+2 = 2+2(1)+0 = β+βm+ ǫ, and so m = 1 and ǫ = 0. Substituting
λ = 1, β = 1, m = 1 and ǫ = 0 in (4.9) gives

∫

e−x2

x4
dx =

x−3

3
− 1

x
− x

4
2F2

(

1, 2; 3, 3;−x2
)

+ C.

Corollary 1. Let α > 1 and let α = m+ ǫ, where m is an integer (m ∈ N) and −1 < ǫ ≤ 1.
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1. If ǫ = 0 or 1, then

Ei1,1+α =

∫

eλx

λx1+α
dx = − 1

λαxα
+

λm

Γ(m+ 2)
ln |x|+

−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xn

n

+
λm+1x

Γ(m+ 3)β
2F2 (1, 1;m+ 3, 2;λx) + C,

where m = α− 1.

2. And if ǫ ∈ (−1, 0) ∪ (0, 1), we have

∫

eλx

λx1+α
dx = − 1

λαxα
+

λm

Γ(m+ 2)

x1−ǫ

1− ǫ
+

−1
∑

n=−m

λn+m

Γ(n+m+ 2)

xn−ǫ+1

n− ǫ+ 1

+
λm+1x2−ǫ

Γ(m+ 3)(2 − ǫ)
2F2 (1, 2− ǫ;m+ 3, 3 − ǫ;λx) + C,

where m = α− ǫ.

P r o o f.

1. If ǫ = 0 or 1 implies α = m + ǫ is an integer (α ∈ N) since (m ∈ N). Morever, α = m + ǫ
implies β = 1 in Theorem 5. Therefore, we obtain (1) by setting β = 1 in (4.10).

2. For ǫ ∈ (−1, 0) ∪ (0, 1), we set β = 1 in (4.11) and obtain (2). �

Example 4. In this example, we evaluate
∫ (

e−x/x3.7
)

dx. We first observe that λ = −1. We
also have 3.7 = 1 + α = 1+ 2.7 = 1 + 2+ 0.7 = 1 +m+ ǫ, and so m = 2 and ǫ = 0.7. Substituting
λ = −1,m = 2 and ǫ = 0.7 in (2) gives

∫

e−x

x3.7
dx =

x−2.7

2.7
− x0.3

1.8
− x−1.7

1.7
+

x−0.7

1.4
− x1.3

31.2
2F2 (1, 1.3; 5, 2.3;−x) + C.

5. Conclusion

Formulas for the non-elementary integrals Siβ,α =
∫

[sin (λxβ)/(λxα)]dx, β ≥ 1, α > β +1, and
Ciβ,α =

∫

[cos (λxβ)/(λxα)]dx, β ≥ 1, α > 2β + 1, were explicitly derived in terms of the hyperge-
ometric function 2F3 (see Theorems 1 and 2). Once derived, formulas for the hyperbolic sine and
hyperbolic cosine integrals were deduced from those of the sine and cosine integrals (see Theorems 2

and 4). On the other hand, the exponential integral Eiβ,α =
∫

(eλx
β

/xα)dx, β ≥ 1, α > β + 1 was
expressed in terms of the hypergeometric function 2F2 (see Theorem 5 and Corollary 1).

Beside, illustrative examples were given. Therefore, their corresponding definite integrals can
now be evaluated using the FTC rather than using numerical integration.

REFERENCES

1. Abramowitz M., Stegun I.A. Handbook of mathematical functions with formulas, graphs and mathemat-

ical tables. National Bureau of Standards, 1964. 1046 p.

2. Chiccoli C., Lorenzutta S., Maino G. Concerning some integrals of the generalized exponential-integral
function. Computers Math. Applic., 1992. Vol. 23, no. 11, P. 13–21. DOI: 10.1016/0898-1221(92)90065-P

https://doi.org/10.1016/0898-1221(92)90065-P


Some non-elementary integrals of sine, cosine and exponential integrals type 55

3. Chen X. Exponential asymptotics and law of the iterated logarithm for intersection local times of random
walks. Ann. Probab., 2004. Vol. 32, no. 4. P. 3248–3300. DOI: 10.1214/009117904000000513

4. Marchisotto E.A., Zakeri G.-A. An invitation to integration in finite terms. College Math. J., 1994.
Vol. 25, no. 4. P. 295–308. DOI: 10.2307/2687614

5. Nijimbere V. Evaluation of the non-elementary integral
∫

eλx
α

dx, α ≥ 2, and other related integrals.
Ural Math. J., 2017. Vol. 3, no. 2. P. 130–142. DOI: 10.15826/umj.2017.2.014

6. Nijimbere V. Evaluation of some non-elementary integrals involving sine, cosine, exponential and loga-
rithmic integrals: Part I Ural Math. J., 2018. Accepted for publication.

7. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/

8. Rahman M. Applications of Fourier transforms to generalized functions. Witt Press, 2011. 192 p.

9. Rosenlicht M. Integration in finite terms. Amer. Math. Monthly, 1972. Vol. 79, no. 9. P. 963–972.
DOI: 10.2307/2318066

10. Shore S.N. Blue sky and hot piles: the evolution of radiative transfer theory from atmospheres to nuclear
reactors. Historia Mathematica, 2002. Vol. 29, no. 2. P. 463–489. DOI: 10.1006/hmat.2002.2360

https://doi.org/10.1214/009117904000000513
https://doi.org/10.2307/2687614
https://doi.org/10.15826/umj.2017.2.014
http://dlmf.nist.gov/
https://doi.org/10.2307/2318066
https://doi.org/10.1006/hmat.2002.2360


URAL MATHEMATICAL JOURNAL, 2018, Vol. 4, No. 1, pp. 56–62

DOI: 10.15826/umj.2018.1.005

A NUMERICAL TECHNIQUE FOR THE SOLUTION OF
GENERAL EIGHTH ORDER BOUNDARY VALUE
PROBLEMS: A FINITE DIFFERENCE METHOD

Pramod Kumar Pandey

Dyal Singh College (University of Delhi), New Delhi, India
pramod 10p@hotmail.com

Abstract: In this article, we present a novel finite difference method for the numerical solution of the eighth
order boundary value problems in ordinary differential equations. We have discretized the problem by using
the boundary conditions in a natural way to obtain a system of equations. Then we have solved system of
equations to obtain a numerical solution of the problem. Also we obtained numerical values of derivatives of
solution as a byproduct of the method. The numerical experiments show that proposed method is efficient and
fourth order accurate.

Key words: Boundary value problem, Eighth order equation, Finite difference method, Fourth order
method.

1. Introduction

In the present article we have considered general eighth order boundary value problem of the
following form:

u(8)(x) = f(x, u, u′, u′′, u(3), u(4), u(5), u(6), u(7)), a < x < b (1.1)

and the boundary conditions are

u(a) = α1, u′′(a) = α2, u(4)(a) = α3, u(6)(a) = α4,

u(b) = β1, u′′(b) = β2, u(4)(b) = β3 and u(6)(b) = β4,

where u(x) and forcing function f(x, u, u′, u′′, u(3), u(4), u(5), u(6), u(7)) are real and smooth function
in [a,b] and α1, α2, α3, α4, β1, β2, β3 and β4 are constant.

The above eight order boundary value problem arises in physics such as fluid dynamics, vibra-
tions and so on [1, 2]. For the detail discussion on the existence and uniqueness of the solution
of higher order differential equations and corresponding BVPs, reader can refer [3]. So we have
assumed that there exists a unique solution to boundary value problem (1.1).

In general it is difficult to obtain analytical solution of the (1.1) for the arbitrary forcing
function f . Hence we desire some numerical technique for its numerical solution. We have some
numerical methods for either same or different source function as in problem (1.1), for examples
Galerkin Method [4, 5], variational iterational technique [6], finite difference method [7], Adomian
decomposition method [8] and references there in.

In this article, we have developed numerical method to obtain numerical solution of general
eighth order boundary problem (1.1) using finite difference method which involves discretizing the
eighth order equation using values of the u(x), u′′(x), u(4)(x) and u(6)(x) at discrete points. At
each discrete point problem (1.1) reduced into a system of equations. Finally we have solved a

https://doi.org/10.15826/umj.2018.1.005
mailto:pramod_10p@hotmail.com
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well structured system of equations for the numerical solution of problem (1.1) and some other
by-products.

We have presented our work in this article as follows. In Section 2 we have proposed our finite
difference method and in Section 3 the derivation of the proposed finite difference method. In
Section 4 we have tested proposed method on model problems and short discussion on numerical
results. A summary on development and performance of the proposed method are presented in
Section 5.

2. The Difference Method

Let us assume problem (1.1) posses solution and it will be u(x) such that

u(8)(x) = f(x, u, u′, u′′, u(3), u(4), u(5), u(6), u(7)), a < x < b (2.1)

and the boundary conditions are

u(a) = α1, u′′(a) = α2, u(4)(a) = α3, u(6)(a) = α4,

u(b) = β1, u′′(b) = β2, u(4)(b) = β3 and u(6)(b) = β4,

where source function f is regular and differentiable in [a, b]. To derive and develop a numerical
method for the solution of the problem we need following definitions and approximations.

To introduce finite number of discrete mesh points we partition the interval [a, b] in which
the solution of problem (1.1) is desired. In these subintervals discrete mesh points a ≤ x0 <

x1 < x2 < · · · < xN+1 ≤ b are generated by using uniform step length h such that xi = a + ih,

i = 0, 1, 2, . . . , N + 1. We wish to determine the numerical solution of the problem (1.1) at these
discrete mesh points xi. We denote the numerical approximation of u(x) and f respectively by ui
and fi. Hence, the boundary value problem (1.1) may be written as

u
(8)
i

= Fi, (2.2)

where Fi = f(xi, ui, u
′
i
, u′′

i
, u

(3)
i

, u
(4)
i

, u
(5)
i

, u
(6)
i

, u
(7)
i

) at the discrete mesh point x = xi, i = 1, 2, . . . , N .
Let

u′
i
=

1

2h
(ui+1 − ui−1)−

h

12
(u′′i+1 − u′′i−1), (2.3)

u
(3)
i

=
1

2h
(u′′i+1 − u′′i−1)−

h

12
(u

(4)
i+1 − u

(4)
i−1), (2.4)

u
(5)
i

=
1

2h
(u

(4)
i+1 − u

(4)
i−1)−

h

12
(u

(6)
i+1 − u

(6)
i−1), (2.5)

u
(7)
i

=
1

2h
(u

(6)
i+1 − u

(6)
i−1), (2.6)

u′
i+1 =

1

2h
(ui+1 − ui−1) +

h

3
(u′′i+1 + 2u′′i ), (2.7)

u′
i−1 =

1

2h
(ui+1 − ui−1)−

h

3
(2u′′i + u′′i−1), (2.8)

u
(3)
i+1 =

1

2h
(u′′i+1 − u′′i−1) +

h

3
(u

(4)
i+1 + 2u

(4)
i

), (2.9)

u
(3)
i−1 =

1

2h
(u′′i+1 − u′′i−1)−

h

3
(2u

(4)
i

+ u
(4)
i−1), (2.10)

u
(5)
i+1 =

1

2h
(u

(4)
i+1 − u

(4)
i−1) +

h

3
(u

(6)
i+1 + 2u

(6)
i

), (2.11)

u
(5)
i−1 =

1

2h
(u

(4)
i+1 − u

(4)
i−1)−

h

3
(2u

(6)
i

+ u
(6)
i−1), (2.12)
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u
(7)
i+1 =

1

2h
(3u

(6)
i+1 − 4u

(6)
i

+ u
(6)
i−1), (2.13)

u
(7)
i+1 =

1

2h
(−u

(6)
i+1 + 4u

(6)
i

− 3u
(6)
i−1), (2.14)

F i+1 = f(xi+1, ui+1, u
′
i+1, u

′′
i+1, u

(3)
i+1, u

(4)
i+1, u

(5)
i+1, u

(6)
i+1, u

(7)
i+1), (2.15)

F i−1 = f(xi−1, ui−1, u
′
i−1, u

′′
i−1, u

(3)
i−1, u

(4)
i−1, u

(5)
i−1, u

(6)
i−1, u

(7)
i−1), (2.16)

u
(7)
i

= u
(7)
i

−
8971

202084
h(F i+1 − F i−1), (2.17)

̂
u
(7)
i

= u
(7)
i

−
739

16620
h(F i+1 − F i−1), (2.18)

̂̂
u
(7)
i

= u
(7)
i

−
155

732
h(F i+1 − F i−1), (2.19)

˜̃
u
(7)
i

= u
(7)
i

−
1

20
h(F i+1 − F i−1), (2.20)

Fi = f(xi, ui, u
′
i
, u′′i , u

(3)
i

, u
(4)
i

, u
(5)
i

, u
(6)
i

, u
(7)
i

), (2.21)

F̂ i = f(xi, ui, u
′
i
, u′′i , u

(3)
i

, u
(4)
i

, u
(5)
i

, u
(6)
i

,
̂
u
(7)
i

), (2.22)

̂̂
Fi = f(xi, ui, u

′
i
, u′′i , u

(3)
i

, u
(4)
i

, u
(5)
i

, u
(6)
i

,
̂̂
u
(7)
i

), (2.23)

˜̃
F i = f(xi, ui, u

′
i
, u′′i , u

(3)
i

, u
(4)
i

, u
(5)
i

, u
(6)
i

,
˜̃
u
(7)
i

) (2.24)

at these node x = xi, i = 1, .., N . Following the ideas in [9], thus we propose our finite difference
method for a numerical solution of problem (2.2),

−720(ui+1 − 2ui + ui−1) + 360h2(u′′i+1 + u′′i−1)− 150h4(u
(4)
i+1 + u

(4)
i−1) + 61h6(u

(6)
i+1 + u

(6)
i−1)

=
h8

1260
(5902F i+1 + 50521F i + 5902F i−1),

24(u′′i+1 − 2u′′i + u′′i−1)− 12h2(u
(4)
i+1 + u

(4)
i−1) + 5h4(u

(6)
i+1 + u

(6)
i−1)

=
h6

840
(323F i+1 + 2770F̂ i + 323F i−1),

−2(u
(4)
i+1 − 2u

(4)
i

+ u
(4)
i−1) + h2(u

(6)
i+1 + u

(6)
i−1) =

h4

90
(7F i+1 + 61

̂̂
F i + 7F i−1),

u
(6)
i+1 − 2u

(6)
i

+ u
(6)
i−1 =

h2

12
(F i+1 + 10

˜̃
F i + F i−1).

(2.25)

If the forcing function f in problem (1.1) is linear then the system of equations (2.25) will be linear
otherwise we will obtain system of nonlinear equations.

3. Derivation of the Difference Method

In this section we shall out line the derivation of the proposed method (2.25). Using Taylor
series and undetermine coefficients method, it is to verify that the following discretization

−720(ui+1 − 2ui + ui−1) + 360h2(u′′i+1 + u′′i−1)− 150h4(u
(4)
i+1 + u

(4)
i−1) + 61h6(u

(6)
i+1 + u

(6)
i−1)

=
h8

1260
(5902Fi+1 + 50521Fi + 5902Fi−1),

(3.1)
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for the solution of problem (1.1) when source function F = f(x, u) is of O(h4). To discretize prob-
lem (1.1) at discrete points, we need approximations of order four for the source function F . So let
outline method to obtain fourth order approximation for the forcing functions F .

Though the approximations (2.3)–(2.5) and (2.7)–(2.12) are fourth order approximation to u′
i
,..

respectively. But some approximations defined in section 2 are not of order four. From (2.6), let
expand each term in right in Taylor series about a point x = xi and simplify, we have

u
(7)
i

= u
(7)
i

+
h2

6
u
(9)
i

+O(h4) (3.2)

From (2.13) and (2.14) respectively, we have

u
(7)
i+1 = u

(7)
i+1 −

h2

3
u
(9)
i

−
h3

12
u
(10)
i

+O(h4) (3.3)

u
(7)
i−1 = u

(7)
i−1 −

h2

3
u
(9)
i

+
h3

12
u
(10)
i

+O(h4) (3.4)

Let us define

u
(7)
i

= u
(7)
i

+ a1h(F i+1 − F i−1) (3.5)

where a1 is free parametric constant and to be determined under appropriate condition.
Using (3.3) in (2.15), we will obtain

F i+1 = Fi+1 + (−
h2

3
u
(9)
i

−
h3

12
u
(10)
i

)(
∂f

∂u(7)
)i+1 +O(h4) (3.6)

and similarly from (2.16) and (3.4) we have

F i−1 = Fi−1 + (−
h2

3
u
(9)
i

+
h3

12
u
(10)
i

)(
∂f

∂u(7)
)i−1 +O(h4) (3.7)

Thus, using (3.2), (3.6) and (3.7) in (3.5), we have

u(7)i = u
(7)
i

+ (
h2

6
+ 2a1h

2)u
(9)
i

+O(h4) (3.8)

Using (3.8) in (2.21) and simplify, we have

F i = Fi + (
h2

6
+ 2a1h

2)u
(9)
i

(
∂f

∂u(7)
)i +O(h4) (3.9)

Let us consider the expression, 5902F i+1 + 50521F i +5902F i−1 and simplify this expression using
(3.6), (3.7) and (3.9). We will obtain

5902F i+1 + 50521F i + 5902F i−1 = 5902Fi+1 + 50521Fi + 5902Fi−1

+
h2

6
(26913 + 606252a1)(u

(9) ∂f

∂u(7)
)i +O(h4)

(3.10)

Thus from (3.10), we conclude that 5902F i+1 + 50521F i + 5902F i−1 will provide fourth order
approximation to 5902Fi+1 + 50521Fi + 5902Fi−1 if

a1 =
−8971

202084
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i.e.
5902F i+1 + 50521F i + 5902F i−1 = 5902Fi+1 + 50521Fi + 5902Fi−1 +O(h4) (3.11)

Similarly, we can find other fourth order approximations of the terms in (2.25)

323F i+1 + 2770F̂ i + 323F i−1 = 323Fi+1 + 2770Fi + 323Fi−1 +O(h4)

7F i+1 + 61
̂̂
F i + 7F i−1 = 7Fi+1 + 61Fi + 7Fi−1 +O(h4)

F i+1 + 10
˜̃
F i + F i−1 = Fi+1 + 10Fi + Fi−1 +O(h4)

(3.12)

Thus by using (3.11) and (3.12) in (3.1), we will get our proposed fourth order difference method
(2.25) for the numerical solution of the problem (1.1). Moreover we are getting the numerical value
of the derivative of the solution of the problem (1.1) as a byproduct of the method.

4. Numerical Results

To test the computational efficiency of method (2.25), we have considered three model problems.
In each model problem, we took uniform step size h. In Table 1, Table 3 and Table 4, we have
shown MAEU , MAEV , MAEW and MAES the maximum absolute error in the solution u(x),
second, fourth and sixth derivatives of solution u(x) of the problems (1.1) respectively for different
values of N. We have used the following formulas in computation of MAEU , MAEV , MAEW and
MAES:

MAEU = max
1≤i≤N

|Ui − u(xi)|

MAEV = max
1≤i≤N

∣∣U ′′
i − u′′(xi)

∣∣

MAEW = max
1≤i≤N

∣∣∣U (4)
i

− u(4)(xi)
∣∣∣

MAES = max
1≤i≤N

∣∣∣U (6)
i

− u(6)(xi)
∣∣∣

where u(xi) and Ui are respectively exact and computed value of the solution of the problem and
similarly we have defined others terms in the above expression. The order of the convergence of
the proposed method (2.25) is estimated by using following formula,

ON = logr(
MAEUN

MAEUrN

)

where r is ratio of the uniform step lengths h.
We have used Newton Raphson and Gauss Seidel method to solve system of nonlinear/linear

equations (2.25). All computations were performed on a Windows 2007 Ultimate operating system
in the GNU FORTRAN environment version 99 compiler (2.95 of gcc) on Intel Core i3-2330M,
2.20 GHz PC. The solutions are computed on N nodes and iteration is continued until either the
maximum difference between two successive iterates is less than 10−9 or the number of iteration
reached 103.

Problem 1. The model linear problem in [4] given as:

u(8)(x) = −u(7) − 2u(6) − 2u(5) − 2u(4) − 2u(3) − 2u′′ − u′ − u+ 14 cos(x)− 4(4 + x) sin(x),

0 < x < 1,
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subject to boundary conditions

u(1) = 0, u′′(1) = 4 cos(1) + 2 sin(1), u(4)(1) = −8 cos(1)− 12 sin(1),

u(6)(1) = 12 cos(1) + 30 sin(1), u(0) = 0, u′′(0) = 0, u(4)(0) = 0 and u(6)(0) = 0.

The analytical solution of the problem is u(x) = (x2 − 1) sin(x). The MAEU , MAEV , MAEW

and MAES were computed by method (2.25) for different values of N and presented in Table 1.

Problem 2. The model linear problem in [5] given as:

u(8)(x) = − sin(x)u(5) − (1− x2)u(4) − u(x) + (3 + sin(x)− x2) exp(x), 0 < x < 1,

subject to boundary conditions

u(0) = 1, u′′(0) = 1, u(4)(0) = 1, u(6)(0) = 1, u(1) = exp(1),

u′′(1) = exp(1), u(4)(1) = exp(1) and u(6)(1) = exp(1).

The analytical solution of the problem is u(x) = exp(x). The MAEU , MAEV , MAEW and
MAES were computed by method (2.25) for different values of N and presented in Table 2.

Problem 3. Consider the following non-linear model problem given as:

u(8)(x) = − sin(u(x))u(3) + f(x), 0 < x < 1,

subject to boundary conditions

u(0) = 0, u′′(0) = −2, u(4)(0) = 0, u(6)(0) = 8, u(1) = (1− exp(1)) sin(1),

u′′(1) = −2 exp(1) cos(1)− sin(1), u(4)(1) = (4 exp(1) + 1) sin(1),

and u(6)(1) = 8 exp(1) cos(1)− sin(1).

where f(x) is calculated so that the analytical solution of the problem is u(x) = (1−exp(x)) sin(x).
The MAEU , MAEV , MAEW and MAES were computed by method (2.25) for different values
of N and presented in Table 3.

Table 1. Maximum absolute error (Problem 1).

ERROR

N MAEU MAEV MAEW MAES

4 .13351440(-4) .13279915(-3) .15587807(-2) .47683716(-3)

8 .11324883(-5) .12874603(-4) .15258789(-3) .34332275(-4)

16 .29802322(-7) .23841858(-6) .66757202(-5) .11444092(-4)

Table 2. Maximum absolute error (Problem 2).

ERROR

N MAEU MAEV MAEW MAES

4 .13853703(-6) .40756808(-6) .48722518(-5) .42238746(-4)

8 .82736904(-7) .82599129(-7) .19914191(-6) .31914194(-5)
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Table 3. Maximum absolute error (Problem 3).

ERROR

N MAEU MAEV MAEW MAES

4 .17881393(-6) .71525574(-6) .10967255(-4) .10585785(-3)

8 .59604645(-7) .23841858(-6) .11920929(-5) .57220459(-5)

The numerical results obtained in numerical experiment in considered model problems validate
the fourth order accuracy. Also we have fourth order accurate numerical value of the second, fourth
and sixth derivative of solution of problem as a byproduct of the proposed method (2.25).

5. Conclusion

In the present article, we have described a novel finite difference method for the numerical
solution of the eighth order BVP’s in ordinary differential equations. We have transformed the
problem into system of algebraic equations at mesh points x = xi, i = 1, 2, . . . , N . Then the system
of algebraic equations is solved for the solution of the problem. The proposed method in numerical
experiments has shown its efficiency and fourth order accuracy. The advantage of the proposed
method is that we also get fourth order accurate numerical value of the derivatives of the solution
as byproduct.
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Abstract: The paper deals with the problem of optimal control with a convex integral quality index for a
linear steady-state control system in the class of piecewise continuous controls with smooth control constraints.
In a general case, to solve such a problem, the Pontryagin maximum principle is applied as the necessary and
sufficient optimum condition. The main difference from the preceding article [10] is that the terminal part of
the convex integral quality index depends not only on slow, but also on fast variables. In a particular case, we
derive an equation that is satisfied by an initial vector of the conjugate system. Then this equation is extended
to the optimal control problem with the convex integral quality index for a linear system with the fast and
slow variables. It is shown that the solution of the corresponding equation as ε → 0 tends to the solution of
an equation corresponding to the limit problem. The results obtained are applied to study a problem which
describes the motion of a material point in Rn for a fixed interval of time. The asymptotics of the initial vector
of the conjugate system that defines the type of optimal control is built. It is shown that the asymptotics is a
power series of expansion.

Keywords: Optimal control, Singularly perturbed problems, Asymptotic expansion, Small parameter.

Introduction

The paper is devoted to studying the asymptotics of the initial vector of a conjugated state and
an optimal value of the quality index in the optimal control problem [1–3] for a linear system with
a fast and slow variable (see review [4]), convex integral quality index [3, Chapter 3], and smooth
geometrical constraints for control.

Singularly perturbed problems of optimal control have been considered in different settings in
[5–7]. The solving of problems with a closed and bounded control area meets certain difficulties.
That is why the problems with fast and slow variables and closed constraints for control have
been studied to a less extent. A significant contribution to solving these problems was made by
Dontchev and Kokotovic. Problems with constraints for control in the form of a polygon are dealt
with in [5, 7]. The structure of such optimal control is a relay function with values in the apexes
of the polygon. No optimal control with constraints in the form of a sphere, which is a continuous
function with a finite and countable number of discontinuity points, has been considered so far.

The asymptotics of solutions of the perturbed control problem was formulated differently in
papers [8–10].

The main difference from the preceding article [10] is that the terminal part of the convex
integral quality index depends not only on slow, but also on fast variables. In the present work,

1The paper is a translation of the paper “Asymptotic expansion of a solution for the singularly per-
turbed optimal control problem with a convex integral quality index and smooth control constraints” by
A.A.Shaburov published in Proceedings of the Institute of Mathematics and Informatics at Udmurt State
University, 2017, vol. 50, pp. 110–120.

https://doi.org/10.15826/umj.2018.1.006
mailto:alexandershaburov@mail.ru
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the basic equation for searching for the asymptotics of the initial vector of the conjugated state of
the problem under consideration and optimal control is obtained.

General relationships are applied to the case of the optimal control with a point of a small mass
in an n-dimensional space under the action of a bounded force.

1. Construction of complete asymptotic expansion of vector λε for an optimal

control problem with fast and slow variables

Let us consider a problem that belongs to the class of piecewise continuous controls optimal
control problem for a linear stationary system with a convex integral quality index:





ẋε = yε, t ∈ [0, T ], ‖u‖ 6 1,

ε · ẏε = −yε + u, xε(0) = x0, yε(0) = y0,

J(u) =
1

2
‖zε(T )‖

2 +

∫ T

0
‖u(t)‖2 dt→ min, zε(T ) = (xε(T ) yε(T ))

T ,

(1.1)

where xε, yε, u ∈ R
n, zε ∈ R

2n. Henceforward ‖ · ‖ is the Euclidean norm in corresponding space.
Problem (1.1) simulates a motion of a material point of small mass ε > 0 with the coefficient of

the medium resistance equals to 1 in the space Rn under action of the constrained control force u(t).
Note that in the considered convex integral quality index J , where the first term can be in-

terpreted as a fine for the control error at a finite time instant T , whereas the second is used to
account for the energy costs of the implementation of the control.

Controllable system (1.1) contains fast and slow variables. The terminal part of the convex
integral quality index depends not only on slow, but also on fast variables. For each fixed ε > 0
the problem (1.1) takes the form





ż = Aεz + Bεu, z(0) = z0, ‖u(t)‖ 6 1, t ∈ [0, T ],

J(u) = ϕ(z(T )) +

∫ T

0
‖u(t)‖2 dt → min,

(1.2)

where z ∈ R
ñ, u ∈ R

n,

zε(t) =

(
xε(t)

yε(t)

)
, z0ε =

(
x0

y0

)
, ñ = 2n, ϕ(zε) =

1

2
‖zε‖

2,

Aε =

(
A11 A12

ε−1A21 ε−1A22

)
, Bε =

(
B1

ε−1B2

)

Here A11 = O, A12 = I, A21 = O, A22 = −I, B1 = O, B2 = I, and O and I are the zero and
the identity matrices of dimensional n× n respectively.

Calculating eAεt and ∇(12‖zε(T )‖
2), we obtain

eAεt =

(
I ε(1 − e−t/ε)I

O e−t/εI

)
, ∇

(
1

2
‖zε(T )‖

2

)
= zε(T ). (1.3)

Thus, the following conditions are valid:

• for all sufficiently small ε > 0 the pair (Aε,Bε) is completely controllable, that is,

rank
(
Bε,AεBε, . . . ,Aε

2n−1Bε) = 2n;
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• all eigenvalues of matrix A22 have negative real parts;

• the pair (A22, B2) is completely controllable.

Under the formulated conditions applied to the problem (1.2), the Pontryagin maximum princi-
ple is a necessary and sufficient optimum criterion. In this case, the problem has a unique solution
[3, p. 3.5, theorem 14]. As well, the following statement is valid:

Statement 1. The pair zε(t), uε(t) is a solution of the maximum principle problem if and only

if uε(t) is determined with the following formula:

uε(t) =
Bε

∗eAε
∗tλε

S
(
‖Bε

∗eAε
∗tλε‖

) , S(ξ) :=

{
2, 0 6 ξ 6 2,

ξ, ξ > 2,

and the vector λε is the unique solution of the equation

−λε = ∇ϕ

(
eAεT z0ε +

∫ T

0
eAετBε

Bε
∗eAε

∗τλε

S
(
‖Bε

∗eAε
∗τλε‖

) dτ
)
, (1.4)

where ∇ϕ is the subgradient function in the sense of convex analysis. Besides uε(t) is a unique

optimal control in the problem (1.2) [10, Statement 1].

Definition 1. The vector λε, that satisfies the equation (1.4), will be called as a vector de-

termining the optimal control in the problem (1.2). Note that since ∇ϕ(zε) =

(
xε
yε

)
, then the

vector λε, which determines the optimal control in the problem (1.2), has the form λε =

(
lε
ρε

)
,

lε ∈ R
n, ρε ∈ R

n.

Definition 2. The vectors lε, ρε also will be called as a vectors determining the optimal

control in the problem (1.2).

By virtue (1.3) the equation (1.4) transforms into system:





−lε = x0 + ε
(
1− e−T/ε

)
y0 +

∫ T

0

(1− e−t/ε)
(
lε + e−t/ε

(
ε−1ρε − lε

))

S
(
‖lε + e−

t
ε (ε−1ρε − lε) ‖

) dt,

−ρε = e−T/εy0 +

∫ T

0

e−t/ε
(
lε + e−t/ε

(
ε−1ρε − lε

))

ε · S
(
‖lε + e−t/ε (ε−1ρε − lε) ‖

) dt.
(1.5)

Let us note that the optimal control uoε(τ) in the problem (1.1) by virtue 1 is expressed through
the vectors lε, ρε as follows:

uoε(τ) =
lε + e−τ/ε

(
ε−1ρε − lε

)

S
(
‖lε + e−τ/ε (ε−1ρε − lε) ‖

) . (1.6)

The main problem posed for (1.1) is to determine the complete asymptotic expansion in powers
of the small parameter ε of optimal control, optimal values of the quality index and the optimal
process. Formula (1.6) shows that if it is possible to obtain the complete asymptotic expansion of
the vectors lε, ρε, which determine the optimal control in problem (1.1), then this vectors can also
be used for the asymptotic expansions of the above values.
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We introduce some notation. If the vector-function fε(t) is such that fε(t) = O(εα) as ε→ 0 for
any α > 0 uniformly with respect to t ∈ [0, T ], then instead of fε(t) we will write O. In particular,
e−γT/ε = O.

Theorem 1. Let the vectors lε, ρε are the unique solutions of the equation (1.5) in the prob-

lem (1.1), and the vector l0 is the unique solution of the equation

−l0 = x0 +
l0

S
(∥∥l0

∥∥)T. (1.7)

Then lε → l0 and ε−1ρε → −l0 as ε→ +0.

P r o o f. It is known that the attainability set for the controllable system under control
from (1.1) is uniformly bounded by the time instant T at ε ∈ (0, ε0] (see., for example, [6, Theorem
3.1]).

Writing the first equation from (1.5):

−lε = x0 + ε
(
1− e−T/ε

)
y0 +

∫ T

0

(1− e−t/ε)
(
lε + e−t/ε

(
ε−1ρε − lε

))

S
(
‖lε + e−t/ε (ε−1ρε − lε) ‖

) dt.

Taking into account that the expression under integral is uniformly constrained and that
O(e−t/ε) = = e−t/ε

(
ε−1ρε − lε

)
as ε → 0, a proof of that lε → l0, is carried out almost liter-

ally [10, Theorem 1]. Hence, it is enough to show that ε−1ρε → −l0 for a full proof of this theorem.
Let us show that the vector ρε can be presented in the form of ρε = ε · rε, where rε → r0 ∈ R

n

as ε→ +0. Writing the second equation from (1.5):

−ρε = e−T/εy0 +

∫ T

0

e−t/ε
(
lε + e−t/ε(ε−1ρε − lε)

)

ε · S
(
‖lε + e−t/ε(ε−1ρε − lε)‖

) dt. (1.8)

Let τ := t/ε. The equation (1.8) rewriting as

−ρε = O+

∫ ∞

0

e−τ
(
lε + e−τ (ε−1ρε − lε)

)

S (‖lε + e−τ (ε−1ρε − lε)‖)
dτ, ε→ 0.

Replacing the variable ξ := e−τ , we obtain

−ρε = O+

∫ 1

0

lε + ξ(ε−1ρε − lε)

S (‖lε + ξ(ε−1ρε − lε)‖)
dξ, ε→ 0.

Thus, the vector ρε is bounded. Let us prove that a sequence {ε−1ρε} is bounded. By contradiction,
we find εn → 0 : ‖ε−1ρε‖ → ∞. For simplicity, the n dependence of ε will be omitted.

Let us divide the integral into two terms by means of introduction of complementary parame-
ter α(ε):

−ρε = O+

∫ α(ε)

0

lε + ξ(ε−1ρε − lε)

S (‖lε + ξ(ε−1ρε − lε)‖)
dξ +

∫ 1

α(ε)

ξε−1ρε + (1− ξ)lε
S (‖ξε−1ρε + (1− ξ)lε‖)

dξ, ε→ 0, (1.9)

where α(ε) = O(εγ) as ε→ 0 and for a certain positive number γ.
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So far as ‖ξε−1ρε‖ = ξ‖ε−1ρε‖ → ∞ and the vector lε is bounded. Choice of the point of
division of an integral depends on the number γ ∈ (0, 1) as follows:

α(ε) :=
1

‖ε−1ρε‖γ
6 ξ,

where, because expression under integral sign is bounded, α(ε) = o(1) as ε→ 0.
Notice that ‖ξε−1ρε‖ > α(ε)‖ε−1ρε‖ → ∞, i. e. at sufficiently small the inequality ε : ‖ξε−1ρε−

(1 − ξ)lε‖ > 2 is satisfied. Dividing and multiplying the function under the second integral sign
in (1.9) by a factor ‖ρε‖ and having got rid of a factor ε−1 at ρε, we obtain

−ρε = O+ o(1) +

∫ 1

α(ε)

ξ
ρε

‖ρε‖
+ o(1)

∥∥∥∥ξ
ρε

‖ρε‖
+ o(1)

∥∥∥∥
dξ. (1.10)

Let, without loss of generality, ρ̄ be a partial limit of the vectors ρε/‖ρε‖ as ε → +0, i. e.
ρεk
/
‖ρεk‖

→ ρ for a certain {εk} so that εk → +0. Moreover, ‖ρ̄‖ = 1. Passing to the limit as

k → ∞ in (1.10), we obtain, that −ρo = ρ̄. Consequently, ‖ρ0‖ = 1 and −ρ0 = ρ0.
The received contradiction leads to the fact that ρε = O(ε), and we can rewrite the vector

ρε = ε · rε, where the sequence {rε} is bounded.
Divide the integral into two terms. Taking into account rε −→ r0 as ε→ 0

0 =

∫ 1

0

l0 + ξ(r0 − l0)

S (‖l0 + ξ(r0 − l0)‖)
dξ =

∫ 1

0

l0
S (‖l0 + ξ(r0 − l0)‖)

dξ +

∫ 1

0

ξ(r0 − l0)

S (‖l0 + ξ(r0 − l0)‖)
dξ =

= µ1l0 + µ2(r0 − l0) = µ̃l0 + µ2r0,

where µ̃ = µ1 − µ2.
Positive numbers µ1, µ2 are represented by integrals

µ1 =

∫ 1

0

dξ

S (‖l0 + ξ(r0 − l0)‖)
, µ2 =

∫ 1

0

ξ

S (‖l0 + ξ(r0 − l0)‖)
dξ.

We can suppose, that r0 = µ · l0, where µ := −µ̃/µ2.
Change of variable in integration ν := 1 + ξ(µ − 1) allows to rewrite an integral equation as

follows

l0
µ− 1

∫ µ

1

ν

S(‖l0‖ · |ν|)
dν.

Integral is equal to zero at µ = 1. Let µ 6= 1, then the function under integral sign is uneven
function on a variable ν. Consequently, the integral is equal to zero at µ = −1. We prove, that
ρε = εrε, besides a first term r0 = −l0 is a bounding vector. Theorem 1.1 is proved. �

From (1.5) and (1.7) we obtain two cases:

1) ‖x0‖ < T + 2 =⇒ l0 = −
2

2 + T
x0 and ‖l0‖ < 2,

2) ‖x0‖ > T + 2 =⇒ l0 = −
‖x0‖ − T

‖x0‖
x0 and ‖l0‖ > 2.

(1.11)
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1. Consider the first case ‖x0‖ < T + 2.
By virtue of (1.11) and Theorem 1 the inequality ‖lε‖ < 2 is valid for all sufficiently small ε.

Taking into account that (1 − e−t/ε) 6 1 at any t > 0 and ε > 0, from (1.5) we obtain for lε, ρε
the rewriting system of equations:





−lε = x0 + ε
(
1− e−T/ε

)
y0 +

∫ T

0

(1− e−t/ε)
(
lε + e−t/ε

(
ε−1ρε − lε

))

2
dt,

−ρε = e−T/εy0 +

∫ T

0

e−t/ε
(
lε + e−t/ε

(
ε−1ρε − lε

))

2ε
dt.

(1.12)

The solution of (1.12) are vectors

ρε =
2ε(x0 + εy0)

(T + 2) + 2ε(3 + 2T )− 6ε2
+O, lε =

−2(x0 + εy0)(1 + 4ε)

(T + 2) + 2ε(3 + 2T )− 6ε2
+O, ε→ 0.

It follows from these representations that λε is expanded as ε → 0 into the asymptotic power
series. Moreover, we can obtain explicit form for the first two coefficients of vectors lε, rε.

Theorem 2. Suppose that ‖x0‖ < T +2. Then the vectors lε, rε, which determine the optimal

control in problem (1.1), are expanded as ε→ 0 into a power asymptotic series:

lε
as
= l0 +

∞∑

k=1

εklk, where, in particular, l0 =
−2x0

T + 2
, l1 =

−8x0

T + 2
−

2y0

T + 2
+

4(3 + 2T )x0

(T + 2)2
,

rε
as
= r0 +

∞∑

k=1

εkrk, where, in particular, r0 =
2x0

T + 2
, r1 =

2y0

T + 2
−

4(3 + 2T )x0

(T + 2)2
.

2. Now consider the case ‖x0‖ > T + 2.
Let lε = l0 + l, ρε = −εl0 + εr, where l, r — are infinitesimal numbers.
Rewriting the system of equations (1.12), replacing the variable η := e−t/ε:





−l0 − l = x0 + εy0 +O+ ε

∫ 1

e−T/ε

(1− η)
(
l0 + l + η(r − l − 2l0)

)

η · S
(
‖l0 + l + η(r − l − 2l0)‖

) dη, ε→ 0,

−ε (−l0 + r) = O+

∫ 1

e−T/ε

l0 + l + η(r − l − 2l0)

S
(
‖l0 + l + η(r − l − 2l0)‖

) dη, ε→ 0.

For simplicity, we will reduce a condition ε→ 0.
Replacing the variable ξ := 1− 2η. Then factor under the integral sign in the rewriting system

as a function ψε(η) contains vectors lε, ρε, as follows

ψε(ξ) := ξl0 + λ+ ξν,

where λ = (l + r)/2, ν = (l − r)/2. For a small variables l, r we can receive the following expressions

l = λ+ ν, r = λ− ν.
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Taking into account that we have a new representations of vectors l, r we rewrite the system of
equation as follows





−l0 − λ− ν = x0 + εy0 +O+
ε

2

∫ β(ε)

−1

(1 + ξ) (ξl0 + λ+ ξν)

(1− ξ)S (‖ξl0 + λ+ ξν‖)
dξ,

−ε (−l0 + λ− ν) = O+
1

2

∫ β(ε)

−1

ξl0 + λ+ ξν

S (‖ξl0 + λ+ ξν‖)
dξ,

(1.13)

where β(ε) := 1− 2e−T/ε. Notice that β(ε) → 1 as ε→ 0.
Having transformed a factor

1 + ξ

1− ξ
= 1 +

2ξ

1− ξ

under the integral sign and divided the integral from the first equation of system (1.13) into two
terms, we find

∫ β(ε)

−1

(1 + ξ)

(1− ξ)
·

ξl0 + λ+ ξν

S (‖ξl0 + λ+ ξν‖)
dξ =

=

∫ β(ε)

−1

ξl0 + λ+ ξν

S (‖ξl0 + λ+ ξν‖)
dξ + 2

∫ β(ε)

−1

ξ

(1− ξ)
·

ξl0 + λ+ ξν

S (‖ξl0 + λ+ ξν‖)
dξ.

Calculating the switching points ξ1, ξ2 from a constraint ‖ξl0 + λ+ ξν‖ = 2, we set

ξ1,2 =
−〈l0;λ〉 − 〈ν;λ〉 ±

√(
〈l0;λ〉+ 〈ν;λ〉

)2
− (‖λ‖2 − 4)(‖l0‖2 + ‖ν‖2 + 2〈l0; ν〉)

‖l0‖2 + ‖ν‖2 + 2〈l0; ν〉
.

Henceforward 〈·; ·〉 is a scalar product in a corresponding space.
Using a binomial expansion and expansion of quadratic root as a small parameter, we find ξ1, ξ2:

ξ1,2 = ±
2

‖l0‖
−

〈l0;λ〉

‖l0‖2
∓

2〈l0; ν〉

‖l0‖3
+O

(
‖λ‖2 + ‖ν‖2

)
.

We can extend the integral from the second equation of system (1.13) at the point ξ = 1:

∫ β(ε)

−1

ξl0 + λ+ ξν

S (‖ξl0 + λ+ ξν‖)
dξ =

∫ 1

−1

ξl0 + λ+ ξν

S (‖ξl0 + λ+ ξν‖)
dξ +O = 2ε(l0 − λ+ ν).

Introducing into consideration a vector function F (λ, ν, ε) :=



F1(λ, ν, ε)

F2(λ, ν, ε)


, we rewrite system

(1.13) as follows F (λ, ν, ε) = 0, where

F1(λ, ν, ε) := l0 + λ+ ν + x0 + εy0 +O+ ε2(l0 + ν − λ) + ε

(∫ ξ2

−1

ξ

(1− ξ)
·
ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

)
+

+ ε

(∫ ξ1

ξ2

ξ

(1− ξ)
·
ξl0 + λ+ ξν

2
dξ +

∫ β(ε)

ξ1

ξ

(1− ξ)
·
ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

)
= 0, ε→ 0, (1.14)

F2(λ, ν, ε) := ε(λ− l0 − ν) +O+

+
1

2

(∫ ξ2

−1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ +

∫ ξ1

ξ2

ξl0 + λ+ ξν

2
dξ +

∫ 1

ξ1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

)
= 0, ε→ 0, (1.15)

where ξ1, ξ2 are the switching points of control u(t).
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Let us remove a singularity at the point ξ = 1, divide the integral from the first equation of the
system into two terms: ∫ β(ε)

ξ1

ξ

1− ξ
·
ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ =

=

∫ β(ε)

ξ1

ξ

1− ξ
·

(
ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
−

l0 + λ+ ν

‖l0 + λ+ ν‖

)
dξ +

∫ β(ε)

ξ1

ξ

1− ξ
·
l0 + λ+ ν

‖l0 + λ+ ν‖
dξ.

Calculating the second integral:

l0 + λ+ ν

‖l0 + λ+ ν‖

∫ β(ε)

ξ1

ξ

1− ξ
dξ =

l0 + λ+ ν

‖l0 + λ+ ν‖
·

(
−
(
1− 2e−T/ε − ξ1

)
−

(
ln 2−

T

ε
− ln(1− ξ1)

))
.

Let us expand terms 1− ξ1 and ln(1− ξ1) as a small parameter:

1− ξ1 = 1−
2

‖l0‖
+

〈l0;λ〉

‖l0‖2
+

2〈l0; ν〉

‖l0|3
+O

(
‖λ‖2 + ‖ν‖2

)
,

ln(1− ξ1) = ln

(
1−

2

‖l0‖

)
+

〈l0;λ〉

‖l0‖(‖l0‖ − 2)
+

2〈l0; ν〉

‖l0‖2(‖l0‖ − 2)
+O

(
‖λ‖2 + ‖ν‖2

)
.

Calculating the Gateau derivative of function ρ/‖ρ‖, we obtain

D

(
ρ

‖ρ‖

) ∣∣∣∣
ρ=ρ0 6=0

(△ρ) =
△ρ‖ρ0‖

2 − 〈△ρ; ρ0〉ρ0
‖ρ0‖3

. (1.16)

We can use the formula (1.16) to find a partial derivatives

∂F1(λ, ν, ε)

∂λ

∣∣∣∣
λ,ν,ε=0

(△λ),
∂F1(λ, ν, ε)

∂ν

∣∣∣∣
λ,ν,ε=0

(△ν).

Taking into account that the unique term in the right side of equation (1.14) has no order o(1),
and according to formula (1.16) we find

∂F1(λ, ν, ε)

∂λ

∣∣∣∣
λ,ν,ε=0

(△λ) = △λ+ T ·
△λ‖l0‖

2 − l0〈l0;△λ〉

‖l0‖3
,

∂F1(λ, ν, ε)

∂ν

∣∣∣∣
λ,ν,ε=0

(△ν) = △ν + T ·
△ν‖l0‖

2 − l0〈l0;△ν〉

‖l0‖3
.

Function F2(λ, ν, ε) from the second equation from (1.15) transforms to

F2(λ, ν, ε) =
1

2

(∫ ξo
2

−1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ +

∫ ξ2

ξo
2

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ +

∫ ξ1

ξ2

ξl0 + λ+ ξν

2
dξ

)
+

+
1

2

(∫ ξo
1

ξ1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ +

∫ 1

ξo
1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

)
+ ε(λ− ν − l0),

where ξo1,2 = lim
ε→0

ξ1,2.

Calculating the third integral:

∫ ξ1

ξ2

ξl0 + λ+ ξν

2
dξ =

2λ

‖l0‖
−

2l0〈l0;λ〉

‖l0‖3
,
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and calculating partial derivatives of the third integral :

1

2

∂

∂λ

(
2λ

‖l0‖
−

2l0〈l0;λ〉

‖l0‖3

) ∣∣∣∣
λ,ν,ε=0

(△λ) =
△λ

‖l0‖
−
l0〈l0;λ〉

‖l0‖3
,

1

2

∂

∂ν

(
2λ

‖l0‖
−

2l0〈l0;λ〉

‖l0‖3

) ∣∣∣∣
λ,ν,ε=0

(△ν) = 0.

Calculating derivatives of first and fifth integrals, we use formula (1.16):

∂

∂λ

(∫ ξo
2

−1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

) ∣∣∣∣
λ,ν,ε=0

(△λ) =
∂

∂λ

(∫ 1

ξo
1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

)∣∣∣∣
λ,ν,ε=0

(△λ) =

=
△λ‖l0‖

2 − 〈l0;△λ〉l0
‖l0‖3

·

(
− ln

2

‖l0‖

)
,

∂

∂ν

(∫ ξo
2

−1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

) ∣∣∣∣
λ,ν,ε=0

(△ν) =
△ν‖l0‖

2 − 〈l0;△ν〉l0
‖l0‖3

·

(
2

‖l0‖
− 1

)
,

∂

∂ν

(∫ 1

ξo
1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

)∣∣∣∣
λ,ν,ε=0

(△ν) =
△ν‖l0‖

2 − 〈l0;△ν〉l0
‖l0‖3

·

(
1−

2

‖l0‖

)
.

Calculating derivatives of second and fourth integrals, we take into account the following formula
(
∂

∂λ

∫ β(λ)

α(λ)
f(t, λ) dt

)∣∣∣∣
λ=λ0

(△λ) =

=

∫ β(λ)

α(λ)

∂f

∂λ
(△λ) dt+ f(β(λ), λ) ·

∂β

∂λ

∣∣∣∣
λ=λ0

(△λ)− f(α(λ), λ) ·
∂α

∂λ

∣∣∣∣
λ=λ0

(△λ). (1.17)

Since each integral contains only one multiple limit and integral from the partial derivative of
the expression under the integral sign is equal to zero, and taking into account the formula (1.17)
we obtain

∂

∂λ

∫ ξ2

ξo
2

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

∣∣∣∣
λ,ν,ε=0

(△λ) =
∂ξ2
∂λ

∣∣∣∣
λ,ν,ε=0

(△λ)·
ξ2l0 + λ+ ξ2ν

‖ξ2l0 + λ+ ξ2ν‖

∣∣∣∣
λ,ν,ε=0

(△λ) =
l0〈l0;△λ〉

‖l0‖3
,

∂

∂λ

∫ ξo
1

ξ1

ξl0 + λ+ ξν

‖ξl0 + λ+ ξν‖
dξ

∣∣∣∣
λ,ν,ε=0

(△λ) = −
∂ξ1
∂λ

∣∣∣∣
λ,ν,ε=0

(△λ)·
ξ1l0 + λ+ ξ1ν

‖ξ1l0 + λ+ ξ1ν‖

∣∣∣∣
λ,ν,ε=0

(△λ) =
l0〈l0;△λ〉

‖l0‖3
.

Following this line of reasoning, we find

∂

∂ν

∫ ξ2

ξo
2

ξl0 + λ+ ξν

ξl0 + λ+ ξν
dξ

∣∣∣∣
λ,ν,ε=0

(△ν) = −
2l0〈l0;△ν〉

‖l0‖4
,

∂

∂ν

∫ ξo
1

ξ1

ξl0 + λ+ ξν

ξl0 + λ+ ξν
dξ

∣∣∣∣
λ,ν,ε=0

(△ν) =
2l0〈l0;△ν〉

‖l0‖4
.

Let us write the partial derivatives
∂F2(λ, ν, ε)

∂λ

∣∣∣∣
λ,ν,ε=0

(△λ),
∂F2(λ, ν, ε)

∂ν

∣∣∣∣
λ,ν,ε=0

(△ν):

∂F2(λ, ν, ε)

∂λ

∣∣∣∣
λ,ν,ε=0

(△λ) =
△λ

‖l0‖
− ln

2

‖l0‖

(
△λ‖l0‖

2 − 〈l0;△λ〉l0
‖l0‖3

)
,
∂F2(λ, ν, ε)

∂ν

∣∣∣∣
λ,ν,ε=0

(△ν) = 0.

Then we obtain, that F1(0, 0, 0) = 0, F2(0, 0, 0) = 0 and functions F1(·, ·, ·), F2(·, ·, ·) are
infinitely differentiable in λ, ν, ε in a certain neighborhood of the point (0; 0; 0).



72 Alexander A. Shaburov

Show that operator

F(△λ,△ν) := D

(
F1

F2

) ∣∣∣∣
λ,ν,ε=0

=

=




△λ+ T
△λ‖l0‖

2 − l0〈l0;△λ〉

‖l0‖3
+△ν + T

△ν‖l0‖
2 − l0〈l0;△ν〉

‖l0‖3

△λ

‖l0‖
− ln

2

‖l0‖

(
△λ‖l0‖

2 − 〈l0;△λ〉l0
‖l0‖3

)



,

(1.18)

is continuously reversible.
Consider the equation F(0, 0)(△λ,△ν) =: (g1, g2). Multiplying scalarly the first and second

coordinates of vectors (1.18), we find unknown couples of multiply scalarly:

〈l0;△λ〉 = ‖l0‖〈l0; g2〉, 〈l0;△ν〉 = 〈l0; g1 − ‖l0‖g2〉.

The reversible operator F−1(g1, g2) is equal:

F−1(g1, g2) =

=




(
g1 + T

l0〈l0; g2〉

‖l0‖2
+ T

l0〈l0; g1 − ‖l0‖g2〉

‖l0‖3

) ‖l0‖

‖l0‖+ T
−
(
g2 − ln

2

‖l0‖

l0〈l0; g2〉

‖l0‖2

) ‖l0‖

1− ln(2/‖l0‖)(
g2 − ln

2

‖l0‖

l0〈l0; g2〉

‖l0‖2

) ‖l0‖

1− ln(2/‖l0‖)


 .

Thus, the implicit function theorem is applicable. It means that the vectors lε, rε (as a functions
of ε) are infinitely differentiable with respect to ε for all small ε and, therefore, lε, rε can be
expanded into the asymptotic series. The coefficients of this series can be found via the standard
procedure: substituting the series into the equation F(λ, ν, ε) = 0, expanding values dependent
on ε into the asymptotic series in power of ε and equating terms of the same order of smallness
with respect to ε, we obtain equations of the form F(△λk,△νk) = (g1,k, g2,k) with the right parts
known. Then, by the formula (1) we find lk, rk.

Theorem 3. Suppose that ‖x0‖ > T +2. Then the vectors lε, rε, which determine the optimal

control in problem (1.1) are expanded as ε→ 0 into the power asymptotic series:

lε
as
= l0 +

∞∑

k=1

εklk, rε
as
= r0 +

∞∑

k=1

εkrk.

2. Conclusion

1. Both in the first and the second cases under consideration, from (1.14), (1.15) and the
asymptotic expansion of lε the asymptotic expansions of both the quality index and optimal control
as well as optimal state of the system are conventionally obtained. With this, the asymptotic
expansions of the optimal control and optimal state of the system will be exponentially decreasing
boundary layers in the neighborhood of point t = 0. Moreover, if t > εβ and β ∈ (0, 1), then the
optimal control uo(t) is constant plus the asymptotic zero.
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2. It follows form the formulas F1(λ, ν, ε) = 0, F2(λ, ν, ε) = 0 that λε lies in the subspace Π,
generated by vectors x0 and y0. Therefore, for all t ∈ [0, T ] and uoε(t), and xε(t), and yε(t) lie in the
same subspace Π. In this way, the problem (1.1) is equivalent to the corresponding two-dimensional
problem.
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