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THE EKATERINBURG SEMINAR “ALGEBRAIC SYSTEMS”:
50 YEARS OF ACTIVITIES

Lev N. Shevrin

Ural Federal University, Ekaterinburg, Russia,
lev.shevrin@urfu.ru

Abstract: The aim of the present article is to give a characterization of distinctive features of the scientific
seminar founded and led by the author as well as to show the main sides of its activities during half a century.

Key words: algebraic systems, Ekaterinburg seminar, sides of activities.

1. Introducing remarks

The seminar indicated in the title of the article started its work in 1966. By that time several
younger researchers had been grouped around the present writer at Ural State University. Naturally,
I discussed with each of them different problems pertaining to the area of his/her research. However,
besides these individual meetings, the natural need had arisen to gather regularly and to discuss
the results obtained as well as diverse problems concerning our investigations in algebra.

It should be noted that Ekaterinburg (Sverdlovsk from 1924 till 1991) is a city with considerable
scientific algebraic traditions. In a great degree the beginning of algebraic studies there was owing
to the activities of Professor P. G. Kontorovich (1905–1968) who worked for several decades at
Ural State University and was one of the leading Soviet algebraists. The scientific school created
by P. G. Kontorovich gained notable recognition in mathematical community by the 1960s, and, in
particular, it was not accidental that, after the first two All-Union Algebraic Conferences held in
Moscow in 1958 and 1959, the third one was organized in Sverdlovsk in 1960, and Prof. Kontorovich
was the Chairman of its Organizing Committee1. My scientific rise began under Kontorovich’s
supervision; I defended a dissertation for “Candidate of Sciences” degree in 1961 and a dissertation
for “Doctor of Sciences” degree in 19662.

The seminar, which afterwards received the name “Algebraic Systems”, had at first about 10
members. Since the 1970s the number of its regular participants remains at the level about 20,
although in the 1980s it sometimes achieved up to 25–30 persons. Since the middle of the 1980s, side
by side with students of the leader of the seminar, students of my students were becoming regular
participants in the seminar. The number of such “scientific grandchildren” is steadily increasing;
moreover, now there are already more than ten scientific great-grandchildren of mine.

1In the paper [1], I have written rather minutely about the formation of the Sverdlovsk algebraic school
for the period from the end of the 1930s till the beginning of the 1960s, where some key figures were pre-
sented and some essential events and facts were mentioned. The articles [2] and [3] are devoted personally
to P. G. Kontorovich. They are published in a special issue of the journal “Izvestiya Ural’skogo gosu-
darstvennogo universiteta” dedicated to the centenary of his birthday; the second of them is reproduced
from an issue of “Matematicheskie zapiski” (Mathematical Transactions) of Ural State University (1970)
dedicated to the memory of Kontorovich.

2For a foreign reader who may not be familiar with the system of Soviet (and now Russian) scientific
degrees, I note that Candidate of Sciences approximately corresponds to Ph.D. in the Western World, while
Doctor of Sciences is a considerably higher scientific degree.
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Besides discussing problems and results, it became traditional for the seminar to discuss also
abstracts of talks being prepared for various conferences. Furthermore, it became customary when
the members of the seminar attended some conferences report at the seminar about these con-
ferences. The leader of the seminar pays much attention to the development of disciples’ skill in
performing scientific talks and writing mathematical works.

Soon enough, since 1969, algebraists from other towns of the former Soviet Union began to
appear as the speakers at our seminar; this takes place up to now more or less regularly. Since
1989 foreign speakers appear from time to time as well.

For half a century the community of regular participants in the seminar in different years got
significant achievements, both in research and educational spheres as well as in various forms of
scientific-organizing activities. So a natural desire has arisen to display a general picture of distinc-
tive features of the seminar and to show these achievements. The aim of this article is to present
such a picture. Sections 2–8 are devoted to the following its aspects: topics and some peculiarities
in research, dissertations, grants, publications, participation in conferences, organization of confer-
ences, membership in editorial boards; some information concerning meetings and speakers at the
seminar is given in Section 9.

It should be noted that the first rather detailed information about this seminar in some pub-
lication was given in 1998 in [4]. As to the present article, it is an enlarged (and slightly revised)
version of the article [5] placed in 2007 on the website of the European Academy of Sciences. I am
grateful to Mikhail Volkov, Boris Vernikov, and Arseny Shur for their help in collecting the data
concerning the last decade for this version.

2. Topics and some peculiarities in research

The objects of investigations carrying out at the seminar are a number of the main types of
algebraic systems: semigroups, groups, rings and algebras (both associative and non-associative, in
particular, Lie algebras), lattices, and some others. These types of systems are subjects of largely
developed theories, which continue to develop intensively. The members of the seminar succeeded
in fundamental contributing to several branches of these theories; it will be briefly characterized
below. Since the 1990s the area of our interests had been broadened and began including some
topics that it is customary to refer as belonging to discrete mathematics. I mention among them,
first of all, certain problems of the theories of graphs and clones, in particular, problems of discrete
optimization. Since the end of the last century considerable attention has been given to applied
aspects of algebra, see item (x) below and item g) at the end of this section. One may distinguish
the following main lines of our investigations (with a different degree of intensity in different periods
of our work).

(i) Structure of systems and finiteness conditions3.

(ii) Lattices properties, i.e. properties connected with considering lattices of subsystems for
systems of a given class.

3Here it is, of course, impossible to give definitions for the main notions being mentioned. How-
ever, in some exclusive cases one may formulate definitions that can be understandable even for
the reader who is not an algebraist. For instance, it concerns the notion “finiteness condition”.
Given a class of algebraic systems, by a finiteness condition is meant any property which is pos-
sessed by all finite systems of this class. Many infinite systems satisfy certain finiteness condi-
tions, and investigation of systems with such conditions provides a possibility to obtain diverse re-
sults in much more general situations than for finite systems. Imposing finiteness conditions is a
classical approach (within the 20th century) in investigations of algebraic systems of different kinds.
For the reader who would like to consult some source with other algebraic notions mentioned in this ar-
ticle, I may recommend the handbook [6] (in Russian) or the handbook [7] (in English).



The Ekaterinburg seminar “Algebraic Systems” 5

(iii) Varieties and similar classes: quasivarieties, pseudovarieties, and the like.

(iv) Algorithmic problems.

(v) Congruences.

(vi) Embeddings.

(vii) Transformations.

(viii) Independence of related structures: automorphism group, congruence lattice, subsystem lat-
tice, etc.

(ix) Combinatorics, graph theory, and discrete optimization.

(x) Applications of an algebraic approach to some branches of computer science: computational
complexity, synchronizability of finite automata, various problems for formal languages, etc.

In each of these lines, there are many essential results obtained by the members of the seminar.
The most notable achievements, especially for the first four decades of our activity, concern lines
(i)–(iv) which we accomplished quite a number of major series of works in. They have gained
considerable recognition, which is reflected, in particular, in some summarizing publications at an
international level, see Section 5 below.

I would like to give some comments for line (iii). The central concept here is a variety. A class
of algebraic systems is called a variety if there is a set of identities such that this class consists of
all systems satisfying all identities from this set. Development of the theory of varieties started
in 1935 by a basic paper by G. Birkhoff. At the second half of the 20th century the theory of
varieties became one of the main lines in general algebra. Plenty of investigations were devoted to
this theory in many countries. In our seminar, such investigations had been begun since the end
of the 1960s. They may be (conditionally) divided into five topics: identities, structural aspects,
lattices of varieties, free systems, and algorithmic problems. In each of them, certain concrete parts
may be distinguished. For instance, for the topic “identities”, one of the central problems, called
the finite basis problem, is to determine which varieties can be given by a finite set of identities.
Some fundamental results obtained by several members of the seminar were devoted just to this
problem for different classes of algebraic systems, to the problem of classification of varieties with
certain restrictions on the lattice of subvarieties, to description of varieties whose elementary theory
is decidable as well as to quite a number of other important problems.

The concept of a quasivariety is a certain generalization of the concept of a variety, the concept
of a pseudovariety is an analogue of the concept of variety as applied to finite systems. Both
these concepts also serve as the objects of fruitful investigations. A motivation for the study of
pseudovarieties is caused in a great degree by deep connections between pseudovarieties and formal
languages. A key impulse for the development in this direction was given by S. Eilenberg (1976)
in the volume B of his well-known monograph “Automata, Languages and Machines”.

The classification (i)–(x) is rather conditional: there are no clear-cut borders between these
lines. Moreover, for the themes of many works accomplished at the seminar, it is just typical to
combine idea motifs pertained to two or more lines. Examples of such interlacing are numerous,
and there is no reason to try characterizing all corresponding situations within this article. I will
touch only on one of subject lines — imposing finiteness conditions. This classical approach was
applied in our research in diverse situations: in study of lattice properties of semigroups and groups;
in considerations of congruences (for instance, in study of residually finite semigroups and rings, in
particular, from the view of the theory of varieties); in a combination with problems of embeddings
(a typical example is a search of conditions for embeddability in finitely generated systems with
certain restrictions) as well as in investigations on algorithmic problems (for instance, in those cases
when the main objects of attention are finitely presented systems).

One may note several specific features of research at the seminar.
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a) Predominance of semigroups, especially during the first three decades of the seminar work.
It is worth noticing in this connection that the theory of semigroups is one of the youngest
fields of modern algebra. It had been formed by the 1960s, just then the first monographs
appeared that were entirely devoted to semigroups: the book “Semigroups” by E. S. Ljapin
in Soviet Union (1960) and two volumes of the classical monograph “The Algebraic Theory of
Semigroups” in USA by A. H. Clifford and G. B. Preston (1961, 1967). As it can be seen from
relevant information in item f) of this section and in Sections 3–8, diverse manifestations of
our activities in semigroup theory are numerous.

b) At the same time, dissemination of our interests and research to other types of algebraic
systems. See, in particular, comments given in item c) and especially in item f) containing a
more concrete assertion that will be illustrated in the subsequent text of that paragraph. This
illustration, together with information given in Sections 3–5, allows showing more minutely
various subjects of research accomplished at the seminar.

c) Permanent attention to lattices, both as an independent type of systems and (mostly) as
related structures: the lattices of subsystems, of congruences, of ideals, of clones, of subvari-
eties, of subquasivarieties, of subpseudovarieties, and the like.

d) In general, attention to related structures of different kinds: automorphism groups, endomor-
phism monoids, elementary theories, and the like.

e) Permanent attention to algorithmic problems.

f) During the first 3 decades of activities of the seminar, investigations of the same problem for
different types of algebraic systems, both owing to research pursuing by different authors and
in works carried out by one and the same author.

Here is a list of the themes of such “polysystem” series of works, each one due to the same
author.

• Densely embedded ideals of semigroups, associative algebras (as well as some general-
izations), and Lie algebras, by L. N. Shevrin, the 1960s – the beginning of the 1970s.

• Decidability of elementary theories of varieties of groups, semigroups, and associative
rings, by A. P. Zamyatin, the 1970s.

• Independence of related structures for semigroups and lattices, by V. A. Baransky, the
1970s–1980s.

• Attainability and solvability for classes of algebras as applied to arbitrary universal
algebras, semigroups, groups, modules, associative and Lie algebras, and unars, by
L. M. Martynov, the 1970s–1980s.

• Bases of identities and lattices of varieties applied to associative rings and semigroups,
by M. V. Volkov, the end of the 1970s – the beginning of the 1990s.

• Critical theories of certain classes of semigroups and rings, by Yu. M. Vazhenin, the
1980s – the beginning of the 1990s.

• The word problem for varieties of groups and Lie algebras, by O. G. Kharlampovich,
the 1980s.

• Algorithmic problems for semigroups and associative algebras, by M. V. Sapir, the
1980s.

• Radicals and bands of semigroups and associative rings, by A. V. Kelarev, the 1980s.

• Lattices of varieties of associative rings and semigroups, by B. M. Vernikov, the 1980s.

• Representation of lattices by subsystem lattices as applied to semigroups, groups, rings,
and lattices, by V. B. Repnitskǐı, the end of the 1980s – the 1990s.

• Algorithmic problems for varieties of semigroups, monoids, groups, and rings, by
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V. Yu. Popov, the 1990s – the beginning of the 2000s.

g) In the 21st century, increased attention to using an algebraic approach in some related fields
of mathematics, first of all in computer science. As a result, the following topics have become
rather typical for our investigations accomplished in the years of this century: algebraic theory
of formal languages and automata, diverse problems concerning computational complexity
(in particular, as applied to bioinformatics), extremal problems on graphs and working out
effective algorithms for solution of them, intelligent systems and robotics. Some details of
this trend can be observed in formulations of the subjects of relevant dissertations and grants
(see Sections 3 and 4) as well as in the themes of three conferences held in Ekaterinburg since
2007 (see corresponding information in Section 7). I notice that a remote portent of these
conferences was the Regional Conference of Young Scientists held in Sverdlovsk in 1982 (see
its name in Section 7). Organization of the mentioned three conferences in Ekaterinburg
may serve as one of the signs showing that our achievements in respective branches also, as
properly algebraic ones, have received international recognition.

3. Dissertations

The results of our investigations have found a natural reflection in dissertations defended by
the members of the seminar. By 2017 there have been 95 such dissertations in all, among them 81
for Candidate Degree and 14 for Doctor Degree.

I give below the list of all these dissertations. The components of this list concerning Candidate
dissertations are ordered by the starting years for the corresponding supervisors and, within the
group of dissertations with the same supervisor, chronologically by the dates of defences. As to
Doctoral dissertations, they are ordered chronologically.

3.1. Candidate dissertations

Supervisor L. N. Shevrin:

1. N. D. Filippov. Partially ordered sets and certain algebraic systems connected with them,
1969.

2. E. A. Golubov. Finitely separable and residually finite semigroups, 1970.

3. V. A. Baransky. Lattice isomorphisms of semigroups, and certain semigroup-theoretic con-
structions, 1971.

4. Yu. M. Vazhenin. Semigroups of transformations of graphs, and the first order language,
1972.

5. L. M. Martynov. Verbal chains in universal algebras, 1972.

6. A. N. Trakhtman. On the system of proper subsemigroups of a semigroup, 1973.

7. T. I. Ershova. On lattice properties of inverse semigroups, 1974.

8. A. S. Prosvirov. Idealizers of subsemigroups, and the structure of a semigroup, 1977.

9. V. B. Lender. The operation of multipication on classes of lattices, and related topics, 1977.

10. A. M. Gasanov. Ternary semigroups of continuous and homeomorphic mappings, 1978.

11. A. P. Zamyatin. Decidability of elementary theories of varieties of groups, semigroups, and
associative rings, 1979.

12. V. N. Klimov. Congruences of semigroups, 1979.

13. A. J. Ovsyannikov. Lattice isomorphisms of semigroups, and varieties of semigroups, 1980.

14. M. V. Volkov. Lattices of varieties of rings, 1980.
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15. B. P. Tanana. On lattice properties of topological semigroups, 1980.

16. E. V. Sukhanov. Varieties and bands of semigroups, 1980.

17. E. I. Kleiman. Varieties of inverse semigroups, 1981.

18. O. M. Mamedov. Equational compactness in general algebras and algebras with an order
relation, 1982.

19. V. V. Rasin. Varieties of Clifford semigroups, 1982.

20. M. V. Sapir. Quasivarieties of semigroups, 1983.

21. S. I. Katsman. Semigroups with certain types of subsemigroup lattices, 1983.

22. T. A. Martynova. The groupoid of varieties of semigroups with zero, 1983.

23. O. G. Kharlampovich. Algorithmic and other combinatorial problems for groups and Lie
algebras, 1984.

24. V. B. Repnitskǐı. Varieties of lattice-ordered semigroups, 1985.

25. I. O. Koryakov. Periodic linear semigroups, 1985.

26. E. A. Perminov. Rigid graphs and lattices, 1985.

27. B. V. Rozenblat. On elementary and positive theories of relatively free semigroups, 1985.

28. A. N. Petrov. Embeddings of semigroups, and varieties, 1987.

29. A. V. Kelarev. Radicals and bands of semigroups and associative rings, 1989.

30. B. M. Vernikov. Varieties of associative rings and semigroups with restrictions on the sub-
variety lattice, 1989.

31. O. V. Knyazev. On the theory of varieties of Clifford semigroups, 1991.

Supervisor V. A. Baransky:

1. P. V. Shumyatsky. Periodic groups whose automorphism groups are regular 2-groups, 1989.

2. A. P. Zolotarev. Helly, Radon, Caratheodory, and Goldi numbers in lattices, 1993.

3. V. A. Shcherbakova. The Steiner problem on a graduated directed graph, 1998.

4. O. V. Rasin. Polynomial algorithms of recognition of isomorphism in some classes of graphs,
2005.

5. L. M. Volkov. Models and algorithms of information handling in program complexes of
electronic documents-circulation, 2006.

6. T. A. Koroleva. Lattices of integral partitions, and chromatically uniqueness of graphs, 2008.

7. M. I. Naumik. Congruences of the semigroup of linear relations, 2008.

8. S. N. Pupyrev. Models, algorithms, and a program complex for visualizing complex networks,
2010.

9. T. A. Senchonok. Classification and determinability of elements of small height in the lattices
of complete multipartite graphs, 2012.

10. O. E. Perminova. Critical lattices, 2014.

Supervisor Yu. M. Vazhenin:

1. S. V. Sizyi. Quazivarieties of endomodels, and algorithmic problems,1990.

2. B. Bayasgalan. Decidable theories of related structures of semigroups, 1991.

3. V. Yu. Popov. Critical theories of varieties of rings, 1995.

4. Yu. V. Nagrebetskaya. Decidability of theories of the first order of matrix algebras and groups
of transformations, 2000.
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Supervisor E. V. Sukhanov:

1. A. A. Bulatov. Algebraic properties of the lattice of clones, 1995.

2. A. M. Shur. Algebraic and combinatorial properties of equational languages, 1998.

3. A. A. Krokhin. Intervals in lattices of clones, 1998.

4. K. L. Safin. Ideals of iterative algebras, 2000.

5. A. P. Semigrodskikh. Lattices of closed classes of functions on an infinite set, 2003.

6. A. V. Klepinin. On algebraic and applied aspects of the problem of search of information,
2005.

Supervisor M. V. Volkov:

1. D. S. Ananichev. Identities in the lattices of varieties of solvable Lie rings, 1997.

2. O. B. Finogenova (Paison). Indicator characterizations of certain properties of varieties of
associative rings, 1998.

3. I. A. Goldberg. The finite basis problem for semigroups of transformations, 2006.

4. G. V. Tanana. Structural and equational properties of adjoint regular rings, 2007.

5. V. S. Grishchenko. Metrics of reputation: models and algorithms of construction of open
information environments, 2007.

6. S. V. Goldberg (Pleshcheva). Complexity of the identity checking problem in finite semi-
groups, 2008.

7. E. S. Skvortsov. On effective algorithms for the problem CSP, and a program realization of
them, 2008.

8. E. V. Pribavkina. Problems of optimality in the theory of synchronizing automata, 2009.

9. G. A. Povarov. Descriptive complexity of certain transformations of regular languages, 2010.

10. I. A. Mikhailova. Patterns being avoided by antichains of words, and algebraic applications
of them, 2010.

11. M. V. Berlinkov. Approximating the lengths of synchronizing words for finite automata,
2011.

12. Yu. I. Zaks. Synchronizability of finite automata in extremal and mean cases, 2012.

13. V. V. Gusev. Extremal constructions in the theory of synchronizing automata, 2013.

14. T. V. Pervukhina. Varieties and pseudovarieties of semigroups of triangular matrices, 2014.

15. M. I. Maslennikova. Ideal languages and synchronizing automata, 2015.

Supervisor I. O. Koryakov:

1. I. Yu. Zhil’tsov. Pseudo-operations and pseudo-free semigroups, 1999.

Supervisor A. M. Shur:

1. Yu. V. Gamzova. Combinatorial properties of partial words (co-supervisor E. V. Sukhanov),
2006.

2. A. N. Plyushchenko. On combinatorial properties of Burnside semigroups, 2012.

3. I. A. Gorbunova. Constructing and enumerating extremal power-free words, and an estimate
of the quantity of them, 2013.

4. E. A. Petrova. On combinatorial properties of power-free languages, 2016.

5. M. V. Rubinchik. Computational complexity of certain problems of string processing, 2016.
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6. D. A. Kosolobov. Efficient algorithms for studying regularities in strings, 2016.

Supervisor D. S. Ananichev:

1. P. V. Martyugin. Bounds for the length and computational complexity of synchronization
of finite automata, 2008.

2. I. V. Petrov. Universal synchronizing and universal collapsing words, 2009.

Supervisor V. Yu. Popov:

1. Yu. S. Okulovsky. A program complex for software of intelligent computations, 2009.

2. A. A. Gorbenko. Methods of combinatorial virtualization for mobile robots, 2014.

3. A. S. Sheka. Models, algorithms, and a program complex for software of intelligent experi-
ment, 2014.

Supervisor S. V. Sizyi:

1. E. A. Rogozinnikov. Groups of transformations of curves, 2014.

Supervisor B. M. Vernikov:

1. V. Yu. Shaprynskĭı. Special elements of lattices of semigroup varieties, 2015.

2. D. V. Skokov. Identities and special elements in the lattice of varieties of epigroups, 2016.

3.2. Doctoral dissertations

For such dissertations, as it is known, a person whose role is similar to that of a supervisor is
called a scientific consultant. In cases 2–8 and 10–12, the scientific consultant was L. N. Shevrin, in
cases 9 and 14 they were, respectively, Yu. M. Vazhenin and M. V. Volkov. Case 13 is unordinary:
this is a dissertation for a scientific degree “Doctor of Engineering Sciences”, and the scientific
consultant was Prof. V. M. Sǎı, a specialist in certain topics pertaining to railway transport, who
originally asked to help him in application of some mathematical methods in the problems that he
considered. S. V. Sizyi responded to that request and, as a result, had involved in these problems,
what ultimately led to his own achievements in the area considered. His dissertation is obviously far
from algebra, but the author used a number of methods of related fields of mathematics: discrete
mathematics, graph theory, probability theory, mathematical statistics, and the like.

1. L. N. Shevrin. Lattice properties of semigroups, 1966.

2. V. A. Baransky. Independence of related structures in classes of algebraic systems, 1987.

3. O. G. Kharlampovich. Word problem for groups and Lie algebras, 1990.

4. Yu. M. Vazhenin. Critical theories of the first order, 1992.

5. L. M. Martynov. Spectra of solvability for varieties of algebras, 1992.

6. M. V. Volkov. Identities in lattices of varieties of semigroups, 1994.

7. D. A. Bredikhin. Identities and quasi-identities of relation algebras, 1997.

8. V. B. Repnitskǐı. Representations of lattices by subalgebra lattices, 1997.

9. V. Yu. Popov. Algorithmic problems for varieties of semigroups, monoids, groups, and rings,
2002.

10. B. M. Vernikov. Identities and quasi-identities in lattices of varieties of semigroups, and
congruences related to them, 2004.
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11. A. A. Bulatov. Algebraic methods in investigation of combinatorial problems, 2008.

12. A. M. Shur. Combinatorial characterization of formal languages, 2010.

13. S. V. Sizyi. Theory and methodology of formation of netting-organizational co-ordination
on railway transport, 2011.

14. O. B. Finogenova. Properties of varieties of associative algebras given in a language of
derived objects: indicator and equational characterizations, 2016.

In conclusion of this section, I would like to note that several former members of the seminar
now work in other towns, mostly abroad. Some of them trained their own students who defended
dissertations. They are the following persons; for each one, I give the number of dissertations for
which he/she was the supervisor: L. M. Martynov (Omsk, Russia) – 3, M. V. Sapir (Nashville, USA)
– 5, O. G. Kharlampovich (Montreal, Canada, later New York, USA) – 9, A. V. Kelarev (Hobart,
Australia) – 2, P. V. Shumyatsky (Brasilia, Brazil) – 9, B. P. Tanana (Maputo, Mozambique) – 1,
A. A. Bulatov (Vancouver, Canada) – 1, Krokhin (Durham, Great Britain) – 1.

From information given above it follows that by 2017 there are in all 113 disciples with scientific
degrees in the “scientific tree” of the leader of the seminar. The number of persons in this tree will
definitely increase for the near years: now there are fairly many post-graduated students who are
doing research under supervision of some elder members of the seminar.

4. Grants

The subjects of our research are also reflected in the grants we had from sources both national
and international. Note that in Russia a system of scientific grants was established only since the
beginning of the 1990s. I give below a list of grants got by some, as a rule, small teams of researchers
belonging to the seminar and point out, in the chronological order within a group of grants with
the same distributor, i) the structures that distributed grants, ii) the research subjects of grants,
iii) for each grant, the leader (the only researcher or one of the members of an international team
of researches, if it is specially pointed out), and iv) the years of supporting.

State Committee of Higher Education (later Ministry of Education)

• Pseudovarieties of algebras: combinatorial-algebraic aspects, Shevrin, 1994–1995.

• Pseudovarieties: algorithmic and structural-topological aspects, Shevrin, 1996–1997.

• Combinatorial-algebraic properties of logical functions and formal languages, Sukhanov, 1996–
1997.

• Combinatorial-algebraic aspects of the theory of logical functions and formal languages,
Sukhanov, 1998–2000.

• New approaches in the theory of pseudovarieties of semigroups, Shevrin, 1998–2000.

• Pseudovarieties of semigroups, and their applications in computer science, Shevrin, 2001–
2002.

• Profinite methods in the theory of pseudovarieties and symbolic dynamics, Shevrin, 2003–
2004.

International Science Foundation

• Semigroup varieties: their lattices and free objects, Shevrin, 1994–1995.
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The International Association for the promotion of cooperation with scientists
from the New Independent States of the former Soviet Union (INTAS).

• Algebraic and logic models for computer science, one of the researchers Volkov, 1995–1996.

• Combinatorial and geometric theory of groups and semigroups, and its applications to com-
puter science, the coordinator of the Russian part of the project Volkov, 2000–2003.

• Universal algebra and lattice theory, one of the researchers Repnitskǐı, 2004–2006.

Ministry of Culture and Education of Hungary

• Semigroups and their classes, one of the researchers Volkov, 1997–2000.

Russian Foundation for Basic Research

• Idea of variety applied to finite and regular semigroups, Shevrin, 1997–1999.

• Lattices of varieties of classical algebras, Volkov, 2001–2003.

• Access control of information in computer systems, Baransky, 2003.

• Combinatorics on words and automata, and its applications in computer science and bioin-
formatics, Volkov, 2005–2007.

• Epigroups: structural and equational aspects, Shevrin, 2006–2008.

• Fundamental problems of the theory of algebraic systems, and applications in informatics,
Volkov, 2009–2010.

• Lattice properties of semigroups and semigroup varieties, Shevrin, 2010–2012.

• Dynamics of finite automata and regular languages, Volkov, 2010–2012.

• Intelligent algorithms of planning, and correction of movement of a robot, Okulovsky, 2013.

• New aspects in dynamics of finite automata and symbolic sequences, Volkov, 2013–2015.

• Investigation of algorithms for intelligent robotics complexes, Popov, 2013–2015.

• Selected aspects of structural and equational theory of semigroups, Shevrin, 2014–2016.

The scientific program “Universities of Russia”

• Subsystems and congruences of algebraic systems, Shevrin, 1994–1995.

• Lattices as related structures, Shevrin, 1998–2000.

• Structural and combinatorial properties of algebraic systems, Shevrin, 2002–2003.

• Structural and combinatorial theory of algebraic systems, and its applications, Shevrin, 2004.

Federal Agency of Russia on Science and Innovation (Rosnauka)

• Combinatorial characterizations of formal languages, Shur, 2006–2007.

A special Federal program “Scientific and scientific-educational specialists of in-
novative Russia”

• Intelligent algorithms of a calibration of robotics systems, Okulovsky, 2010.

The Ministry program of a support of post-graduate students

• The isomorphism problem for graphs, and dist-decompositions, the researcher O. V. Rasin,
the supervisor Baransky, 2003–2004.

• The finite basis problem for some semigroups of transformations, the researcher I. A. Gold-
berg, the supervisor Volkov, 2004–2005.
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Other projects of the Ministry of Education (or, later, of Education and Science)

• Combinatorial theory of varieties and pseudovarieties of semigroups, languages, and au-
tomata, and its applications in computer science and information security, Shevrin, 2003–
2005.

• A new generation of a scientific school on algebra and discrete mathematics, Shevrin, 2005.

• Investigations on the theory of algebraic systems and its applications in computer science
and bioinformatics, Shevrin, 2009–2011.

• Algebraic models of robotics systems, Popov, 2009–2011.

• Structural and combinatorial methods in the theory of algebraic systems, and its applications
in computer science and bioinformatics, Shevrin, 2013.

• Combinatorial-logical methods in mathematical modeling and in computer science, Volkov,
2013.

• Intelligent systems of navigation and control for teams of autonomous mobile robots, Popov,
2012–2013.

• Structural and combinatorial methods of modern general algebra, Vernikov, 2014–2016.

• Applied aspects of combinatorial algebra: discrete modeling of informational and technolog-
ical processes, Volkov, 2014–2016.

The President program of a support of young candidates of sciences

• Investigation of synchronizable finite automata and their generalizations, the researcher Mar-
tyugin, 2012–2013.

• Languages of synchronizing words of automata, and synchronizable colorings, the researcher
Pribavkina, 2013–2015.

The President program of a support of young doctors of sciences

• Computational complexity of algorithmic problems, the researcher Popov, 2006–2007.

• Intelligent systems, high-performance computing, and computational complexity of algorith-
mic problems, the researcher Popov, 2008–2009.

The President program of a support of leading scientific schools of the Russian
Federation

• Investigations of classical algebraic systems and algebraic methods in computer science,
Shevrin, 2003–2005.

• Investigations on the theory of algebraic systems and its applications in computer science,
Shevrin, 2014–2015.

These two grants, crowning the long sequence of our grants, have marked activities of the whole
collective joined by the seminar “Algebraic Systems”.

5. Publications

Taking into account a long life of the seminar and a great quantity of persons who participated
in its work in different years, it is not easy to give absolute exact numbers of scientific works of
diverse kinds published by these persons (although during the first years of the seminar we kept a
precise account concerning this matter). Anyway, I may assert that there are definitely over 900
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papers in all published by the members of the seminar, not counting many hundreds of abstracts
of talks at various conferences4.

The main summands of this number are the following: over 800 research papers including more
than 300 papers published in the central Russian mathematical journals, more than 200 papers
published in other publications in Russian (among them more than 110 ones in “Matematicheskie
zapiski” of Ural State University, which were published annually in the 1960s–1980s), and more than
300 papers published in international journals or proceedings of international conferences; further,
over 60 papers of encyclopaedic character published in three encyclopaedias, one encyclopaedic
dictionary, and one handbook; over 30 papers of information character about conferences or other
mathematical events, about mathematicians, and the like (some typical examples are represented
by the papers [1]–[5]); several scientific-popular papers.

As to the books written by regular members of the seminar, there are three considerable mono-
graphs and one large book chapter as well as about hundred books of teaching character (textbooks
and brochures) pertaining to both university and school education.

Certain details concerning this side of our activity are displayed below.

It is reasonable to point out first of all our summarizing works. These are the survey articles
[8]–[28] and the monographs [29, 30]. One should add to this list the monograph [31]: its content
includes a number of results obtained by the present or the former (as, first of all, its author)
members of the seminar. Moreover, mentioning the book [31] in such a list is justified additionally
by the fact that Volkov fruitfully contributed to creation of this monograph5. All these works
are devoted to topics which particular attention was given to at the seminar, and where we made
an appreciable (or, in some points, even a crucial) contribution. Note that the surveys [19] and
[22] pertain to some topical trends concerning applications of an algebraic approach to computer
science, which entered into a sphere of our interests since the very end of the 1990s. The first
two authors of [19] are former members of the seminar, however in the year of this publication the
second of them was still a regular member of it. I also note that the work on the surveys [13]–[15]
was begun where their authors were among the regular members of the seminar.

The works listed, except the papers [16, 17, 23], and [26], are comprehensive and present in a
systematical form achievements in the corresponding areas belonging not only to the members of
the seminar but to many other authors. The first two of the papers just particularly noted give
a survey of results in the theory of clones obtained by their authors (Sukhanov and his students)
in the 1990s; the other two papers are based also on results obtained by their author. The short
survey [26], motivated by a jubilee date related to S. N. Chernikov, draws a fragment of a wide
picture presented with due completeness in Chapter IV of the monographs [29] and [30]. As to the
paper [23], this 6-pages survey is in fact a very long abstract (almost the full text) of a plenary
talk at an international conference. It contains, with thorough comments, 8 open problems posed
by the author in different years. The first two of them concern nilsemigroups; they are connected:

4I emphasize that this and subsequent numbers concern publications which appeared when their authors
were regular participants in the seminar. It is by no means that each of the mathematicians enumerated in
Section 3 was a regular member of the seminar in some time. Moreover, some of them gave the only talk at
the seminar, namely, a summarizing talk of a post-graduate student presenting his/her dissertation, while
all previous talks of such students were given at the corresponding “subseminars” mentioned in Section 10.
Furthermore, some regular members of the seminar once ceased attending it by one or another reason; in
particular, this concerns those ones who left Ekaterinburg in their time. So the further works of such persons
are not taken into account in reviews of our publications that we do once in a while, and, respectively, these
data are not reflected in the present article.

5As the author writes in Introduction, he is especially grateful to Mikhail Volkov “for writing about
the road coloring problem, the Baer radical, the Kruse–L’vov theorem, and his important contributions to
several other sections of the book”. (A similar gratitude is addressed also to Victor Guba, and the author
briefly noted these two contributions on the cover and on the title-page of the book.)
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a counter-example for the former will be a counter-example for the latter. Both of them had been
posed at the beginning of the 1960s (the first one was explicitly noticed in 1961 in some paper) and
afterwards mentioned in several publications. There were attempts to solve them made by different
authors who obtained (positive) results concerning certain partial cases. So in general case they
have been open for 55 years.

In connection with the assertion of the preceding sentence, it is exciting that apparently the
present “have been” in it may be changed by the past “had been”: the fact is that one of the young
members of the seminar Shaprynskĭı announced that he had constructed a counter-example solving
these problems. By the way, his talk at the seminar, where he presented some principal ideas of his
construction, took six (!) two-hours meetings in March–May, 2016. So, when the proof is carefully
verified and turns out correct (we hope), one may suppose that the detailed text of a corresponding
Shaprynskǐı’s paper will be many tens of pages long.

The next portion of publications being described in this section is a good deal of works of
encyclopaedic character. This line was begun with the paper [32]. Later the present writer prepared
a series of (41) papers on semigroups for the “Mathematical Encyclopaedia” [33]. Note that this
encyclopaedia, published originally in Russian, later received rather wide spreading, since English,
Spanish, and Chinese translations of it have appeared. A root paper Semigroup from the series
mentioned was reproduced later in the “Mathematical Encyclopaedic Dictionary” [34]. The large
book chapter [35] of a handbook on general algebra gives a comprehensive and detailed picture of
semigroup theory (including applications to the theories of formal languages, automata, and codes)
having formed by the beginning of the 1990s.

Later I made a contribution to the handbook [7] by preparing, partly with co-authors, 9 sections
for Chapter “Semigroups” and 2 sections for Chapter “Universal Algebra”. These are the following
sections: Ideals and Green’s Relations, Bands of Semigroups, Free semigroups, Simple Semigroups,
Epigroups, Periodic Semigroups, Subsemigroup Lattices (the last one jointly with Ovsyannikov),
Varieties of Semigroups (with Volkov), Applications of Semigroups (with G. F. Pilz and P. G. Trot-
ter), Free Algebras (with Sukhanov), Varieties and Quasivarieties (with Volkov).

For the encyclopaedia [36], a team consisting of Koryakov, Shevrin, Volkov, and Zamyatin pre-
pared 11 papers: Code, Finite Automaton, Pushdown automaton, Variety of Rational Languages,
Rational Language, Syntactic monoid (all by Koryakov), Formal Grammar (by Koryakov and Za-
myatin), Formal language (by Koryakov and Shevrin), Asynchronous Automaton and Trace Theory
(both by Volkov), and Pseudovariety of Universal Algebras (by Volkov and Shevrin).

A certain attention was given also to scientific-popular papers devoted to some interesting
mathematical, especially algebraic, topics. The first experience in this direction was my paper On
periodic and locally finite groups and semigroups (1979) published in the pamphlet “Methodical
Recommendations and Instructions on Specialization” addressed to students-mathematicians of
Ural State University. Later I published three papers in the “Soros Educational Journal”: Identi-
ties in algebra (1996), What a semigroup is (1997), How groups appear when studying semigroups
(1997). The first of them has been reproduced in volume 3 of the encyclopaedia [37] prepared
by the International Soros Science Education Program. Koryakov and Volkov have written some
papers published in the journal for schoolchildren “MIF” (this abbreviation is derived from Rus-
sian “Matematika, Informatika i Fizika” — Mathematics, Informatics, and Physics) issued during
several years by a special school (Lyceum) attached to Ural State University. It is worth especially
noting the paper The finite basis problem for identities by Volkov (1997); the problem figuring in
this title was mentioned above in Section 2. Lastly, I mention my paper The aestheticism of math-
ematics addressed to a broad circle of readers and published in the journal “Izvestiya Ural’skogo
gosudarstvennogo universiteta”, No. 4 (1995).

All senior members of the seminar are university teachers, so some of them succeeded in writing
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teaching books for students. The most activity in this affair was manifested by Baransky, Ovsyan-
nikov, Perminov, (V. V.) Rasin, Repnitskǐı, Shur, Sizyi, Vernikov, and Zamyatin. There are over 50
such teaching books and methodical brochures written by different members of the seminar. They
concern diverse subjects pertaining to both general and special courses: linear algebra, general
algebra, geometry, number theory, mathematical logic, theory of algorithms, graph theory, theory
of varieties, etc. Not giving any long list of such books and brochures, I mention here only several
especially notable samples of textbooks.

The book [38] gives a good contemporary exposition of basic topics in graph theory as well as
presents a detailed discussion of combinatorial algorithms solving optimization problems that arise
frequently in applications. A revised edition of this book (in particular, with a number of simplified
proofs) was printed by the Publishers Lan’ (Fallow-deer) in 2010. The book [39], having joined es-
pecially many contributors from the seminar, covers all basic subjects of the corresponding courses
and provides a rich choice of problems of different levels. The book [40] is the first textbook on this
topic written in Russian. Its main content is devoted to consideration of combinatorial problems
connected with the important notions “periodicity” and “unavoidability”; some combinatorial char-
acteristics of formal languages are considered as well. The book [41] gives a systematic presentation
of a number of important parts of the theory of formal languages and applications of this theory to
the construction of compilers. The books [42] and [43], giving fundamentals of the corresponding
mathematical disciplines, are characterized by a number of interesting peculiarities, in particular,
by a lively style of presentation. The book [44], besides fundamentals of general algebra, presents
different examples of its applications to such topics as binary codes (there is a corresponding sep-
arate section in the book), Boolean functions (a separate chapter), finite automata and regular
languages (a separate chapter).

Another line of our activities concerns school mathematics. There are over 30 books and
brochures for schoolchildren (or, partly, for school teachers) written by some members of the sem-
inar. It would be hardly expediently to describe this line in detail within the present article; I will
characterize apparently the most notable our work in this field. This is the book “Mathematics
5–6. Textbook-Interlocutor” created by a team headed by the present writer whose co-authors
were Gein, Koryakov, and Volkov6. A manuscript of this textbook was awarded at the All-Union
Competition in 1987 and was published in 1989. Subsequently the separate editions of the books
Mathematics 5 and Mathematics 6 (that is, textbooks for the 5th and the 6th class, respectively)
appeared in 1992–2004: four editions in Russian, one edition in Belorussian. Further, two editions
of the Working Copy-Books attached to these textbooks as well as one edition of a book of me-
thodical recommendations “Mathematics 5. Book for Teacher” were published. So there was, as it
is customary to speak, a teaching-methodical complete set consisting of the books mentioned.

One may note in addition that the literary activities of the present writer in mathematics in-
cluded also, since 1969, three teaching-belletristic books, jointly with V. G. Zhitomirsky, addressed
to small children, in particular, under school age7.

Yet another important line of our scientific publications concerns Russian translations of sev-

6A. G. Gein, originally a specialist on Lie algebras, formally does not belong to the scientific school led
by the present writer, but he is closely connected with the seminar, repeatedly attended its meetings and
gave several talks there in different years. Many years ago he as a student attended my lectures on general
algebra and some special seminars, and since the 1986 he became the main co-author of mine in creation
of our textbook together with all the works adjacent to it. Later he wrote quite a number of significant
works devoted to school informatics and in 2000 defended a dissertation for a scientific degree “Doctor of
Pedagogic Sciences”.

7These are Geometry for Kids, Mathematical ABC, and Travels in Geometry Land ; the last one is a
considerably enlarged version of the first book. These books had in all 12 editions in Russian and 26 editions
in 20 other languages.
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eral books by foreign authors. These are the books [43]–[47]. This choice is explained by both
our mathematical interests and a role of these books in the corresponding fields of science. The
monograph [43], being, as already was mentioned in Section 2, one of the pioneering monographs
on semigroup theory, is a classical work in this field of algebra, so it was very important to have
this monograph in Russian. Importance of the book [44] (appeared in English in 1979) is caused
by the fact that this is practically the first summarizing work treating applications of semigroups
to the theories of automata, formal languages and codes in a consecutive and fundamental manner;
by the way, it did not lose its significance up to now. The book [45] (appeared in English for the
first time in 1984) is one of the first teaching books treating diverse applications of general algebra.
Note that monographs [43] and [44] combine traits inherent in both a reference book and a teaching
book, and, for instance, at Ural State University, we used them in a teaching process for lectures
and special seminars. The book [46] (appeared in English in 1998) is the first monograph devoted
to DNA computing, it opens quite a new trend on a junction of computer science and molecular
biology. The book [47] devoted to very actual area is a professional and interactive tutorial.

6. Participation in conferences

As it follows from a remark at the beginning of Section 5 mentioning many hundreds of abstracts
of talks at various conferences, the members of the seminar took part in numerous (definitely
over 350) conferences, symposia, workshops, schools, etc. It is worth, first of all, mentioning
among them All-Union Algebraic Conferences which were the most considerable meetings of Soviet
algebraists for a long while. They were held regularly till 1991 in different algebraic centers of the
Soviet Union and gathered up to several hundreds of participants. The first three such conferences
were mentioned in Section 1. My students began to take part in All-Union Conferences from the
8th one, which was held in 1967; I participated in the preceding ones as well. Perhaps it is not
without interest for the reader to learn a list of all these conferences.

Here is this list: I – Moscow, 1958; II – Moscow, 1959; III – Sverdlovsk, 1960; IV – Kiev, 1962;
V – Novosibirsk, 1963; VI – Minsk, 1964; VII – Kishinev, 1965; VIII – Riga, 1967; IX – Gomel,
1968; X – Novosibirsk, 1969; XI – Kishinev, 1971; XII – Sverdlovsk, 1973; XIII – Gomel, 1975; XIV
– Novosibirsk, 1977; XV – Krasnoyarsk, 1979; XVI – Leningrad,1981; XVII – Minsk, 1983; XVIII
– Kishinev, 1985; XIX – Lvov, 1987; XX – Novosibirsk, 1989; XXI – Barnaul, 1991.

It should be noted that the last two conferences were in fact international; they were dedi-
cated, respectively, to the 80th birthday of Academician A. I. Mal’cev (1909–1967) and to the 70th
birthday of Corresponding Member of the Academy of Sciences of USSR A. I. Shirshov (1921–1981).

Almost every year certain conferences of All-Russian or regional status are attended by some
representatives of the seminar. But there were very many international conferences, both in Russia
and in foreign countries, which members of the seminar participated in. The leader of the seminar
began to participate in conferences abroad in 1967. It was 1981 when I for the first time came to such
a conference together with several of my students (Baransky, Martynov, Sukhanov, Trakhtman,
and Vazhenin), it happened at the International Conference on Semigroup Theory in Szeged; I
was a member of the Organizing Committee of that conference. Since the 1980s my disciples
took part with increasing activity in various mathematical meetings abroad, and many members of
the seminar visited on this occasion the following countries (quite a number of them repeatedly):
Australia, Austria, Belgium, Brazil, Bulgaria, Canada, China, Czechoslovakia (since the beginning
of the 1990s — separately the Czech Republic and Slovakia), Denmark, Estonia, Finland, France,
Germany, Great Britain, Hong Kong, Hungary, Iceland, India, Ireland, Israel, Italy, Japan, Latvia,
Mexico, Netherlands, Poland, Portugal, Romania, Serbia, Spain, Sweden, Ukraine, the USA. Such
a list can be somewhat extended if one takes into account conferences attended by the former
members of the seminar who work abroad now.
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Obviously it would not be reasonable to give here a list of all conferences with our participation.
I remark only that in the 21st century the seminar was represented, as a rule, at more than
10 international conferences every year, and I give as an illustration the corresponding data for the
year 2003. The titles of a majority of the conferences listed there show in addition some components
of the spectrum of our research at the beginning of the century.

The 7th International Conference “Developments in Language Theory”, Szeged, Hungary, — a
speaker Ananichev;

International Conference “Lattices, Universal Algebra, and Applications”, Lisbon, Portugal, the
18th IEEE Symposium on Logic in Computer Science, Ottawa, Canada, the 18th International Joint
Conference on Artificial Intelligence, Acapulco, Mexico, International Seminar “Graph Coloring”,
Castle Dagstuhl, Germany, and the 44th Annual IEEE Symposium on Foundations of Computer
Science, Cambridge, USA, — a speaker Bulatov;

International Conference “Kolmogorov and Contemporary Mathematics”, Moscow, Russia, —
a speaker Volkov;

International meeting on Semigroups and Related Topics, Braga, Portugal, — a member of the
Program Committee Volkov;

Euresco Conference “Symmetries and Ordered Structures under the Influence of Model Theory
and Combinatorics”, Hattingen, Germany, — an invited speaker Volkov;

The IV International Conference on Words, Turku, Finland, — an invited speaker Volkov,
speakers Ananichev and Shur;

NATO Advanced Study Institute on Structural Theory of Automata, Semigroups, and Uni-
versal Algebra, Montreal, Canada, — invited lecturers Shevrin, Volkov, and a former member of
the seminar Krokhin, a speaker Semigrodskih; among the listeners there were (I. A.) Goldberg,
Pleshcheva, and Vernikov;

International Conference “Mal’cev Readings”, Novosibirsk, Russia, — an invited speaker Shevrin,
speakers Sukhanov and Vernikov.

Thus representatives of the seminar “Algebraic Systems” participated in 12 international con-
ferences in 2003. In 2004–2016 they attended 197 international conferences; as a rule, in each year
more than 10 and sometimes more than 20 conferences were attended by representatives of the
seminar. The maximum for all the preceding years was reached in 2015, namely, 29 conferences,
which took place in 15 countries, among them 6 conferences in Russia.

7. Organization of conferences

For the first four decades the seminar was involved (in full or in part) in organization of several
algebraic conferences. First of all, a principal role was played by it in organization of all three All-
Union Symposia on Semigroup Theory held in Sverdlovsk by Ural State University (1969, 1978, and
1988); in particular, the leader of the seminar was the Chairman of the Organizing Committees of
these symposia. We held also the Regional Conference of Young Scientists “Algorithms, Automata,
and Semigroups” in Sverdlovsk (1982). Further, the enlarged 500th meeting of our seminar (1985)
may be regarded as a conference, see some details in Section 9.

Several members of the seminar took part in organization of the XII All-Union Algebraic Con-
ference held in Sverdlovsk (1973) as well as two International Conferences on Semigroups held in
St. Petersburg (1995, 1999): Ural State University was an official co-organizer of these conferences.
The former of the conferences in St. Petersburg was dedicated to the 80th birthday of E. S. Ljapin
(1914–2005), the latter was held also in honor of Ljapin.

The most considerable algebraic meeting held in Ekaterinburg was the International Algebraic
Conference dedicated to the centenary of the birthday of P. G. Kontorovich and to the 70th birthday
of the present writer. This conference was organized by Ural State University and the Institute
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of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences and took
place from August 29 to September 3, 2005. The Organizing Committee headed by the Rector of
the University V. E. Tretjakov and the Director of the Institute V. I. Berdyshev included, among
the others, several representatives of the seminar: Baransky (Vice-Chairman), Popov, Repnitskǐı,
Sukhanov, Volkov (Secretary). The seminar in all (with the exception of its leader who because
of a natural reason was free of any organizing duties that time) was attached to the Organizing
Committee for carrying out a lot of tasks usually arising in such arrangements. The Program
Committee consisted of 20 major algebraists from Russia (9 members), the USA (3 members),
Germany (2 members), Austria, Belorussia, Canada, Great Britain, Hungary, and Israel (by 1
member). The seminar was represented in the Program Committee by Baransky as one of the
Co-Chairmen as well as by two former members of it, Kharlampovich and Sapir.

The conference gathered about 200 participants from 23 countries. The following five sections
worked: Groups, Semigroups, Rings, Universal Algebras and Lattices, and Applications. 21 plenary
lectures, 15 section lectures and 93 contributed talks at the sections were given. It is interesting to
note that the seminar “Algebraic Systems” celebrated a certain jubilee at the conference: one of
the plenary sessions was combined just with the 1000th meeting of our seminar; see the program
of that meeting in Section 9.

The next international conferences in organization of which a key role was played by some
members of the seminar were devoted to computer science and the theory of formal languages.
The first of them belonged to the series of annual International Computer Science Symposia in
Russia (CSR). This series started in 2006 (CSR 2006) by a symposium held in St. Petersburg.
Just the second one, CSR 2007, was organized in Ekaterinburg by Ural State University and took
place on September 3–7, 2007. The Organizing Committee chaired by Volkov included also his
students (S. V.) Goldberg, Povarov, and Pribavkina. The Program Committee consisted of 35
leading computer scientists from 13 countries and was co-chaired by V. Diekert (Germany) and
A. Voronkov (Great Britain). Besides plenary meetings, two parallel sections worked: Theoretical
Computer Science, Applied Computer Science and Technology.

The Symposium CSR 2007 was accompanied by three satellite events: the Workshop on Com-
putational Complexity and Decidability in Algebra, the Workshop on Infinite Words, Automata
and Dynamics, and the Russian Summer School in Information Retrieval. The total number of
participants of CSR 2007 and its satellite events was about 150, including 40 foreign participants
from 18 countries.

The conference proceedings were published by Springer as volume 4649 of the series “Lecture
Notes in Computer Science” (the editors Diekert, Volkov, and Voronkov).

The Symposia CSR 2008 – CSR 2012 took place, respectively, in Moscow, Novosibirsk, Kazan,
St. Petersburg, and Nizhny Novgorod. The 8th Symposium CSR was held again in Ekaterinburg on
June 25–29, 2013; the organizers were actually the same, by this time the name of the university-
organizer had been changed and became Ural Federal University: this university appeared in 2011
as a result of merger of Ural State University and Ural Technical University. The Organizing
Committee of the Symposium CSR 2013 chaired by Shur included, in particular, Pribavkina and
Volkov. The Program Committee chaired by Bulatov consisted of 23 renowned specialists from
12 countries. It is interesting to note that among the main speakers of the symposium there was
M. Szegedy (USA), two-time winner of the Godel Prize, who gave the opening lecture.

There were three satellite events: the 2nd Workshop on Current Trends in Cryptology, the 4th
Workshop on Program Semantics, Specification and Verification: Theory and Applications, and
the 6th School for students and young researchers Computer Science Ekaterinburg Days, the topic
of the latter was “Algorithms and Complexity”. Altogether, more than 100 scientists, including 30
foreign colleagues, participated in CSR 2013 and its satellite events.

The conference proceedings appeared as volume 7913 in Springer’s series “Lecture Notes in
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Computer Science” (the editors Bulatov and Shur).

Another series of conferences where we were to have a role of the organizers is the series of
International Conferences Developments in Language Theory (DLT). This is the main conference
series in formal language theory; it was founded by the famous computer scientists G. Rozenberg
and A. Salomaa in 1993. Since 2001 DLT conferences became annual, and they take place in Europe
in every odd year and outside Europe in every even year. The first such conference in Russia was
held in Ekaterinburg by Ural Federal University on August 26–29, 2014; this was the 18th DLT
conference. (Recall that Ekaterinburg is located in Asia, so that it was quite eligible to host DLT
2014 here.) In the Organizing Committee of the Conference DLT 2014 chaired by Volkov, a key
role was played by the same team as at the Symposium CSR 2013: the chairman, Pribavkina, and
Shur. The Program Committee co-chaired by Shur and Volkov included 18 prominent researchers
from 12 countries.

The 7th School for students and young researchers Computer Science Ekaterinburg Days with
the topic “Strings, Languages, Automata” was held as a satellite event of DLT 2014. About 70
participants in the conference and the school came from 20 countries including very remote ones,
such as Brazil and New Zealand.

The conference proceedings were published by Springer as volume 8613 of “Lecture Notes in
Computer Science” (the editors Shur and Volkov). Note that revised and expanded versions of
selected papers presented at DLT 2014 formed a special issue of the “Journal of Foundations of
Computer Science” (vol. 27, No. 2 (2016)), the guest editor of which was Shur.

It should be also noted that some representatives of the seminar were included in the organizing
or program committees of many other conferences, both in Soviet Union (or Russia) and abroad.
This concerns first of all the present writer who took part in such committees from the end of the
1960s. For the last two decades this kind of activities is rather typical for Volkov, and in the last
years the same takes place for Shur as well. I mention also Baransky who had been participating
for some years in the organization of several conferences, both All-Russian and regional, devoted
to topics of information security.

8. Membership in editorial boards

Since 1972 the leader of the seminar enters the Editorial Board of the journal “Izvestiya VUZ.
Matematika” which is one of the central All-Russian (before 1992 — All-Union) mathematical
journals. By comparison with my membership in other editorial boards, the work in this Editorial
Board was the most intensive. Indeed, during 45 years I had to consider over 650 papers submitted
to this journal and devoted to algebraic (or, in very rare cases, number-theoretic) subjects. As
usual, it was necessary to select an appropriate referee for each of them; for more than 60 papers,
I myself acted as the referee.

It is notable that from the beginning of the 1980s till 2010 there was a tradition to publish
systematically separate issues of this journal entirely devoted to one or another branch of math-
ematics and compiled by some member of the Editorial Board. Such issues were printed with a
considerably greater circulation. I compiled and edited 5 such issues devoted to topical subjects.
Here is the corresponding list, where a thematic peculiarity of each issue is given: i) 1982, No. 11
– varia; ii) 1985, No. 11 – the theory of varieties of algebraic systems; iii) 1989, No. 6 – again the
theory of varieties; iv) 1995, No. 1 – the theory of pseudovarieties of algebraic systems; v) 2010,
No. 1 – certain connections between the theories of finite automata and formal languages. I should
note that the last issue was compiled and edited by me jointly with Volkov. Among the authors of
papers in all these issues, there were quite a number of mathematicians specially invited for con-
tributing to this enterprise. In the first three issues, they are such distinguished Soviet algebraists
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as Yu. A. Bakhturin, L. A. Bokut’, Z. I. Borevich, A. R. Kemer, Yu. N. Mal’cev, A. V. Mikhalev,
A. Yu. Ol’shanskii, L. A. Skornjakov, A. I. Starostin, and E. I. Zel’manov (future Fields medalist).
In the other two issues, they are the following renowned foreign specialists in the corresponding
areas of mathematics: J. Almeida, S. Margolis, J.-E. Pin, P. Weil, and, respectively, V. Diekert,
T. Harju, D. Nowotka, M. Droste. The members of our seminar were represented among the authors
in all these issues.

It was 1976 when I was invited to enter the Editorial Board of “Semigroup Forum”, which is
an international journal on the theory of semigroups printed in the USA. In 1979–1988 I was a
member of the Editorial Board of “Simon Stevin”, an international journal printed in Belgium.
The current Editorial Board of “Semigroup Forum” contains two representatives of Russia, and
both of them are members of our seminar: the present writer and Volkov who was invited in 1998
and became one of the Executive Editors since 2003. In 2010 Volkov entered the Editorial Board
of “International Journal of Algebra and Computation” as well.

Now I mention the periodical editions on mathematics published by Ural State University. This
is first of all “Matematicheskie zapiski” already mentioned above. After P. G. Kontorovich who
was the first Editor-in-Chief since the beginning of the 1960s, the present writer carried out the
same functions in 1969–1989. Since 1982 the Editorial Board of “Matematicheskie zapiski” was
supplemented by Volkov, since 1987 it was supplemented by Koryakov. After a nine-year break
publishing periodical mathematical editions at our University resumed with the journal “Izvestiya
Ural’skogo gosudarstvennogo universiteta. Matematika i mehanika”; the Editorial Board consisted
of 7 members including Shevrin as the Vice-Editor-in-Chief and Volkov as the Secretary. This
journal was published till 2006. By the way, the first paper about our seminar [4] appeared just in
the first issue of it. In that journal, there was a rubric “Scientific life”, where we regularly published
information about the meetings of our seminar.

In 2008–2010 a new series of “Izvestiya Ural’skogo gosudarstvennogo universiteta” existed, with
the heading “Matematika, mehanika i informatika”. Among 14 members of its Editorial Board,
there were 4 representatives of our seminar: Baransky, Shevrin (one of two Vice-Editors-in-Chief),
Shur, and Volkov (Secretaries).

There were some single editions that had the editorial boards entirely consisted of members of
the seminar. These are mainly the materials of three All-Union Symposia on Semigroup Theory
mentioned above. For each of these symposia, we prepared a collection of abstracts of talks at this
symposium. Here are the Editorial Boards for these collections, everywhere with Shevrin as the
Editor-in-Chief: for the 1st Symposium, Golubov, Shevrin, and Vazhenin; for the 2nd Symposium,
Baransky, Golubov, Shevrin, Vazhenin, and Zamyatin; for the 3rd Symposium, Baransky, Golubov,
Shevrin, Sukhanov, Vazhenin, Volkov, and Zamyatin. At the 2nd Symposium, a separate pamphlet
with abstracts of plenary lectures was also printed (edited by Shevrin).

Another our useful publication was closely connected with the symposia mentioned. After each
of them we prepared a collection of unsolved problems in semigroup theory. Some of them were
posed directly at the symposium, mostly at a special session devoted to open problems; some prob-
lems were sent by their authors later, among such authors there were not only those ones who
attended the symposium. For the first collection, a part of problems was taken also from a note-
book started in 1965 by the present writer who proposed personally some semigroupists to write
down open problems in this notebook for a subsequent publication somewhere. (It is so notable
that Prof. A. H. Clifford (1908–1992), a patriarch in semigroup theory, was among the first ones
who contributed to this collection. I first met him in 1966 at the International Congress of Math-
ematicians in Moscow.) The collection mentioned was entitled “Sverdlovsk Tetrad” (Sverdlovsk
notebook) and published as a pamphlet, which afterwards was distributed among algebraists inter-
ested in semigroup theory. Thus there were three editions of “Sverdlovsk Tetrad” (1969, 1979, and
1989). Here are the Editorial Boards of them, with the same Editor-in-Chief as for the collections
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of abstracts at the symposia: for the 1st edition, Shevrin, Vazhenin; for the 2nd one, Baransky,
Golubov, Shevrin, and Vazhenin; for the 3rd one, Baransky, Golubov, Shevrin, and Volkov. There
is English translation of the 1st edition, which was revised by omitting some of the problems (as a
rule, those ones which were solved by that time), see [48]. In each of the subsequent editions there
was a special section with comments concerning problems from the previous edition(s) that had
been (completely or partially) solved by that time.

The Editorial Board of the collection of abstracts at the International Algebraic Conference
held in Ekaterinburg in 2005 consisted of four persons, two of which are members of our seminar:
Ovsyannikov and Vernikov (Editor-in-Chief). I remark also that two present members of the
seminar and one former member were mentioned in Section 7 as the editors of the materials relating
to the international conferences CSR 2007, CSR 2013, and DLT 2014 characterized in that section.

I add yet that the Editorial Board of the journal “MIF” mentioned in Section 5 included two
representatives of the seminar: Rasin (Editor-in-Chief) and Volkov.

Lastly, I would like to note that some former members of the seminar working abroad were
invited to enter the editorial boards of several journals: Kharlampovich — in “International Journal
of Algebra and Computation”, since 1997; Krokhin — in “Multiple-Valued Logic”, 1999–2002; Sapir
— in ”Algebra Universalis”, 1999–2004, ”International Journal of Algebra and Computation”,
2000–2015 (since 2010 Managing Editor), ”Algebra and Discrete Mathematics”, since 2003, as well
as ”Algebra and Combinatorics” (book series), since 2001.

9. Meetings and speakers

The first meeting of the seminar took place on November 2, 1966; so the 50th anniversary of
our work was celebrated in November, 2016. Usually we hold about 25 meetings per year; by the
anniversary mentioned 1246 meetings had been held. At each meeting, we, as a rule, listen and
discuss one talk of duration either about 2 hours (with a break) or a “long” hour; sometimes there
may be two shorter talks or, very rarely, a greater number of reports. On the other hand, separate
talks may take 2–3 meetings; talks of such duration were rather frequent during the first years
of the work of our seminar. The record of the duration of a talk (6 meetings) was mentioned in
Section 8.

As was mentioned in the previous section, information about the meetings of our seminar was
regularly published in the journal “Izvestiya Ural’skogo gosudarstvennogo universiteta. Matematika
i mehanika” during the period of its existence (1998–2005). More concretely, this was done in issues
1–4 and 6–8 of this journal and embraced the meetings from the 800th one to the 1000th one. The
corresponding reports were devoted to each meeting separately, they indicated its number and the
date, often included the abstracts of talks, which usually were rather informative (not infrequently
with the formulations of theorems and, if necessary, even with required definitions). By the by,
abstracts of the foreign speakers were given in English.

There is a diary of the seminar which is kept by the secretary of the seminar. I should remember
Vazhenin (1945–2003) who was the permanent secretary from the very beginning of our work up
to his last days. After him Popov was the secretary for 4 years, and then Shur changed him in this
job. From the diary we can derive statistics we would like to know. Every hundredth meeting has
a special program: we sum up some statistics, discuss both certain results of the period passed and
possible prospects of research for forthcoming years. Four meetings of the seminar were enlarged;
information about them is given in the next paragraphs.

The 300th meeting took place on June 30, 1978, just after the 2nd All-Union Symposium on
Semigroup Theory mentioned in section 7, and many participants in that symposium attended this
meeting. The 415th meeting took place on June 30, 1982, and it was combined with a session of
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the Regional Conference “Algorithms, Automata, and Semigroups” also mentioned in section 7.
The 500th meeting was especially considerable: nominally one meeting, in reality it was divided

into five long sessions held during three days, from January 31 to February 2, 1985. This meeting
in essence turned into a peculiar All-Union conference, it gathered over 90 participants from 20
towns of the Soviet Union and had 38 speakers.

The 1000th meeting took place on September 1, 2005, and was continuing the whole day. As
was mentioned in Section 7, it was combined with one of the plenary sessions of the International
Algebraic Conference, so it gathered many algebraists from different countries. Here is the program
of this jubilee meeting.

L. N. Shevrin (Ekaterinburg), The seminar “Algebraic Systems” by the 1000th meeting.
O. G. Kharlampovich (Montreal), Decidability of the elementary theory of the free group.
V. Yu. Popov (Ekaterinburg), Status and diameter of semigroups.
A. A. Bulatov (Vancouver), Local methods in CSPs.
L. Márki (Budapest), Universal aspects of general radical theory.
F. Pastijn (Milwaukee), The lattice of varieties of idempotent semirings.
A. M. Shur (Ekaterinburg), On complexity of formal languages.
R. Pöschel (Dresden), Completeness and rigidity for operations and relations.
As the reader can see, among the speakers at this meeting, besides the leader of the seminar,

there were two of its current participants and two former members who came from Montreal and
Vancouver. The other speakers belong to the group of our foreign colleagues who visited us before
and gave their talks at the seminar in different years. For instance, L. Márki was just the first
foreign speaker at our seminar and first gave his talk at the seminar on August 29, 1989.

When we were planning the 1200th meeting, which took place on December 4, 2014, a certain
summarizing statistics had been prepared. Here are several principal details of this statistics. By
that date there had been 301 speakers in all at the seminar who gave 1673 talks or reports. The
set of speakers has the following partition into three groups: a) 135 speakers from Ekaterinburg
(Sverdlovsk) including those ones who work in other towns now, in particular, abroad (some of
them repeatedly visited the seminar by coming to Ekaterinburg for several days from the place of
their current stay); b) 145 speakers from 48 other towns of the former Soviet Union; c) 21 speakers
properly from 15 foreign countries, namely, from Australia, Austria, Canada, China, the Czech
Republic, France, Germany, Great Britain, Hungary, India, Italy, Poland, Portugal, Spain, the
USA.

The speakers from Ekaterinburg have given 1362 talks (or, sometimes, shorter reports), the
speakers from the other two groups have given, respectively, 280 and 31 talks. Naturally, now all
mentioned numbers have increased in due course.

For each town represented by at least one speaker at our seminar, we know the set of all such
speakers and the number of talks given by every of them. As to Ekaterinburg, the total quantity
of speakers and the total number of talks (reports) given by them are shown above. I show similar
numbers for several towns from an upper part of the list of other towns (in brackets, the number
of the corresponding talks is given): Novosibirsk – 19 (39), Moscow – 18 (28), Leningrad (later
St. Petersburg) – 11 (14), Omsk – 10 (29), Saratov – 10 (20). It is interesting to notice that, as
one easily can deduce, the speakers from these five towns form about a half of the whole set of
speakers from 48 towns of the second mentioned group, and the total number of talks given by
them is approximately in the same relation to the corresponding quantity 280 talks.

As to the regular members of the seminar, I give in the next paragraph an upper part (ten
places) of a list of the most productive speakers and show the number of the talks given by each of
the mentioned persons by the 1200th meeting, i. e., by December, 2014.

Volkov – 107; Vazhenin – 75, the second place for him may be considered as surprising, because
he passed away 14 years ago, but during the first decades of our work he permanently was the
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most active speaker at the seminar; Shevrin – 72; Sapir – 66, which is surprising, since he left
Ekaterinburg in 1990 and visited us only once afterwards (in 1990 he was the second one in the list
under consideration); Vernikov – 60; Kharlampovich – 58, which may seem surprising, since she
left Ekaterinburg in 1990, but in reality she visits the native city every year (sometimes twice) and
always gives a talk at the seminar; Baransky – 50; Repnitskǐı – 46; Popov – 46; Golubov – 44.

In a similar list of the foreign speakers at the seminar, the first place is occupied by L. Márki
(Budapest), F. Pastijn (Milwaukee), R. Pöschel (Dresden), and J. Tu̇ma (Prague) — by 3 talks.

Quite a number of my scientific disciples have been or had been the regular members of the
seminar for several decades, giving talks, participating in discussions, and contributing to creation
of a propitious atmosphere at our meetings. I would like to list here those of them who are connected
with the seminar for many years and continue their regular participation in its work up to now; for
each one, I indicate the year when he/she began attending the meetings of the seminar. They are
Vitaly Baransky (since the first meeting, 1966), Mikhail Volkov (since 1973), Vladimir Repnitskǐı
(since 1974), Alexander Ovsyannikov (since 1975), Eugene Perminov (since 1977), Boris Vernikov
(since 1980), Dmitry Ananichev (since 1991), Olga Finogenova (since 1992), Arseny Shur (since
1993). It may be said that these mathematicians, together with the present writer, form a current
core of the seminar. One may regard Olga Kharlampovich as a person adjacent to this core. She
began attending the seminar in 1978, and, as it was noted above, although she left Ekaterinburg
more than quarter a century ago, she visits us every year and belongs to the most productive
speakers at the seminar.

With warm feelings I also remember my talented and active students passed away for the last
14 years: Yuri Vazhenin, Alexei Zamyatin, Igor Koryakov, Veniamin Rasin, Eugene Sukhanov.
The reader can observe that their names repeatedly appear in the text of this article including the
list of references.

10. Concluding remarks

Viability of a scientific collective for a long time and its stability depend on many factors. Not
discussing in detail this theme here, I want only to remark that one of such factors is more or less
regular replenishment of the corresponding group with younger researches. Applied to the seminar
under discussion, it was a matter of my permanent care. And there are reasons to be satisfied that
several of my scientific children and grandchildren now continue this line and successfully train
some representatives of a further generation for research work; a confirmation of this assertion can
be seen in Section 3 and in some parts of Section 4. This is promoted, in particular, by means
of organizing certain “subseminars”. More than 20 years ago Baransky, Vazhenin, and Sukhanov
organized, respectively, their seminars on combinatorics, algorithmic problems of algebra, and
discrete mathematics. At present Baransky leads the seminar “Algorithms and Combinatorics”,
Volkov and Ananichev lead the seminar “Computer Science”, Popov leads the seminar “Intelligent
Systems”, Shur leads the seminar “Discrete Mathematics”.

Now representatives of four scientific generations may take part at a meeting of the seminar
“Algebraic Systems”. One may hope that various participants in the seminar will successfully
continue their investigations both in topics that have become traditional for the seminar and in
new topics being assimilated at present.
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Abstract: Makhnev and Samoilenko have found parameters of strongly regular graphs with no more than
1000 vertices, which may be neighborhoods of vertices in antipodal distance-regular graph of diameter 3 and
with λ = µ. They proposed the program of investigation vertex-symmetric antipodal distance-regular graphs
of diameter 3 with λ = µ, in which neighborhoods of vertices are strongly regular. In this paper we consider
neighborhoods of vertices with parameters (25, 8, 3, 2).

Key words: Strongly regular graph, Distance-regular graph.

Introduction

We consider undirected graphs without loops and multiple edges. Given a vertex a in a graph
Γ, we denote by Γi(a) the subgraph induced by Γ on the set of all vertices, that are at the distance
i from a. The subgraph [a] = Γ1(a) is called the neighborhood of the vertex a. Let Γ(a) = Γ1(a),
a⊥ = {a} ∪ Γ(a). If graph Γ is fixed, then instead of Γ(a) we write [a]. For the set of vertices X of
graph Γ through X⊥ denote ∩x∈Xx⊥.

Let Γ be an antipodal distance-regular graph of diameter 3 and λ = µ, in which neighborhoods
of vertices are strongly-regular graphs. Then Γ has intersection array {k, µ(r − 1), 1; 1, µ, k}, and
spectrum k1,

√
k

f
,−1k,−

√
k

f
, where f = (k + 1)(r − 1)/2. In the case r = 2 we obtain Taylor’s

graph, in which k′ = 2µ′. Conversely, for any strongly regular graph with parameters (v′, 2µ′, λ′, µ′)
there exists a Taylor’s graph, in which neighborhoods of vertices are strongly regular with relevant
parameters.

In [1]there were chosen strongly-regular graphs with no more than 1000 vertices, which may be
neighborhoods of vertices of antipodal distance-regular graph of diameter 3 and λ = µ. There is
provided a research program of the study of vertex-symmetric antipodal distance-regular graphs
of diameter 3 with λ = µ, in which neighborhoods of vertices are strongly regular with parameters
from Proposition 1.

Proposition 1. Let ∆ be a strongly-regular graph with parameters (v, k, λ, µ). If (r − 1)k =
v−k−1, v ≤ 1000 and number (v+1)(r−1) is even, then either r = 2, or parameters (v, k, λ, µ, r)
belong to the following list:

1This work is partially supported by RSF, project 14-11-00061-P (Theorem 1) and by the program of the
government support of leading universities of Russian Federation, agreement 02.A03.21.0006 from 27.08.2013
(Corollary 1).
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(1) (16, 5, 0, 2, 3), (25, 8, 3, 2, 3), (49, 12, 5, 2, 4), (64, 21, 8, 6, 3), (81, 16, 7, 2, 5),
(81, 20, 1, 6, 4), (85, 14, 3, 2, 6), (99, 14, 1, 2, 7), (100, 33, 8, 12, 3), (121, 20, 9, 2, 6),
(121, 30, 11, 6, 4), (121, 40, 15, 12, 3), (126, 25, 8, 4, 5), (133, 44, 15, 14, 3), (169, 24, 11, 2, 7),
(169, 42, 5, 12, 4), (169, 56, 15, 20, 3), (176, 25, 0, 4, 7), (196, 39, 14, 6, 5), (196, 65, 24, 20, 3);

(2) (225, 28, 13, 2, 8), (225, 56, 19, 12, 4), (243, 22, 1, 2, 11), (256, 51, 2, 12, 5), (256, 85, 24, 30, 3),
(261, 52, 11, 10, 5), (288, 41, 4, 6, 7), (289, 32, 15, 2, 9), (289, 48, 17, 6, 6), (289, 72, 11, 20, 4),
(289, 96, 35, 30, 3), (305, 76, 27, 16, 4), (325, 54, 3, 10, 6), (351, 50, 13, 6, 7), (351, 70, 13, 14, 5),
(352, 39, 6, 4, 9), (361, 36, 17, 2, 10), (361, 72, 23, 12, 5), (361, 90, 29, 20, 4), (361, 120, 35, 42, 3);

(3) (400, 57, 20, 6, 7), (400, 133, 48, 42, 3), (441, 40, 19, 2, 11), (441, 88, 7, 20, 5), (441, 110, 19, 30, 4),
(484, 161, 48, 56, 3), (495, 38, 1, 3, 13), (505, 84, 3, 16, 6), (507, 46, 5, 4, 11), (512, 73, 12, 10, 7),
(529, 44, 21, 2, 12), (529, 66, 23, 6, 8), (529, 88, 27, 12, 6), (529, 132, 41, 30, 4), (529, 176, 63, 56, 3),
(540, 49, 8, 4, 11), (576, 115, 18, 24, 5);

(4) (625, 48, 23, 2, 13), (625, 156, 29, 42, 4), (625, 208, 63, 72, 3), (640, 71, 6, 8, 9), (649, 72, 15, 7, 9),
(649, 216, 63, 76, 3), (676, 75, 26, 6, 9), (676, 135, 14, 30, 5), (704, 37, 0, 2, 19),
(729, 52, 25, 2, 14), (729, 104, 31, 12, 7), (729, 182, 55, 42, 4), (736, 105, 20, 14, 7),
(768, 59, 10, 4, 13), (784, 261, 80, 90, 3);

(5) (837, 76, 15, 6, 11), (841, 56, 27, 2, 15), (841, 84, 29, 6, 10), (841, 140, 39, 20, 6),
(841, 168, 47, 30, 5), (841, 210, 41, 56, 4), (841, 280, 99, 90, 3), (847, 94, 21, 9, 9),
(848, 121, 24, 16, 7), (901, 60, 3, 4, 15), (961, 60, 29, 2, 16), (961, 120, 35, 12, 8),
(961, 160, 9, 30, 6), (961, 192, 23, 42, 5), (961, 240, 71, 56, 4), (961, 320, 99, 100, 3),
(1000, 111, 14, 12, 9).

Graphs with local subgraphs having parameters (64, 21, 8, 6), (81, 16, 7, 2), (85, 14, 3, 2) and
(99, 14, 1, 2) were investigated in [2], [3], [4] and [5]. In this article we investigate parameters
(25, 8, 3, 2, 3), i.e. this graph is locally 5 × 5-grid. In [6] it is proved that distance-regular locally
5× 5-grid of diameter more then 2 is either isomorphic to the Johnson’s graph J(10, 5) or has an
intersection array {25, 16, 1; 1, 8, 25}.

Theorem 1. Let Γ be a distance-regular graph with intersection array {25, 16, 1; 1, 8, 25}, G =
Aut(Γ), g is an element of prime order p in G and Ω = Fix(g) contains exactly s vertices in t
antipodal classes. Then π(G) ⊆ {2, 3, 5, 13} and one of the following assertions holds:

(1) Ω is empty graph and p ∈ {2, 3, 13};
(2) p = 5, t = 1, α3(g) = 0, α1(g) = 50l + 25 and α2(g) = 50− 50l;
(3) p = 3, s = 3, t = 2, 5, 8, α3(g) = 0, α1(g) = 30l + 16− 11t and α2(g) = 62− 30l + 8t;
(4) p = 2, and either s = 1, Ω is t-clique, t = 2, 4, 6, α3(g) = 2t, α1(g) = 20l − t + 6

and α2(g) = 72 − 20l − 2t, or s = 3, t ≤ 8, t is even, α3(g) = 0, α1(g) = 20l − 11t + 6 and
α2(g) = 72− 20l + 8t.

Corollary 1. Let Γ be a distance-regular graph with intersection array {25, 16, 1; 1, 8, 25} and a
group G = Aut(Γ) acts transitively on the set of vertices of Γ. Then one of the following assertions
holds:

(1) Γ is a Cayley graph, G is the a Frobenius group with the kernel of order 13 and with the
complement of order 6;

(2) Γ is a arc-transitive Maton’s graph and the socle of G is isomorphic to L2(25);
(3) G is an extension of a group Q of order 212 by the group T = L3(3), |Q : Q{F}| = 2, T{F}

is an extension of group E9 by SL2(3), T acts irreducibly on Q and for an element f of order 13
in G we have CQ(f) = 1.
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1. Proof of the Theorem

Note that there is Delsarte boundary (proposition 4.4.6 from [7]) of maximum order of clique in
distance-regular graph with intersection array {25, 16, 1; 1, 8, 25} and spectrum 251, 526,−125,−526

no more than 1− k/θd = 1 + 25/5 = 6. If C is 6-clique in Γ, then each vertex not in C is adjacent
to 0 or to b1/(θd + 1) + 1− k/θd = 2 vertices in C.

Lemma 1. Let Γ be a distance-regular graph with intersection array {25, 16, 1; 1, 8, 25}, G =
Aut(Γ) and g ∈ G. If ψ is the monomial representation of a group G in GL(78,C), χ1 is the
character of the representation ψ on subspace of eigenvectors of dimension 26, corresponding to
the eigenvalue 5, χ2 is the character of the representation ψ on subspace of dimension 25, then
χ1(g) = (10α0(g)+2α1(g)−α2(g)−5α3(g))/30, χ2(g) = (α0(g)+α3(g))/3−1. If |g| = p is prime,
then χ1(g)− 26 and χ2(g)− 25 are divided by p.

P r o o f. We have

Q =




1 1 1 1
26 26/5 −13/5 −13
25 −1 −1 25
26 −26/5 13/5 −13


 .

Therefore χ1(g) = (10α0(g) + 2α1(g)− α2(g)− 5α3(g))/30. Substituting α2(g) = 78− α0(g)−
α1(g)− α3(g), we obtain χ1(g) = (11α0(g) + 3α1(g)− 4α3(g))/30− 13/5.

Similarly, χ2(g) = (25α0(g) − α1(g) − α2(g) + 25α3(g))/78. Substituting α1(g) + α2(g) =
78− α0(g)− α3(g), we obtain χ2(g) = (α0(g) + α3(g))/3− 1.

The remaining assertions follow from Lemma 1 in [8]. The proof is complete. ¤

Let further in the paper Γ be a distance-regular graph with intersection array {25, 16, 1; 1, 8, 25},
G = Aut(Γ), g is an element of prime order p in G and Ω = Fix(g).

Lemma 2. If Ω is an empty graph, then either p = 13, α1(g) = 26 and α2(g) = 52, or p = 3,
α3(g) = 9s+6, s < 8, α1(g) = 54+12s−30l and α2(g) = 18−21s+30l, l ≤ 5, or p = 2, α3(g) = 0,
α1(g) = 20l + 6 and α2(g) = 72− 20l, l ≤ 3.

P r o o f. Let Ω be an empty graph and αi(g) = pwi for i > 0. Since v = 78, we have
p ∈ {2, 3, 13}.

Let p = 13. Then α3(g) = 0, α1(g) + α2(g) = 78 and χ1(g) = (2α1(g) − α2(g))/30 = 13(w1 −
2)/10. This implies α1(g) = 26 and α2(g) = 52.

Let p = 3. Then χ2(g)−25 = α3(g)/3−26 is divided by 3, α3(g) = 9s+6, s ≤ 8 and α2(g) = 72−
9s−α1(g). Furthermore, the number χ1(g) = (2α1(g)−α2(g)−45s−30)/30 = (3w1−12s−34)/10
is congruent to 2 modulo 3. This implies α1(g) = 54 + 12s− 30l and α2(g) = 18− 21s + 30l, l ≤ 5.
In case s = 8 we have α3(g) = 78 and 〈g〉 acts regularly on each antipodal class. By lemma 4 in [9]
3 must divide k + 1 = 26, we have a contradiction.

Let p = 2. Then α3(g) = 0, α1(g) + α2(g) = 78, the number χ1(g) = (α1(g) − 26)/10 is even,
α1(g) = 20l + 6 and α2(g) = 72− 20l, l ≤ 3. ¤

In Lemmas 3–6 it is assumed that there are t antipodal classes intersecting the Ω on s vertices.
Then p divides 26 − t and 3 − s. Let F be an antipodal class, containing the vertex a ∈ Ω,
F ∩ Ω = {a, a2, ..., as}, b ∈ Ω(a). By F (x) we denote an antipodal class containing vertex x.
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Lemma 3. The following assertions hold:
(1) if t = 1, then p = 5, α3(g) = 0, α1(g) = 50l + 25 and α2(g) = 50− 50l;
(2) if p more than 3, then p = 5 and t = 1;
(3) if s = 1, then p = 2, t = 2, 4, 6, α3(g) = 2t, α1(g) = 20l − t + 6 and α2(g) = 72− 20l − 2t.

P r o o f. If s = 3, then each vertex from Γ− Ω is adjacent to t vertices in Ω, so t ≤ 8.
Let t = 1. As p divides 26 − t, then p = 5, s = 3, α2(g) = 75 − α1(g), the number χ1(g) =

(α1(g)− 15)/10 is congruent to 1 modulo 5. This implies α1(g) = 50l + 25.
Let p > 3, α1(g) = pw1. Then s = 3, |Ω| = 3t, Ω is a regular graph by degree t − 1 and p

divides 26− t.
If p > 7, then Ω is a distance-regular graph with intersection array {t− 1, 16, 1; 1, 8, t− 1}, we

come to a contradiction.
Let p = 7. As p divides 26 − t, then t = 5, the subgraph Ω(b) contains 2 vertices in a⊥

and a vertex from [a2] and from [a3], so Ω is a distance-regular graph with intersection array
{4, 1, 1; 1, 1, 4}, it is a contradiction with the fact that r = 3.

Let p = 5. As p divides 26− t, then t = 1, 6. If t = 6, then the subgraph Ω(b) contains a vertex
in a⊥, 3 vertices from [a2] and 3 vertices from [a3], we come to a contradiction.

Let s = 1. Then p = 2, t ≤ 6, α3(g) = 2t, α2(g) = 78−α1(g)−3t, and χ1(g) = (α1(g)+t−26)/10
is even. This implies that α1(g) = 20l − t + 6. ¤

Lemma 4. If p = 3, then s = 3, t = 2, 5, 8, α3(g) = 0, α1(g) = 30l + 16 − 11t and α2(g) =
62− 30l + 8t.

P r o o f. Let p = 3. Then s = 3, t = 2, 5, 8, α2(g) = 78 − α1(g) − 3t, and the number
χ1(g) = (11t+α1(g)−26)/10 is congruent to 2 modulo 3. This implies that α1(g) = 30l+16−11t.
In the case t = 2 graph Ω is a union of 3 isolated edges. ¤

Lemma 5. If p = 2, s = 3, then t is even, t ≤ 8, α3(g) = 0, α1(g) = 20l − 11t + 6 and
α2(g) = 72− 20l + 8t.

P r o o f. Let p = 2, s = 3. Then t is even, t ≤ 8, α3(g) = 0, α2(g) = 78− 3t− α1(g).
The number χ1(g) = (11t + α1(g)− 26)/10 is even, so α1(g) = 20l − 11t + 6. ¤
Lemmas 2–5 imply the proof of the Theorem.

2. Proof of Corollary

Let the group G acts transitively on the set of vertices of the graph Γ. Then for a vertex a ∈ Γ
subgroup H = Ga has index 78 in G. By Theorem we have {2, 3, 13} ⊆ π(G) ⊆ {2, 3, 5, 13}.

Lemma 6. Let f be an element of order 13 in G. Then Fix(f) is an empty graph, α1(f) = 26
and the following assertions hold:

(1) if g is an element of prime order p 6= 13 in CG(f), then p = 2, Ω is an empty graph,
α1(g) = 26 and |CG(f)| is not divided by 4;

(2) either |G| = 78 or F (G) = O2(G);
(3) if G is nonsolvable group, then the socle T̄ of the group Ḡ = G/F (G) is isomorphic to

L2(25), L3(3), U3(4), L4(3) or 2F4(2)′.



Automorphisms of distance-regular graph 31

P r o o f. By Lemma 2 Fix(f) is an empty graph and α1(f) = 26.
Suppose that g is an element of prime order p 6= 13 in CG(f). As f acts without fixed points

on Ω then by Theorem Ω is an empty graph, p = 2 and α1(g) = 20l +6 divided by 13. This implies
that α1(g) = 26 and |CG(f)| is not divided by 4.

Let Q = Op(G) 6= 1. If p = 13, then |G| divides 26 · 12. In this case CG(f) = 〈f〉, otherwise for
an involution g of CG(f) we obtain a contradiction with the action of element of order 3 of G on
{u | d(u, ug) = 1}. Let the involution g inverts f , h is an element of order 3 in CG(g). From action
h on {u | d(u, ug) = 1} it follows that α1(g) = 20l + 6 is divided by 3. In each case α1(g) is not
divided by 4 and |G| = 78.

If p = 3, then Q fixes some antipodal class. This implies that Q fixes each antipodal class. By
Lemma 3 in [9] G does not contain subgroups of order 3, which are regular on each antipodal class,
we come to a contradiction. So, if |G| 6= 78 we have F (G) = O2(G).

Let T̄ be the socle of the group Ḡ = G/F (G). Note that 13 divides |T̄ | and by Theorem 1 in
[10] group T̄ is isomorphic to L2(25), L3(3), U3(4), L4(3), 2F4(2)′. ¤

Let us to prove the Corollary. As T̄ contains a subgroup of index dividing 26, then the group
T̄ is isomorphic to L2(25) (and T̄{F} is the extension of a group of order 25 by group of order 12)
or L3(3) (and T̄{F} is the extension of a group of order 9 by SL(2, 3)).

In the first case F (G) fixes each antipodal class and F (G) = 1. This implies that Γ is the
arc-transitiv Maton’s graph.

In the second case for Q = F (G) we have |Q : Q{F}| = 2 and T̄ acts irreducibly on Q. Further,
for the element f of order 13 of G by Lemma 6 the number |CQ(f)| divides 2. As Q is either
12-dimensional module over F2, or 16-dimensional module over F16, or 26-dimensional module over
F2, then |Q| = 212 and CQ(f) = 1. The Corollary is proved.

3. Conclusion

We found possible automorphisms of a distance regular graph with intersection array {25, 16, 1; 1,
8, 25}. This completes the research program of vertex-symmetric antipodal distance-regular graphs
of diameter 3 with λ = µ, in which neighborhoods of vertices are strongly regular with parameters
from Proposition 1.
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Abstract: Consider the Cauchy problem for the Korteweg–de Vries equation with a small parameter at
the highest derivative and a large gradient of the initial function. Numerical and analytical methods show that
the obtained using renormalization formal asymptotics, corresponding to rarefaction waves, is an asymptotic
solution of the KdV equation. The graphs of the asymptotic solutions are represented, including the case of
non-monotonic initial data.
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1. Introduction

Consider the Cauchy problem for the Korteweg–de Vries equation:

∂u

∂t
+ u

∂u

∂x
+ ε

∂3u

∂x3
= 0, t > 0, ε > 0, (1.1)

u(x, 0, ε, ρ) = Λ
(

x

ρ

)
, x ∈ R, ρ > 0, (1.2)

with a bounded initial function Λ, which has finite limits Λ±0 = lim
s→±∞Λ(s), Λ−0 < Λ+

0 , and its

derivative quickly enough tends to zero at infinity. This is a classic model of nonlinear waves in
the medium with small dispersion. For the case of discontinuous initial functions the asymptotics
was studied by A.B. Gurevich and L.P. Pitaevskii [1]. The asymptotic formulas for the evolution of
rarefaction waves were also found in the works [2, 3] by the Whitham method and in the work [4]
by the inverse scattering method. For the initial step-like function the asymptotic formulas are
obtained by the method of the inverse scattering [5–7]. In the case of a smoothed step-like initial
function the asymptotic expansion was constructed by the method of matching in the work [8].
We emphasize that the study of analytic properties of solutions of the KdV equation and their
asymptotic behavior is one of the interesting problems of the modern mathematical physics [9],[17]-
[26]. It should be noted that the KdV equation remains a most important model in hydrodynamics
[31] and physics of plasma up to subnuclear scales [29]. In particular, the latest research was aimed
to the study of rarefaction waves [34, 35].

1This research was supported by RFBR grant No. 14-01-00322.
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We assume that a smooth initial function Λ : R → R has finite limits Λ±0 = lim
σ→±∞Λ(σ), and

the asymptotic expansions satisfy the asymptotic formula

Λ(σ) =
∞∑

n=0

Λ±n
σn

, σ → ±∞. (1.3)

The existence of a classical smooth solution of problem (1.1)–(1.2) is guaranteed by the Kappeler
theorem [10] if

0∫

−∞
|Λ(x)− Λ−0 |(1− x3)dx < ∞,

∞∫

0

|Λ(x)− Λ+
0 |(1 + x3)dx < ∞.

Here, however, it is possible not to assume these restrictions, but we may consider only the formal
asymptotic solution; moreover, in a special class of functions the existence of solutions is proved
for unbounded initial data [11].

In this article the approximation constructed in the work [12] is refined, and it is shown in
Section 3 that it is the asymptotic solution for the problem (1.1)–(1.2) as ε → 0, ρ → 0 and the
ratio of the parameters ρ2/ε → 0, and also numerical analysis has been performed for this solution
in Section 4. These results show the efficiency of the renormalization approach used in paper [12].
One of the purposes of the paper is to understand and determine the precise mathematical meaning
of “formal asymptotic solutions” of the KdV equation. Since for a similar problem for a parabolic
equation the closeness of the asymptotics obtained by renormalization, to the exact solution, was
proved [16], so there is some reason to suggest that for the KdV equation the formal asymptotic
solution, which is found by the same method, also approximate the exact solution.

It is clear that the structure of the asymptotics must essentially depend on the ratio of the
parameters ε and ρ. Here we assume the following conditions:

µ =
ρ√
ε
→ 0.

A similar problem for compression waves was studied in the work [33]. In the present paper, we have
to use another definition of the asymptotic solution (different from [33]) because of the specificity
of its behavior.

2. Renormalization

It is known that in some cases the behavior of the solutions of singularly perturbed differential
equations with a small parameter at the highest derivative becomes in some sense self-similar. Then
the analysis of solutions using the method of renorm-group [13] becomes effective. This approach
has the advantage that we immediately get the uniform approximation of the problem, which
eliminates the need to build asymptotic ansatzes in different areas. For example, the composite as-
ymptotic solution of the Cauchy problem with the condition (1.2) was obtained by matching [14] for
a quasilinear parabolic equation [15], and in [16] it is shown that the renormalization approximation
of the solution is asymptotically close to the composite asymptotic solution.

The relationship between self-similarity of the solutions and the parameter µ =
ρ√
ε

was shown

already in the work of Yu. A. Berezin and V. Karpman [28] in connection with the study of the
evolution of perturbations in plasma.
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We will construct asymptotic solution of the problem (1.1)–(1.2), using a technique similar
to the method of renormalization group, in the most simple version. Let us introduce the inner
variables

x =
√

ε η, t =
√

ε θ, (2.1)

since this takes into account all terms of equation (1.1). We take the solution of the equation

∂Z

∂θ
+ Z

∂Z

∂η
+

∂3Z

∂η3
= 0, (2.2)

with the initial condition

Z(η, 0) =

{
Λ−0 , η < 0,

Λ+
0 , η > 0

(2.3)

as a “starting” function. We seek the expansion of the solution in the following form

u(x, t, ε, ρ) = Z(η, θ) + µW (η, θ, µ) + . . . , (2.4)

where the additive µW (η, θ, µ) is supposed to eliminate the “starting” function singularity at the
initial time. From equations (1.1) and (2.2) it follows that the function W satisfies the linear
equation

∂W

∂θ
+

∂(ZW )
∂η

+
∂3u

∂η3
= 0. (2.5)

Differentiating the equation (2.2) with respect to the variable η, we see that the expression

G(η, θ) =
1

Λ+
0 − Λ−0

∂Z(η, θ)
∂η

satisfies the equation (2.5). Moreover, G is the Green function, since

lim
θ→+0

∞∫

−∞
G(η, θ)f(η) dη = − 1

Λ+
0 − Λ−0

∞∫

−∞
Z(η, 0)f ′(η) dη = f(0)

for any finite functions f .
We will find a solution W in the form of a convolution with the Green function G such that

the asymptotic approximation will satisfy the initial condition (1.2). Then

W =
1

Λ+
0 − Λ−0

∞∫

−∞

∂Z(η − µs, θ)
∂η

[Λ(s)− Z(s, 0)] ds.

After integration by parts and substitution of the expansion (2.4) we get the desired expression

u ≈ 1
Λ+

0 − Λ−0

∞∫

−∞
Z

(
x− ρs√

ε
,

t√
ε

)
Λ′(s) ds, (2.6)

which clarifies the structure of the asymptotic solution in the parameters ε and ρ in the leading
approximation. Despite the fact that the functions Z and W do not depend explicitly on

√
ε, the

result depends on µ and
√

ε because of the change (2.1) since the asymptotic solution (2.6) is also
considered at finite values of time t.

These calculations are given here for the convenience of the reader and a logical passage to
the next section, where we use the result of [12] based on formula (2.6) to obtain a more suitable
expression for numerical computations.
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3. Formal asymptotic solution

We seek the asymptotic solution ũ in the form

ũ(x, t) = R
(
σ, µ2ω

)
+ S(σ, ω), (3.1)

σ =
x

ρ
, ω =

εt

ρ3
, µ =

ρ√
ε
, (3.2)

where the function

R

(
σ,

t

ρ

)
=

1∫

0

Λ
(

σ +
cty

ρ

)
dy, (3.3)

according to [12], is obtained by substitution of the asymptotics of the Gurevich-Pitaevskii solution
[1] for the rarefaction wave for Λ+

0 = 0 and Λ−0 = − c

6
(c > 0) in the formula (2.6).

The function S satisfies the equation

∂S

∂ω
+

∂3S

∂σ3
= −∂3R

∂σ3
, S(σ, 0) = 0 (3.4)

to compensate the leading term with
∂3R

∂x3
in the KdV equation (1.1). The solution S can be written

in the following form:

S = −
ω∫

0

1
3
√

3(ω − ω′)

∞∫

−∞
Ai

(
σ − σ′

3
√

3(ω − ω′)

)
∂3R(σ′, µ2ω′)

∂σ′3
dσ′dω′. (3.5)

Proposition 1. Let µ < 1, Λ ∈ C6(R),

lim
s→−∞Λ(s) = − c

6
, lim

s→∞Λ(s) = 0,

and
lim

x→±∞

∣∣∣Λ(k)(x) · x
∣∣∣ < ∞, k = 1 . . . 5. (3.6)

Then there exists a constant M such that S is approximated by the formula

S =

∞∫

0

[
A1

( −s
3
√

3ω

)(
Λ′(s + σ) +

cµ2ω

2
Λ′′(s + σ) +

cµ2s3

12
Λ′′(s + σ)

)
−

−Ai
( −s

3
√

3ω

)(3ω)2/3

2s2
· cµ2s3

6
Λ′′(s + σ) + Ai′

( −s
3
√

3ω

)(3ω)1/3

2s
· cµ2s3

6
Λ′′(s + σ)

]
ds−

−
0∫

−∞

[
A2

( −s
3
√

3ω

)(
Λ′(s + σ) +

cµ2ω

2
Λ′′(s + σ) +

cµ2s3

12
Λ′′(s + σ)

)
+

+Ai
( −s

3
√

3ω

)(3ω)2/3

2s2
· cµ2s3

6
Λ′′(s + σ)−Ai′

( −s
3
√

3ω

)(3ω)1/3

2s
· cµ2s3

6
Λ′′(s + σ)

]
ds + ϕ(σ, ω),

|ϕ(σ, ω)| ≤ Mµ4ω2 = M(
t

ρ
)2,

where

A1(x) =

x∫

−∞
Ai(z)dz, A2(x) =

∞∫

x

Ai(z)dz.
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P r o o f. Conditions (3.6) provide the same decaying of R and its derivatives as σ → ±∞.
After integration of (3.5) by parts twice, using the properties of Airy functions, we have

S = −
ω∫

0

∞∫

−∞

σ − σ′

(3(ω − ω′))4/3
Ai

(
σ − σ′

3
√

3(ω − ω′)

)
∂R(σ′, µ2ω′)

∂σ′
dσ′dω′.

We split the integral with respect to σ′ from −∞ to ∞ into two integrals (from −∞ to σ and from
σ to ∞), let us also make change of variables

s = σ′ − σ, z =
−s

3
√

3(ω − ω′)
,

and change the order of integration. All integrals above exist due to (3.6), (3.3). We have:

S = −
0∫

−∞

∞∫

−s
3√3ω

Ai (z)
∂R(s + σ, µ2ω′)

∂s
dzds +

∞∫

0

−s
3√3ω∫

−∞
Ai (z)

∂R(s + σ, µ2ω′)
∂s

dzds,

ω′ = ω +
1
3

(s

z

)3
.

(3.7)

For
∂R

∂σ
, using (3.3), we have:

∂R

∂σ
=

1
cµ2ω′

1∫

0

dΛ
(
σ + cµ2ω′y

)

dy
dy =

Λ
(
σ + cµ2ω′

)− Λ(σ)
cµ2ω′

. (3.8)

For small µ we expand this expression into the Taylor series:

∂R

∂σ
= Λ′(σ) +

cµ2ω′

2
Λ′′(σ) + O(µ4ω′2) (3.9)

and place it in S. We have:

S =

∞∫

0

−s
3√3ω∫

−∞
Ai (z)

(
Λ′(s + σ) +

cµ2ω′

2
Λ′′(s + σ) + O(µ4ω′2)

)
dzds−

−
0∫

−∞

∞∫

−s
3√3ω

Ai (z)
(

Λ′(s + σ) +
cµ2ω′

2
Λ′′(s + σ) + O(µ4ω′2)

)
dzds.

For A1, A2 it holds

x∫

−∞

Ai(z)
z3

dz = −x−2

2
Ai(x)− x−1

2
Ai′(x) +

1
2
A1(x),

∞∫

x

Ai(z)
z3

dz =
x−2

2
Ai(x) +

x−1

2
Ai′(x) +

1
2
A2(x).



38 Elbert A.E. and Zakharov S.V.

So

S =

∞∫

0

[
A1

( −s
3
√

3ω

)(
Λ′(s + σ) +

cµ2ω

2
Λ′′(s + σ) +

cµ2s3

12
Λ′′(s + σ)

)
−

−Ai
( −s

3
√

3ω

)(3ω)2/3

2s2
· cµ2s3

6
Λ′′(s + σ) + Ai′

( −s
3
√

3ω

)(3ω)1/3

2s
· cµ2s3

6
Λ′′(s + σ)

]
ds + O(µ4ω2)−

−
0∫

−∞

[
A2

( −s
3
√

3ω

)(
Λ′(s + σ) +

cµ2ω

2
Λ′′(s + σ) +

cµ2s3

12
Λ′′(s + σ)

)
+

+Ai
( −s

3
√

3ω

)(3ω)2/3

2s2
· cµ2s3

6
Λ′′(s + σ)−Ai′

( −s
3
√

3ω

)(3ω)1/3

2s
· cµ2s3

6
Λ′′(s + σ)

]
ds + O(µ4ω2).

(3.10)

This formula admits formal differentiation with respect to σ since (3.8), (3.9) give the same formulas

∂2R

∂σ2
=

Λ′
(
σ + cµ2ω′

)− Λ′(σ)
cµ2ω′

= Λ′′(σ) +
cµ2ω′

2
Λ′′′(σ) + O(µ4ω′2).

Also

∂3R

∂σ3
= Λ′′′(σ) +

cµ2ω′

2
Λ(4)(σ) + O(µ4ω′2),

∂4R

∂σ4
= Λ(4)(σ) +

cµ2ω′

2
Λ(5)(σ) + O(µ4ω′2).

d

dω′
∂R(σ, µ2ω′)

∂σ
=

cµ2

2
Λ′′(σ) + O(µ4ω′).

Therefore

∂S

∂ω
=

∞∫

−∞
Ai

( −s
3
√

3ω

)
Λ′(s + σ)ds−

0∫

−∞

∞∫

−s
3
√

3ω

Ai (z)H(s, z)dzds +

∞∫

0

−s
3
√

3ω∫

−∞
Ai (z) H(s, z)dzds.

H(s, z) =
d

dω′
∂R(s + σ, µ2ω′)

∂s
· dω′

dω
=

d

dω′
Λ

(
s + σ + cµ2ω′

)− Λ(s + σ)
cµ2ω′

that proves Proposition 1.
For the approximate solution ũ = R + S we denote

Kũ =
∂ũ

∂ω
+ µ2ũ

∂ũ

∂σ
+

∂3ũ

∂σ3
, m1(σ, ω) = |Kũ| ,

m2(σ, ω) =
∣∣∣∣
∂ũ

∂ω

∣∣∣∣ +
∣∣∣∣µ2ũ

∂ũ

∂σ

∣∣∣∣ +
∣∣∣∣
∂3ũ

∂σ3

∣∣∣∣ , Aµ(ω) =
‖m1(·, ω)‖L1

‖m2(·, ω)‖L1

.

(3.11)

Due to the equation (3.4) we have Kũ =
∂R

∂ω
+µ2ũ

∂ũ

∂σ
. We say that ũ is an L1-asymptotic solution,

if the function Aµ(ω) is uniformly small for ω ∈ (0, ω1).
Exactly this ratio is important, but not the value of Kũ by itself, because generally speaking,

it can be great. Note that the used notion of L1-asymptotic solution differs from the standard
definition of the formal asymptotic solution in form of infinite number of terms, giving arbitrarily
small error by substituting it into the equation.
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In the case where the asymptotic solution is constructed in the form of a function (not a series),
even the smallness of the remainders (after the substitution of this function into the equation) by
itself cannot serve as a criterion of its suitability, since derivatives can be of the same order of
smallness; hence, the value of the remainders should be compared with something. It is naturally
to compare with absolute values of individual terms, included in the equation.

4. Numerical computations

In this section there are graphs of the L1-asymptotic solutions of the problem. The system
Matlab R2012a on the “Uran” supercomputer of IMM UB RAS was used for computations.

The double integration of (3.7) and approximate single integration (3.10) were performed. We
used the method of trapezes with the integration step 0.1.

1. Initial function was chosen in the form Λ =
c

6π

(
arctg x− π

2

)
. In this case

R = − c

12
+

ρ

6πt

[(
σ +

ct

ρ

)
arctg

(
σ +

ct

ρ

)
− σ arctg σ − 1

2
ln

(
1 +

2ctρσ + c2t2

ρ2(1 + σ2)

)]
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Figure 1. Function ũ for different values of ω
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Figure 2. Function ũ for ω ∈ (1, 10), σ ∈ (−20, 20).

2. Numerical estimation of the KdV operator. The functions m1,m2 and Aµ(ω) are introduced
in (3.11).

As we can see in Fig. 3, 4, the value of Aµ(ω) is of the order of 0.01 for µ = 0.1, and of the
order of 0.0001 in the case µ = 0.01. Numerical computations for smaller µ show that Aµ has the
order µ2ω. We emphasize that it is important for the value of Aµ(ω) to be small, and the value m1

does not necessary have to be small. Thus, according to (3.2), the obtained asymptotic solution
describes only the initial stage of the propagation of the rarefaction wave for t ¿ ρ and further
investigation is needed.
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Figure 3. Aµ(ω) for µ = 0.1.
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Figure 4. Aµ(ω) for µ = 0.01.

3. In this section we compare two ways of integration. While obtaining of S we may use one
of two choices: the formulas (3.7), (3.8), and the formula (3.10) after approximation (3.9). This
approximation helps us to simplify the computing due to removing the integration with respect to z,
and the integral (3.10) with respect to s only remains. It reduces the duration of the computations
up to 30 times.

We denote (3.7) as f1− + f1+ and (3.10) as f2− + f2+ and compare them. We have
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Figure 5. Functions f1±, f2± for ω = 100.
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Figure 6. Functions ũ = R + S for ω = 100 before
and after approximation (3.10).

We see that although µ2ω = 1 for µ = 0.1, ω = 100, we get satisfactory result for applying the
approximation (3.10).

The following graph shows that for ω = 10 the functions f1± almost match f2±.
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Figure 7. Functions f1±, f2± for ω = 10.

4. Consider non-monotonic case with the initial function in the form

Λ =
c

6π

(
arctg x− π

2
+

5
1 + x2

)
.

We get
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Figure 8. Function ũ for different values of ω in non-
monotonic case.
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Abstract: In this paper we consider a reachability problem for a nonlinear affine-control system with integral
constraints, which assumed to be quadratic in control variables. Under controllability assumptions it was proved
in [8] that any admissible control that steers the control system to the boundary of its reachable set is a local
solution to an optimal control problem with an integral cost functional and terminal constraints. This leads
to the Pontriagyn maximum principle for boundary trajectories. We propose here a numerical algorithm for
computing the reachable set boundary based on the maximum principle and provide some numerical examples.

Key words: Optimal control, Reachable set, Integral constraints, Boundary points, Pontriagyn maximum
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Introduction

We consider here the reachable sets of a nonlinear affine-control system with joint integral
constraints on the state and the control. The numerical algorithms for constructing approximations
of reachable sets of control systems were investigated in many works (see, for example [2, 4, 7, 9–
12, 14, 15, 17]). The properties of reachable sets under integral constraints and algorithms for their
construction were studied in [1, 5, 6, 16]. For systems with pointwise constraints on the control it is
known (see, for example, [13]) that the control, which steers the trajectory to the boundary of the
reachable set, satisfies the Pontryagin maximum principle. In the paper [8] we have considered the
reachability problem for a nonlinear affine-control system with constraints on the control variables
given by the quadratic integral inequality. Assuming the controllability property of the linearized
system, we proved that any admissible control that steers the control system to the boundary of its
reachable set is a local solution to an optimal control problem with an integral cost functional and
a terminal constraint. This leads to the maximum principle for boundary trajectories. The last
result admits a generalization to the case of joint integral constraints on the state and the control
given by the inequality

J(u(·)) =

∫ t1

t0

f0(t, x(t), u(t))dt ≤ µ2.

The reachable set in this case may be considered as the solution to the inverse optimal control prob-
lem: to find the terminal states reachable from the given initial state by the trajectories satisfying
the constraints on the value of the cost functional. The aim of the present paper is to propose a
numerical algorithm for computing boundary points of the reachable set. This algorithm is based
on the solution of equations following from the maximum principle for boundary trajectories.

1The research is supported by Russian Science Foundation, project No. 16-11-10146.
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1. Notation and definitions

Further by A⊤ we denote the transpose of a real matrix A, In is an identity n × n-matrix,
0n is a zero n × n-matrix, 0 stands for a zero vector of appropriate dimension. For x, y ∈ R

n let
(x, y) = x⊤y denotes the inner product, x⊤ = (x1, . . . , xn), ‖x‖ = (x, x)

1

2 be the Euclidean norm,
and Br(x̄): Br(x̄) = {x ∈ R

n : ‖x − x̄‖ ≤ r} be a ball of radius r > 0 centered at x̄. For a set

S ⊂ R
n let ∂S be the boundary of S;

∂f

∂x
(x) is the Jacobi matrix of a vector-valued function f(x).

For a real k×m matrix A a matrix norm is denoted as ‖ A ‖. The symbol Rn×r denotes a space of
n× r real matrices, the symbols L1, L2 and C stand for the spaces of summable, square summable
and continuous vector-functions respectively. The norms in these spaces are denoted as ‖ · ‖

L1
,

‖ · ‖
L2
, ‖ · ‖

C
.

We consider the control system

ẋ(t) = f1(t, x(t)) + f2(t, x(t))u(t), x(t0) = x0, (1.1)

on the fixed interval [t0, t1], where t0 ≤ t ≤ t1, x ∈ R
n, u ∈ R

r, f1 : R
n+1 → R

n, f2 : R
n+1 → R

n×r

are continuous mappings.
The functions f1 and f2 are assumed to be continuously differentiable in x and satisfying the

following conditions:

‖ f1(t, x) ‖ ≤ l1(t)(1+ ‖ x ‖), ‖ f2(t, x) ‖ ≤ l2(t), (1.2)

where l1(·) ∈ L1, l2(·) ∈ L2. Under these assumptions for any u(·) ∈ L2 there exists a unique
absolutely continuous solution x(t) of system (1.1) which satisfies the initial condition x(t0) = x0
and is defined on the interval [t0, t1].

2

Denote as J(u(·)) the following integral functional

J(u(·)) =

∫ t1

t0

(Q(t, x(t)) + u⊤(t)R(t, x(t))u(t))dt.

Here x(t) is a solution of system (1.1) corresponding to the control u(t) and the initial vector
x0. The function Q(t, x) and the positive definite symmetric matrix R(t, x) are assumed to be
continuous on [t0, t1]×R

n and satisfying the inequalities Q(t, x) ≥ 0, u⊤R(t, x)u ≥ α‖u‖2 for some
α > 0 and any (t, x, u) ∈ [t0, t1]× R

n × R
r.

Define the set
U = {u(·) ∈ L2 : J(u(·)) ≤ µ2},

where µ > 0 is a given number, and let P be a m × n full rank real matrix, m ≤ n. Denote by
G(t1) the (output) reachable set of the system (1.1) at the time t1 for the fixed x0 and the integral
constraints:

G(t1) =
{

y ∈ R
m : ∃u(·) ∈ U, y = Px(t1, u(·))

}

,

where x(t, u(·)) is a trajectory of system (1.1), corresponding to u(·).
The reachable set is a compact set in R

m, but it may be empty.
Recall the following definitions: the linear control system

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ [t0, t1], x(t0) = x0,

a) is said to be controllable on [t0, t1] with respect to the output y = Px if for any y1 ∈ R
m there

exists a control u(·) ∈ L2 that transfers the system from the zero initial state x(t0) = 0 to the final

2We use the same notation for the space L2 in the case of a scalar function l2(·) and a vector-function u(·).
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state x(t1) such that Px(t1) = y1;
b) is said to be the linearization of the system ẋ = F (t, x, u) along the trajectory x(t), u(t) if

A(t) =
∂F

∂x
(t, x(t), u(t)), B(t) =

∂F

∂u
(t, x(t), u(t)).

2. The Maximum Principle for Boundary Trajectories

2.1. Extremal Properties of Boundary Points

Let us show that any admissible control that steers the control system to the boundary of its
reachable set is a local solution to an optimal control problem with an integral cost functional and
terminal constraints.

Theorem 1. Assume that:

1) y1 ∈ ∂G(t1);

2) u(·) ∈ U is a control that steers the system from the state x(t0) = x0 to the point x(t1),
Px(t1) = y1, x(t) is the corresponding trajectory;

3) the linearization along (x(t), u(t)) of system (1.1) is controllable on [t0, t1] w.r.t. output
y = Px;

Then there exists σ > 0 such that J(v(·)) ≥ µ2 for any v(·) ∈ B(u(·), σ) ⊂ L2 satisfying the
condition Px(t1) = y1. Since J(u(·)) ≤ µ2, this implies that J(u(·)) = µ2 and the control u(·)
provides a local minimum in the optimal control problem

J(u(·)) → min, u(·) ∈ L2, x(t0) = x0, Px(t1) = y1 (2.3)

with terminal constraint Px(t1) = y1.

P r o o f. The proof follows the scheme of the proof of the Theorem 1 [8] and uses the Graves
theorem [3]. �

Since the local minimum in L2 admits the needle variations of the control, the local L2-minimizer
satisfies Pontryagin’s maximum principle. Introduce the Pontryagin function (Hamiltonian) asso-
ciated with (2.3)

H(p, t, x, u) = −p0f0(t, x, u) + p⊤(f1(t, x) + f2(t, x)u),

p0 ≥ 0, f0(t, x, u) = Q(t, x)+u⊤R(t, x)u. Assume additionally that Q(t, x), R(t, x) are continuously
differentiable in x. A locally optimal control for (2.3) satisfies the maximum principle: there exist
p0 ≥ 0, l ∈ R

m, (p0, l) 6= 0, and a function p(t) such that

H(p(t), t, x(t), u(t)) = max
v∈Rr

H(p(t), t, x(t), v),

˙p(t) = −
∂H

∂x
(p(t), x(t), u(t)) = −A⊤(t)p(t) + p0

∂f0

∂x
(t, x(t), u(t)), p(t1) = P⊤l.

Since the terminal constraints are regular (rankP = m), we have p0 + ‖p(t)‖ 6= 0, t ∈ [t0, t1].
As previously, we denote here by (A(t), B(t)) the matrices of the linearization along (x(t), u(t))
of system (1.1). Applying the maximum principle to the solution of problem (2.3) we come the
following
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Corrolary 1. Suppose that u(t) satisfies the assumptions of Theorem 1. Then there exist
l ∈ R

m, l 6= 0 and a function p(t) such that

˙p(t) = −
∂H

∂x
(p(t), x(t), u(t)) = −A⊤(t)p(t) +

1

2

∂f0

∂x
(t, x(t), u(t)), p(t1) = P⊤l,

u(t) = R−1(t, x(t))f⊤2 (t, x(t))P (t), t ∈ [t0, t1].

P r o o f. If a pair (A(t), B(t)) is controllable w.r.t. y = Px, then p0 > 0. Indeed, if it turned
out that p0 = 0, then p(·) is a non zero solution of the equation

ṗ(t) = −A⊤(t)p(t), p(t1) = P⊤l,

and from the maximum principle we would obtain

p⊤(t)B(t)u(t) = max
v∈Rr

p⊤(t)B(t)v

almost everywhere in t. The last is valid only if p⊤(t)B(t) ≡ 0. Represent p(t) in the form
p(t) = X⊤(t1, t)P

⊤l, then ‖l⊤PX(t1, t)B(t)‖2 = 0, t ∈ [t0, t1]. Integrating both sides of the last
equality over [t0, t1], we get l⊤V l = 0. This contradicts to the controllability of (A(t), B(t)) w.r.t.
y = Px, since l 6= 0. Thus we can take p0 = 1

2 , from the maximum principle it follows that
Hu(p(t), t, x(t), u(t)) = 0, hence u(t) = u(t, x(t), p(t)), where u(t, x, p) = R−1(t, x)f⊤2 (t, x)p. �

2.2. Algorithm

Let us describe the following algorithm for calculating boundary points of reachable sets based
on the results of previous subsection. Further we assume that P = [Im, 0] if m < n or P = In
if m = n. In this case the transversality conditions p(t1) = P⊤l take the form pi(t1) = 0, i =
m+ 1, .., n. Letting

ẋ0(t) = f0(t, x(t), u(t)), x0(t0) = 0,

we get J(u(·)) = x0(t1). Substituting u(t, x, p) into differential equations, we obtain the following
system

ẋ(t) = f1(t, x(t)) + f2(t, x(t))u(t, x(t), p(t)), x(t0) = x0,

ṗ(t) = −
∂f

∂x
H(p(t), x(t), u(t, x(t), p(t))), p(t0) = q,

ẋ0(t) = f0(t, x(t), u(t, x(t), p(t))), x0(t0) = 0.

(2.1)

Denote by X the following (2n + 1)-column vector X = [x; p;x0] and write equations (2.1) as the
system

Ẋ(t) = F (t,X(t)), X(t0) = [x0; q; 0], (2.2)

By F (t,X) we denote the right-hand side of (2.1). Since x0 is fixed, the solution of (2.2) depends
only on the vector q ∈ R

n, denote this solution as X(t, q) = [x(t, q); p(t, q);x0(t, q)]. These functions
have continuous derivatives Xq(t, q) with respect to q, which can be found by integrating the
linearization of (2.2) along the trajectory X(t, q)

Ẋq(t, q) =
∂F

∂X
(t,X(t, q))Xq(t, q), Xq(t0, q) = [0n; In; 0]. (2.3)

The integration of equations (2.1)and (2.2) over the interval [t0, t1] may be performed simultane-
ously. To this end, we unite both systems into one system of dimension (2n + 1)(n + 1)

Ẋ(t) = F (t,X(t)), X(t0) = [x0; q; 0],

Ẋq(t, q) =
∂F

∂X
(t,X(t, q))Xq(t, q), Xq(t0, q) = [0n; In; 0].

(2.4)
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Consider the following continuously differentiable functions

ψ0(q) = x0(t1, q)− µ2, ψi(q) = pm+i(t1, q), i = 1, ..., n −m,

their derivatives in q may be found by numerical integration of differential equations (2.4). The
calculations of boundary points require the solution of the system of equations

ψi(q) = 0, i = 0, ..., n −m, (2.5)

and also the integration of system (2.1) with zeros of system (2.5) as the initial points for (2.1). In
case m = n the system (2.5) consists of a single equation ψ0(q) = 0.

Let us describe a simple version of the algorithm for calculating zeros of ψi(q) in the case
m = n = 2. Represent q ∈ R

2 in polar coordinates: q1(θ) = r(θ) cos(θ + θ0) + q01, q2(θ) =
r(θ) sin(θ + θ0) + q02. Here r(θ) is a distance from a reference point q0 and θ is an angle between
q − q0 and the reference direction q̄ = (cos θ0, sin θ0). Differentiating the identity ψ0(q(θ)) = 0, we
get a differential equation for r(θ)

ṙ(θ) = r(θ)
ψ0q1(q(θ)) sin(θ + θ0)− ψ0q2(q(θ)) cos(θ + θ0)

ψ0q1(q(θ)) cos(θ + θ0) + ψ0q2(q(θ)) sin(θ + θ0)
, 0 ≤ θ ≤ 2π. (2.6)

To start the solution we use a one-dimensional search procedure for finding the root of equation
ψ(q0 + rq̄) = 0 and after this take this root as the initial state for differential equation (2.6).

3. Examples

Here we illustrate the above procedure for two examples of 2-dimensional control systems.

E x a m p l e 1. Consider the Duffing equation

ẋ1 = x2, ẋ2 = ϕ(x1) + u, t ∈ [0, t1], x1(0) = 0, x2(0) = 0, (3.1)

ϕ(x1) = −αx1 − βx31, α, β > 0, which describes the motion of nonlinear stiff spring on impact of
an external force u. Consider the integral constraint on the state and the control

∫ t1

0
(ax21(t) + bx22(t) + u2(t))dt ≤ 2,

where a, b are nonegative parameters and take P = I2.

It is easy to verify that the controllability assumptions of Theorem 1 are satisfied here. Really,
consider any trajectory (x(t), u(t)) of (3.3). The linearization of (3.3) along (x(t), u(t)) has the
matrices

A(t) =

(

0 1

ϕ
′

(x1(t)) 0

)

, B(t) =

(

0
1

)

.

An adjoint system ṡ = −A⊤(t)s is as follows

ṡ1(t) = −ϕ
′

(x1(t))s2(t),

ṡ2(t) = −s1(t).

Thus, the identity s⊤(t)B(t) = s2(t) ≡ 0 for t ∈ [t0, t1] implies s1(t) ≡ 0. This means the
controllability of the pair (A(t), B(t)).
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Figure 1. Reachable sets for different values of t1.
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Figure 2. Reachable sets for different values of a, b.

The system (2.4) takes the following form

Ẋ1 = X2,

Ẋ2 = ϕ(X1) +X4,

Ẋ3 = aX1 − ϕ
′

(X1)X4,

Ẋ4 = bX2 −X3,

Ẋ5 = aX2
1 + bX2

2 +X2
4 ,

Ẋ5+i = X6+i,

Ẋ6+i = ϕ
′

(X1)X5+i +X8+i,

Ẋ7+i = aX5+i − ϕ
′′

(X1)X4X5+i − ϕ
′

(X1)X8+i,

Ẋ8+i = bX6+i −X7+i,

Ẋ9+i = 2aX1X5+i + 2bX2X6+i + 2X4X8+i.

(3.2)

In equations (3.2) i = 1, 6, so (3.2) is a system of 15-th order. Integrating this system over [0, t1]
for initial state X⊤(0) = (0, 0, q1, q2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0) we get

ψ0(q) = X5(t1, q)− µ2,
∂ψ0

∂q1
(q) = X10(t1, q),

∂ψ0

∂q2
(q) = X15(t1, q), q⊤ = (q1, q2).

Since x(0) = 0 and ϕ(x1) is an odd function having even derivative it is not difficult to prove that
the set {q : ψ0(q) = 0} is symmetric with respect to the origin. In this case it is natural to take the
reference point q0 = 0. As the reference direction we choose q̄ = (1, 0). The results of numerical
simulations for the case α = 1, β = 10 are shown in Fig. 1–2.

The Fig. 1 shows the plot of the reachable sets boundaries for t1 = 0.5, 1, 1.5, and 2 respectively,
and for a = 0, b = 0. The reachable sets boundaries for the values of a = 0, b = 0; a = 5, b = 10;
a = 30, b = 15 and t1 = 2 are presented in Fig. 2.

E x a m p l e 2. Consider the following system [16]

ẋ1 = x2, ẋ2 = ϕ(x1) + u, t ∈ [0, 2π], x1(0) = 0, x2(0) = 0, (3.3)

where ϕ(x1) = − sinx1. The integral constraint on the state and the control are given by the
inequality

∫ 2π

0
(ax21(t) + bx22(t) + u2(t))dt ≤ 2
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Figure 3. Reachable sets for different values of a, b Figure 4. Zero-level lines of ψ0(q) for different val-
ues of a, b
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Figure 5. Reachable sets for different values of µ2. Figure 6. Graph of the function r(θ).

as in Example 1. As above the controllability assumptions of Theorem 1 are satisfied for the
considered system.

The results of numerical simulation are shown in the Fig. 3–6. The Fig. 3 shows the plot of
the reachable sets boundaries for t1 = 2, and for a = 0, b = 0; a = 0.1, b = 0; a = 0.5, b = 0.1
respectively. This plot demonstrates that reachable sets are nonconvex for a = 0, b = 0 and became
convex under increase of parameters a, b.

The next plot (Fig. 4) exhibits the zero-level lines of ψ0(q) corresponding to the curves of Fig. 3.

The Fig. 5 demonstrates the dependence of reachable sets on the value µ2 = 0.5, 1, 1.5, 2, 2.2.
It shows that reachable sets that are convex for small µ2 loose their convexity as µ2 increases
(see [16]). In this example the method fails for µ2 > 2.2 because a numerical integration of (2.6)
unable to meet integration tolerances. Note that the considered procedure may by applied if the
zero-level line ψ0(q) = 0 is a differentiable curve. Differentiability can be violated in the points
where ψ0q1(q) = ψ0q2(q) = 0 or the right-hand side of (2.6) is singular. The graph of the solution
of (2.6) corresponding to the value µ2 = 2.2 is shown in Fig. 6.
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4. Conclusion

This paper describes an algorithm for computing the boundaries of the reachable sets under
joint integral constrains on state and control variables. The reachable set may be considered here
as the solution to the inverse optimal control problem: to find the terminal states reached from the
given initial state by the trajectories satisfying the constraints on the value of the cost functional.
The Pontriagyn maximum principle for boundary trajectories is applied to construct a numerical
algorithm for computing the boundary points. The results of numerical simulation for two examples
of second order nonlinear control systems are presented.
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Abstract: This paper continues the joint work [2] of the author with P. Jones. We describe all finitely
generated nilsemigroups with modular congruence lattices: there are 91 countable series of such semigroups.
For finitely generated nilsemigroups a simple algorithmic test to the congruence modularity is obtained.
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Introduction

In [2] the characterization of nilsemigroups with distributive and modular congruence lattices
had been obtained. The basic notion in that result was the width of a semigroup, considered as
a poset under division. Recall that the width of a poset is the maximal integer n such that the
poset contains an antichain of n elements. It was proved in [2] that the congruence lattice of a
nilsemigroup is distributive [modular and not distributive] if and only if it has the width 1 [the
width 2].

A poset of the width 1 is a chain. Semigroups, whose congruence lattice form a chain, were
investigated in the works [1, 3, 4]. There is no complete classification for such semigroups, in
the same time some important cases (finite semigroups, commutative semigroups, permutative
semigroups) were considered. It is known that finitely generated nilsemigroups whose congruence
lattices form a chain are cyclic nilsemigroups. Thus we have a description of finitely generated
nilsemigroups with distributive congruence lattices.

In this paper we describe all finitely generated nilsemigroups with the modular congruence
lattice up to isomorphism or dual isomorphism. The set of all such semigroups has been splited
into series (almost all of them are infinite), each of them has 4 or less natural parameters. The list
of all series is given in the table below.

We prove the following theorem:

Theorem 1. Let S be a finitely generated nilsemigroup. Then the following are equivalent:

a) ConS is modular and not distributive;

b) S is generated by two elements a and b and the poset {a2, ab, ba, b2} under division has the
width 2;

c) S is isomorphic or dually isomorphic to a suitable semigroup in the following table:
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N Name Presentation Restrictions
1 A(n) a2 = ab = ba = b2, an = 0 n > 2
2 B1(n) a2 = ab = b2, an = 0 n > 3
3 B2.1(m,n) a2 = b2, ab = ba, am = ban = 0 m > 3, n > 2, |m− n| = 1
4 B2.2(m,n) a2 = b2, ab = ba, am = bam−1,

an = 0
n > m > 3

5 B3.1(m,n) a2 = ab = ba, am = bn n > m > 3
6 B3.2(m,n) a2 = ab = ba, am = bn = 0 n,m > 3, n > m− 1, n 6= m

7 B3.3(m, k) a2 = ab = ba, am = bm, ak = 0 k > m > 3
8 B4.1(m,n) a2 = ab, b2 = ba, am = bn = 0 |m− n| = 1; m,n > 3
9 B4.2(m,n) a2 = ab, b2 = ba, am = bm, ak = 0 k > m > 3
10 C1 a2 = ab, b2 = ba = 0
11 C2 a2 = b2 = ab, ba = 0
12 C3 a2 = b2 = ab = 0
13 C4 a2 = b2, ab = ba = 0
14 C5 a2 = ab = ba, b2 = 0
15 C6 ab = ba, a2 = b2 = 0
16 C7.1(n) a2 = ab = ba = bn n > 3
17 C7.2(n) a2 = ab = ba = bn = 0 n > 3
18 D1.1(m,n) b2 = ba = am = anb m > 3, m− 1 > n > 2
19 D1.2(m,n) b2 = ba = am, anb = 0 m > n > 2, m > 3
20 D2.1(m,n, k) ab = ba = am, an = bk = 0 n > m > 3, k > 3, n 6 k(m−1)+1
21 D2.2(m,n, k) ab = ba = am, an = bk = 0,

an−1 = bk−1
m, k > 3, m 6 n−2 6 (k−1)(m−
1), n 6= (m− 1)(k − 1) + 1

22 D2.3(m,n, q) ab = ba = am, a(m−1)q = bq, an =
0

m > 3,q > 2, n > (m− 1)q + 1

23 D3.1(m,n, k) ab = ba, b2 = am, an = akb = 0 m > 3, k > 2, k + m > n > k,
n > m + 1

24 D3.2(n, k, q) ab = ba, b2 = a2(n−k), an = akb =
0, aq+n−k = aqb

n > 3, k > 2, n > k, n > 2n−2k+
1, k > q > 2

25 D3.3(m,n, k, q) ab = ba, b2 = am, an−k+q = aqb,
an = akb = 0

m > 3, k > 2, k + m > n > k,
k 6 min(n−k+q, q+m), k > q > 2

26 D4(n) ba = bn, a2 = ab n > 3
27 E1.1(m,n, k) b2 = ba = amb, an = akb = 0 m > 2, 2m > k > m, n > k, n > 3
28 E1.2(m,n, k) b2 = ba = amb, an = akb m > 2, 2m > k > m, n > k, n > 3
29 E2.1(m) a2 = b2 = (ab)

m
2 = (ba)

m
2 = 0 m > 3

30 E2.2(m) a2 = b2 = (ab)
m
2 = 0 m > 3

31 E2.3(m) a2 = b2 = (ab)
m
2 , (ba)

m
2 = 0 m > 3

32 E2.4(m) a2 = b2 = (ab)
m
2 = (ba)

m
2 ,

(ba)
m+1

2 = 0
m > 3

33 E2.5(m) a2 = b2 = (ab)
m
2 , (ba)

m
2 = 0 m > 3, m is odd

34 E2.6(m) a2 = b2 = (ab)
m
2 , (ab)

m+1
2 =

(ba)
m+1

2 = 0
m > 3
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N Name Presentation Restrictions
35 E3.1(n,m) ab = ba = an = bm n,m > 3
36 E3.2(n,m) ab = ba = an = bm = 0 n,m > 3
37 E4 a2 = b2, ba = 0
38 E5.1(m,n, k) ab = ba, b2 = amb, an = akb = 0 n > k > m > 2
39 E5.2(m,n, k, q) ab = ba, b2 = amb, an−k+q = aqb,

ak = an = 0
n > k > m > 2, n > 3, n− k 6= m,
k 6 min(n− k + q, q + m), q > 2

40 E5.3(m,n, q) ab = ba, b2 = amb, an = 0, am+q =
aqb

n > m > 2, n > 3, q > 2

41 E6.1 a2 = ab, b2 = ba2

42 E6.2 a2 = ab, b2 = 0
43 E7(n) a2 = ab, ba = 0, bn = 0 n > 3
44 G(m,n) ab = am, ba = bn m,n > 3
45 H1.1(m,n, k) ba = amb, b2 = an, an+1 = akb = 0 n > k > m > 2
46 H1.2(m,n, k) ba = amb, b2 = an = ak−1b,

an+1 = akb = 0
n > k > m > 2

47 H2.1(m,n, k, l) b2 = bam, ab = an, ak = bal = 0 m > 2, k > n > m + 1, m + n >
k > l > m

48 H2.2(m,n, k, l) b2 = bam, ab = an, ak−1 = bal−1,
ak = bal = 0

m > 2, k > n > m + 1, m + n >
k > l > m, k 6= l + n− 1

49 H2.3(m,n, k, q) b2 = bam, ab = an, aq+n−1 = baq,
ak = bal = 0

m > 2, n > m + 1, m + n > k >
q + n− 1

50 H2.4(m, k, l) b2 = bam, ab = am+1, ak = bal = 0 m > 2, k > l > m + 1
51 H2.5(m, k, l) b2 = bam, ab = am+1, ak−1 =

bal−1, ak = bal = 0
m > 2, k > m + 1, k > l > m,
k 6= l + m

52 H2.6(m, k, q) b2 = bam, ab = am+1, aq+m = baq,
ak = 0

m > 2, n > m, k > q+n−1, q > 2

53 I1.1(n) a2 = (ab)
2n
2 , b2 = (ba)

2n
2 n > 2

54 I1.2(n) a2 = (ba)
2n+1

2 , b2 = (ab)
2n+1

2 n > 1
55 I1.3(n) a2 = (ba)

2n+1
2 , b2 = (ab)

2n+1
2 ,

(ab)
2n+2

2 = (ba)
2n+2

2 = 0
n > 1

56 I1.4(n, m, k) a2 = (ab)
2n+1

2 , b2 = (ba)
2n+1

2 ,
(ab)

m
2 = (ba)

k
2 = 0

n > 1, k, m > 2n + 1, |k −m| 6 1

57 J1.1(n,m) ab = ba = am, b2 = an m > 3, 2m− 2 > n > m

58 J1.2(n,m) ab = ba = am, b2 = an = 0 m > 3, 2m− 2 > n > m

59 J1.3(m, k) ab = ba = am, b2 = a2m−2, ak = 0 m > 3, k > 2m− 2
60 J2(n) b2 = an, ab = ba = an+1 = 0 n > 3
61 J3(n) b2 = ab = an, ba = an+1 = 0 n > 3
62 J4(n) ab = an, b2 = ba = an+1 = 0 n > 3
63 L1(n,m) b2 = am, ban = 0, ab = 0 m > 3, m + 1 > n > 2
64 L2.1(n,m) ba = am, bn = ab = 0 m > 3, n > 3
65 L2.2(n,m) ba = am = bn−1, am+1 = bn = 0 m > 3, n > 4
66 L3.1(m, k, n) ab = am, b2 = ak, ban+1 = 0 k > m > 3, k 6= 2m − 2, k > n >

k −m

67 L3.2(m, k, q) ab = am, b2 = ak = baq k > m > 3, k 6= 2m − 2, k > q >
k −m + 1
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N Name Presentation Restrictions
68 L3.3(m, k, q) ab = am, b2 = ak, aq+m−1 = baq k > m > 3, k 6= 2m−2, k−m+1 >

q > k − 2m + 2
69 L3.4(m,n, l) ab = am, b2 = a2m−2, bal = an = 0 m > 3, l > m − 1, l + m > n >

2m− 1
70 L3.5(m,n, l) ab = am, b2 = a2m−2, bal = an =

0, an−1 = bal−1
m > 3, l > m − 1, l + m > n >
2m− 1

71 L3.6(m,n, q) ab = am, b2 = ba2m−2, aq+m−1 =
baq, an = 0

m > 2, q > 2, n > q + m

72 L3.7(m, l, k, n) ab = am, b2 = bal, an = bak = 0 2m− 1 > n > k > l > m > 3
73 L3.8(m, l, k, n) ab = am, b2 = bal, an = bak = 0,

an−1 = bal−1
2m− 1 > n > k > l > m > 3

74 L3.9(m, l, q, n) ab = am, b2 = bal, an = 0,
baq+m−1 = baq

2m− 1 > n > l > m > 3, q > 2

75 L3.10(m,n, k) ab = am, b2 = 0, an = bak = 0 n > m > 3, m + k > n > k > 2
76 L3.11(m,n, k) ab = am, b2 = 0, an = bak = 0,

an−1 = bak−1
n > m > 3, m + k > n > k > 2

77 L3.12(m,n, q) ab = am, b2 = 0, an = 0, aq+m−1 =
baq

n > m > 3, q > 2

78 N1.1(m, l, n, k) b2 = amb, ba = alb, an = akb = 0 n > k > l > m > 2, m + l > k,
2m > l

79 N1.2(m, l, n, k) b2 = amb, ba = alb, an = akb = 0,
an−1 = ak−1b

n > k > l > m > 2, m + l > k,
2m > l

80 N2.1(m, l, n, k) ba = amb, b2 = alb, an = akb = 0 n > k > l > m > 2, m + l > k

81 N2.2(m, l, n, k) ba = amb, b2 = akb, an = alb = 0,
an−1 = ak−1b

n > k > l > m > 2, m + l > k

82 N3.1(m, k) a2 = (ab)
2m+1

2 , b2 = (ab)
k
2 k > 2m + 1, m > 1

83 N3.2(m, k) a2 = (ab)
2m+1

2 , b2 = (ab)
k
2 , b2a =

ab2 = b3 = 0
k > 2m, m > 1

84 N3.3(m, k) a2 = (ab)
2m+1

2 , b2 = (ab)
k
2 = (ba)

k
2 k > 2m, m > 1

85 N3.4(m, k) a2 = (ab)
2m+1

2 , b2 = (ab)
k
2 ,

(ba)
k
2 = 0

k > 2m, m > 1

86 N3.5(m, k, n, l) a2 = (ab)
2m+1

2 , b2 = (ba)
2k+1

2

(ab)
n
2 = (ba)

l
2 = 0

k > m, m > 1, n, l > k, |n− l| 6 1

87 N3.6(m,n, l) a2 = (ab)
2m+1

2 , b2 = (ab)
n
2 =

(ba)
l
2 = 0

m > 1, n, l > m, |n− l| 6 1

88 N3.7(m) a2 = (ba)
m
2 , b2 = (ba)

m+1
2 m > 3

89 N3.8(m) a2 = (ab)
m
2 , b2 = 0 m > 3

90 N3.9(m) a2 = (ab)
m
2 = (ba)

m
2 , b2 = 0 n > 3

91 N4(m,n) ab = an = bm, ba = 0 m,n > 3

We show later that every row in this table, with some constants fixed, gives us exactly one
semigroup up to isomorphism or dually isomorphism. Some rows have no parameters, which means
that such rows defines only one finite semigroup.

Let us note that any two semigroups in this table are not isomorphic and are not dually
isomorphic. Indeed, every nilsemigroup has exactly one basis, i.e. a minimal set of generators.
Every generator is a maximal element under division order 6. Conversely, every maximal element
of (S, 6) is an element of any basis. So, the set of maximal elements is the unique basis of S. Then
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every automorphism of S maps the basis onto itself, which means that it preserves the presentation
of S. All semigroups in the table have distinct presentations, that can be revised by a careful check.

It is easy to check that all semigroups in this table have a width 2. It gives us the implication
from c) to a). The implication from a) to b) is proved in [2]. The rest of the paper is directed to
prove that b) leads c).

Theorem 1 provides a simple test to determine whether the congruence lattice of a finite nilsemi-
group is modular by checking the condition (b) or by searching the corresponding semigroup in the
Table.

Theorem 1 has an important corollary for the class of nilpotent semigroups. Every nilpotent
semigroup S satisfy the ascending chain condition under 6. Then S has a basis, which consists
of maximal elements of S under 6. This basis form an antichain, so by result of [2], it has 1 or 2
elements. From Theorem 1 we have the following corollary:

Corollary 1. Every nilpotent semigroup with modular congruence lattice is finite. It is iso-
morphic or dually isomorphic to a suitable semigroup in the Table.

1. Preliminaries

We consider the division relation 6 on a semigroup S defined as a 6 b iff there exist s, t ∈ S1

such that b = sat. Since every nilsemigroup is J -trivial, the relation 6 is an order relation on a
nilsemigroup.

Our starting point is the following statements that was proved in [1] as Corollary 2.

Proposition 1. Let S be a nilsemigroup such that ConS is modular. If S is finitely gener-
ated, then it is finite. If S is not cyclic, then it is generated by two elements a, b and the poset
{a2, ab, ba, b2} has width at most two.

We assume further in the paper that S is a finite nilsemigroup generated by two distinct elements
a and b.

We say that an element x ∈ S is an atom, if x covers 0, i.e. x > 0 and, for every z ∈ S, the
condition 0 < z 6 x implies z = x. Put

xm y iff there exist s, t ∈ S1 such that y = sxt and st 6= 1.

The relation m on S is antisymmetric and transitive. It is easy to see that, for x, y ∈ S, x > y
implies xm y, and xm y implies x > y (the converse is false, since 0m 0, but 0 6> 0).

Lemma 1. 1) An element x ∈ S is equal to zero if and only if xm x.
2) For every s ∈ S either s = s′a or s = s′b for some s′ ∈ S1.
3) For every t ∈ S either t = at′ or t = bt′ for some t′ ∈ S1.
4) If x ∈ S satisfies xa = ax = xb = bx = 0, then x is an atom or a zero.

The proof is obvious.
Let u be a word of n letters. Define u

p
n for 0 6 p 6 n − 1 as a p-element prefix of u. For an

arbitrary positive integer p, put u
p
n = u[p/n]u

p mod n
n .

Lemma 2. Let c, d be letters and let p be a positive integer. Then:
1) (cd)

p
2 = c(dc)

p−1
2 .

2) (cd)
p
2 = (cd)

p−1
2 c, if p is odd.

3) (cd)
p
2 = (cd)

p−1
2 d, if p is even.

4) (cd)
p
2 (dc)

q
2 = (cd)

p+q
2 , if p is odd.

5) (cd)
p
2 (cd)

q
2 = (cd)

p+q
2 , if p is even.
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The proof is obvious.

Lemma 3. 1) If a2 l ab, then either a2 l b2 or a2 l ba.
2) If bal ab, then either bal a2 or bal b2.
3) If a2 > b2 > ab, ba 6> b2 and ab 6= 0, then ab < ba.
4) If a2 > ab > b2, ba 6> ab and b2 6= 0, then b2 < ba.
5) If a2 > ab > ba and ba 6= 0, then b2 > ba.

P r o o f. 1) Let a2 l ab. Then a2 = sabt for some s, t ∈ S1. If s = s′a for some s′ ∈ S1, then
a2 l a2, which implies a2 = 0 l b2. If s = s′b for some s′ ∈ S1, then a2 = s′babt and a2 l ba. Let
s = 1 and a2 = abt. If t = at′ for some t′ ∈ S1, then a2 l ba. If t = bt′ for some t′ ∈ S1, then
a2 l b2.

2) The proof is similar to 1).
3) If a2 > b2, then b2 = sa2t for some s, t ∈ S1. If s = s′b for some s′ ∈ S1, then b2 < ba, a

contradiction. If t = bt′ for some t′ ∈ S1, then b2 < ab, a contradiction. So b2 = ak for some k > 3.
Then ab < b2 = ak, so ab = uakv for some u, v ∈ S1. If u = u′a or v = av′ for some u′, v′ ∈ S1,
then ab < ak+1 = ab2, i.e. ab = 0, a contradiction. If v = bv′ for some v′ ∈ S1, then ab < ab and
ab = 0. If u = u′b for some u′ ∈ S1, then ba > ab.

4) If a2 > ab, then ab = sa2t for some s, t ∈ S1. If s = s′b for some s′ ∈ S1, then ab < ba, a
contradiction. If t = bt′ for some t′ ∈ S1, then ab = 0, contrary to ab > b2. So ab = ak for some
k > 3. Then b2 < ab = ak, so b2 = uakv for some u, v ∈ S1. If u = u′a or v = av′ for some
u′, v′ ∈ S1, then ab < ak+1 = aba, i.e. ab < b2, a contradiction. If v = bv′ for some v′ ∈ S1, then
b2 < akb = ab2 and b2 = 0, a contradiction. If u = u′b for some u′ ∈ S1, then ba > b2.

5) If a2 > ab, then ab = sa2t for some s, t ∈ S1. If s = s′b for some s′ ∈ S1, then ab < ba, a
contradiction. If t = bt′ for some t′ ∈ S1, then ab = 0, contrary to ab > ba. So ab = ak for some
k > 3. Then ba < ab = ak, so ba = uakv for some u, v ∈ S1. If u = u′a or v = av′ for some
u′, v′ ∈ S1, then ba 6 ak+1 = aba l ba, i.e. ba = 0, a contradiction. If v = bv′ for some v′ ∈ S1,
then ba 6 akb = ab2 < b2. If u = u′b for some u′ ∈ S1, then ba l ba, which means ba = 0, a
contradiction. ¤

2. Finite nilsemigroups of width 2

The elements a2, ab, ba, b2 form a subposet of S. This subposet has no more than 4 elements
and has no antichains with 3 elements. We enumerate all such posets in the following list.
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For each poset A-Q we examine all possibilities of mapping the set {a2, b2, ab, ba} onto the
poset. We consider two cases be equal if one of them can be obtained from another either by
replacing a to b and vice versa or by replacing ab to ba and vice versa. Indeed, these cases give
us isomorphic or dually isomorphic semigroups. Some cases are forbidden by Lemma 3, we don’t
mention them.
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Let us note that in cases B, D, F, G, H, I, K, M, O the elements a2, b2, ab, ba are not equal
to zero, since every element of a nilsemigroup divides zero.

Series A. a2 = b2 = ab = ba. Then every element of S, except b, can be written as ap for some
positive p. Let n be the least positive integer such that an = 0. Then S ∼= A(n).

Series B. The following cases are possible:

ra2 = b2 = ab rba

B1
ra2 = b2

rab = ba

B2

ra2 = ab = ba rb2

B3
ra2 = ab rb2 = ba

B4

Case B1. Let x be an element of S. If a or b2 is a left divisor for x, then x = ap for some p. If
ba2 is a left divisor for x, then x = ap for some p, since ba2 = b3. So, every element of S, except b
and ba, can be written as ap for some p. Let n be the least positive integer such that an = 0. We
obtain the semigroup B1(n).

Case B2. It is easy to show that every element can be written as ap or bap for some p > 0. Let
n and l be the least positive integers such that an = bal = 0. Then |n− l| 6 1 and n > 3, l > 2. If
|n− l| = 1, then S ∼= B2.1(n, l).

Let am = bam−1 for some m > 3. Then ap = bap−1 for all p > m. Let n be the least positive
integer such that an = 0. We obtain the semigroup B2.2(m,n).

Case B3. In this case every element can be written as abp−1 or bp for some p > 1. Let m
be the least positive integer such that abm−1 = bn for some n > 3, m > 3 and n > m − 1. The
following cases are possible:

Case B3.1 m 6= n. Then abm = a(abm−1) = abn, so abm = 0. The element abm−1 = bn is a
single atom or a zero. Then S ∼= B3.1(m, n) or S ∼= B3.2(m,n) respectively.

Case B3.2. m = n. Then abp−1 = bp for all p > m. Let k be the least positive integer such
that bk = 0. We have that S ∼= B3.3(m, k).

Case B4. In this case every element can be written as abp−1 = ap or bp for some p > 0. Let m
and n be the least positive integers such that am = bn. If m < n then am l bam = bm+1 6 bn, so
am = bn = 0 and n = m+1. If m > n, then bnl abn = an+1 6 am, so am = bn = 0 and m = n+1.
We got |m− n| = 1 and S ∼= B4.1. If m = n, then ap = bp for all p > n. Let k be the least positive
integer such that ak = 0. We deduce that S ∼= B4.2(m, k).

Series C. The following cases are possible:

ra2 = ab

rb2 = ba

C1

ra2 = b2 = ab

rba
C2

rba
ra2 = b2 = ab

C3

ra2 = b2

rab = ba

C4

ra2 = ab = ba

rb2

C5

rab = ba

ra2 = b2

C6

rb2

ra2 = ab = ba

C7
Case C1. Since b2 < a2, we have b2 = sa2t for some s, t ∈ S1. If s = s′a for some s′ ∈ S1, then

ba = b2 = s′a3t = s′abat, which means that bam ba, so b2 = 0. Cases s = s′b and t = at′ for some
s′, t′ ∈ S1 are similar. If t = bt′ for some t′ ∈ S1, then ba = sa2bt′ = sa3t′ = sabat′, which implies
bam ba. So, b2 = ba = 0.
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An element a2 is a single atom. Indeed, a2b = a3 = aba = 0 and ba2 = 0. Then S ∼= C1.

Case C2. Since ba < a2, then ba = sa2t for some s, t ∈ S1. If s = s′a for some s′ ∈ S1, then
ba = s′a3t = s′abat, which impies ba = 0. Cases s = s′b, t = bt′ and t = at′ for some s′, t′ ∈ S1 are
similar. So, ba = 0.

An element a2 is a single atom. Indeed, a2b = a3 = aba = 0 and ba2 = 0. Then S ∼= C2.

Case C3. By the same arguments as before, we have a2 = b2 = ab = 0. The element ba is a
single atom. Then S ∼= C3.

Case C4. Using arguments of case C1, we have ab = ba = 0. The element a2 = b2 is a single
atom. Then S ∼= C4.

Case C5. Using arguments of case C2, we have b2 = 0. The element a2 = ab = ba is a single
atom. Then S ∼= C5.

Case C6. Using arguments of case C2, we have a2 = b2 = 0. The element ab = ba is a single
atom. Then S ∼= C6.

Case C7. We have a2 = ab = ba = bn for some n > 3. The element a2 is an atom or a zero,
since ab2 = ba2 = a2b = a3 = abk l ab2. If a2 is an atom, then S ∼= C7.1(n). If a2 is a zero, then
S ∼= C7.2(n).

Series D. The following cases are possible:

ra2

rb2 = ba

rab

D1

ra2

rab = ba

rb2

D2

ra2

rb2 rab = ba

D3

rb2

rba ra2 = ab

D4

rab = ba

ra2 rb2

D5

rb2 = ba

rab ra2

D6

rb2 = ba

ra2 rab

D7

ra2 = b2

rab rba
D8

Case D1. We have b2 < a2, so b2 = ba = sa2t for some s, t ∈ S1. If s = s′b or t = bt′ for
some s′, t′ ∈ S1, then ba < ab or ba < ba, a contradiction. So, b2 = ba = am for some m > 3. The
element am+1 = ba2 = b2a = bam = a2m−1 with m 6= 2 divides itself, which implies that it is a
zero. The elements bab = b3 = b2a and aba = am+1 are also equal to zero, which means that ba is
an atom. The element am−1b is an atom or a zero.

Every element of S can be written as ap or ap−1b for some p 6 m. Let q > 1 and 1 < n < m
be the least positive integers such that aq = anb. If q < m, then am = aqam−q = anbam−q =
anamam−q−1 < am, so am = ba = 0, a contradiction. If q = m, then an+1b = am+1 = 0, so am is a
single atom and S ∼= D1.1(m,n). If q > m, then anb = 0 and S ∼= D1.2(m,n).

Case D2. We have ab < a2, so ab = ba = sa2t for some s, t ∈ S1. If s = s′b or t = bt′ for some
s′, t′ ∈ S1, then ba < ab, a contradiction. So, ab = ba = am for some m > 3. Then every element
of S can be written as ap or bp for some p. Let n and k be the least positive integers such that
an = 0 and bk = 0. Then n 6 k(m− 1) + 1 and k > 3.

If ap = bq implies ap = 0, then S ∼= D2.1(m,n, k). Let p, q be the least positive integers such
that ap = bq 6= 0. Then ap+1 = bqa = a(m−1)q+1. If p 6= (m − 1)q, then ap+1 = 0 and p + 1 = n,
q + 1 = k. In this case S ∼= D2.2(m,n, k). If p = (m − 1)q, then ar(m−1) = br for all r > p, so
k = [n/(m− 1)] and S ∼= D2.3(m,n, q).

Case D3. We have b2 = am for some m > 3. Every element of S can be written in the form
ap or apb for some p. Let n be the least positive integer such that an = 0 and let k be the least
positive integer such that akb = 0. Since akb2 = ak+m, we have k + m > n > k.



60 Alexander Popovich

If ap = aqb for some p, q implies ap = 0, then S ∼= D3.1(m,n, k). Let p, q be the least positive
integers such that ap = aqb 6= 0. Then ap+r = aq+rb for all r > 0, which implies n− p = k − q, so
p = n− k + q. We have apb = aqb2 = aq+m, so either q + m− p = p− q or apb = 0. In the former
case p = q + m/2 and m = 2(n− k), whence S ∼= D3.2(n, k, q). In the latter case k 6 min(p, q + m)
and S ∼= D3.3(m,n, k, q).

Case D4. We have ba = bn for some n > 3. Then bba = bn+1 = bab = baa = bna = b2n−1lbn+1,
so bba = bab = baa = 0. Also a3 = aba = abn = an+1 l a3, so aba = 0. We got that ba is an atom.
The element a2 is also an atom, because ba2 = 0, a3 = a2b = 0. Elements of S are equal to a, or
to a2, or to bi for i = 1 . . . n. We got a semigroup D4(n).

Case D5. We have a2 < ab = ba, so a2 = sabt for some s, t ∈ S1. If s = s′a or t = at′ for some
s′, t′ ∈ S1, then a2 l a2 and a2 = 0 < b2, a contradiction. If s = s′b or t = bt′ for some s′, t′ ∈ S1,
then a2 < b2, a contradiction.

Case D6. We have ab < a2 = b2, so ab = sa2t for some s, t ∈ S1. If s = s′a or t = bt′ for some
s′, t′ ∈ S1, then abl ab and ab = 0 < ba, a contradiction. If s = s′b or t = at′ for some s′, t′ ∈ S1,
then ab < ba, a contradiction.

Case D7. We have a2 < b2, so a2 = sb2t for some s, t ∈ S1. If s = s′a for some s′ ∈ S1, then
a2 < ab, a contradiction. If s = s′b for some s′ ∈ S1, then a2 = s′b3t = s′babt < ab, a contradiction.
Let s = 1. If t = at′ or t = bt′ for some t′ ∈ S1, then a2 = b2at′ = b3t′ = babt′ < ab, a contradiction.

Case D8. We have ab < a2, so ab = sa2t for some s, t ∈ S1. If s = s′a or t = at′ for some
s′, t′ ∈ S1, then ab 6 a3 = ab2 < ab, a contradiction. If s = s′b or t = bt′ for some s′, t′ ∈ S1, then
ab 6 b3 = a2b < ab, a contradiction.

Series E. The following cases are possible:

ra2

rb2 = ba

rab

E1

¡
¡
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@

rab

ra2 = b2

rba

E2
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¡
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ra2

rab = ba

rb2

E3

¡
¡
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rab

rba
ra2 = b2

E4
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¡
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ra2

rb2

rab = ba

E5
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rb2
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¡
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Case E1. We have b2 < ab, so b2 = sabt for some s, t ∈ S1. If s = s′b or t = at′ or t = bt′ for
some s′, t′ ∈ S1, then b2 l ba = b2, which implies b2 = 0. Anyway, there exists m > 2 such that
b2 = ba = amb. Then every element of the semigroup S can be written as ap or apb for some p.

Let k and n be the minimal numbers such that akb = an = 0. Obviously, n > k and k > m.
We have a2mb = amb2 = b3 = b2a = bamb = b2am−1b. Since m 6= 1, the element b2a divides itself,
which means a2mb = 0 and k 6 2m.

If aq = arb implies aq = 0, then S ∼= E1.1(m,n, k). Let aq = arb 6= 0 for some q > r > 0. Then
ar+1b = aq+1 = arba = ar+mbl ar+1b, so aq+1 = ar+1b = 0, which means q = n− 1 and r = k− 1.
Then S ∼= E1.2(m,n, k).

Case E2. We have a2 < ab and a2 < ba, so a2 = b2 = (ab)m/2 or a2 = b2 = (ba)m/2 for some
m > 3. Without loss of generality we suppose that a2 = b2 = (ab)m/2. Then every element of S can
be written in the form (ab)p/2 or in the form (ba)p/2 for some p. The following cases are possible:

Case E2.1. m = 2n + 1 for some n > 1, so a2 = b2 = (ab)
2n+1

2 . Then a3 = (ab)
2n+1

2 a =
(ab)

2n
2 a2 = (ab)

2n
2 b2 = (ab)

2n−1
2 b3 = (ab)

2n−2
2 a3b, so a3 = 0. Therefore a2b = b3 = ba2, which means

(ab)
2n+2

2 = (ba)
2n+2

2 . Then (ab)
2n+3

2 = (ab)
2n+2

2 a = (ba)
2n+2

2 a = b(ab)
2n
2 a2 = 0 and, analogously,
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(ba)
2n+3

2 = 0. So, a2b is an atom or a zero. If a2 = a2b = (ba)
m
2 = 0, then S ∼= E2.1(2n + 1). If

a2 = 0 and (ba)
m
2 6= 0, then S ∼= E2.2(2n + 1). If a2 6= 0 and (ba)

m
2 = 0, then S ∼= E2.3(2n + 1).

If a2 = (ba)
m
2 6= 0 and a2b = 0, then S ∼= E2.4(2n + 1). If a2 6= (ba)

m
2 and a2b 6= 0, then

S ∼= E2.5(2n + 1). If a2 6= 0, (ba)
m
2 6= 0, a2 6= (ba)

m
2 and a2b = 0, then S ∼= E2.6(2n + 1).

Case E2.2. m = 2n for some n > 2, so a2 = b2 = (ab)
2n
2 . Then a3 = a(ab)

2n
2 = a2(ba)

2n−1
2 =

b3(ab)
2n−2

2 = ba3(ba)
2n−3

2 , so a3 = 0. From here we obtain ba2 = b3 = a2b = (ab)
2n
2 b =

(ab)
2n−2

2 ab2 = (ab)
2n−2

2 a3 = 0, which means that a2 is an atom or a zero. If a2 = (ba)
m
2 = 0,

then S ∼= E2.1(2n). If a2 = 0 and (ba)
m
2 6= 0, then S ∼= E2.2(2n). If a2 6= 0 and (ba)

m
2 = 0, then

S ∼= E2.3(2n). If a2 = (ba)
m
2 6= 0, then S ∼= E2.4(2n). If a2 6= 0, (ba)

m
2 6= 0 and a2 6= (ba)

m
2 , then

S ∼= E2.6(2n).

Case E3. We have ab < a2, whence ab = sa2t for some s, t ∈ S1. If s = s′b or t = bt′ for some
s′, t′ ∈ S1, then ab l ab or ba l ba, which means ab = ba = 0. Anyway, ab = am for some m > 3.
Analogously, ab = bn for some n > 3. Every element of the semigroup S can be written in the form
ap or bp for some p. Let n be the least positive integer such that ab = ba = an and m be the least
positive integer such that ab = ba = bm. Then aba = an+1 = abm = anbm−1 = a2n−1bm−2 l an+1,
so aba = 0. By the same arguments, abb = 0, which means that ab is either an atom or a zero. If
ab is an atom, S ∼= E3.1(n,m). If ab is a zero, S ∼= E3.2(n,m).

Case E4. We have ba < a2 = b2, so ba = sa2t for some s, t ∈ S1. If s = s′a or t = at′ for some
s′, t′ ∈ S1, then ba 6 a3 = b2alba. If s = s′b or t = bt′ for some s′, t′ ∈ S1, then ba 6 b3 = ba2lba,
which implies ba = 0. Now we have ab2 = a3 = b2a = 0, a2b = b3 = ba2 = 0, aba = bab = 0, so the
semigroup S consists only of five elements and S ∼= E4.

Case E5. We have b2 < ab = ba, so b2 = sabt for some s, t ∈ S1. If s = s′b or t = bt′ for some
s′, t′ ∈ S1, then b2 l b2, which means b2 = 0. Anyway, there exists m such that b2 = amb. Let m
be the minimal integer with such a property.

Every element of S can be written as ap or apb for a suitable p. Let n and k be minimal positive
integers such that an = 0 and akb = 0.

If ap = aqb implies ap = 0 for some p, q, then S ∼= E5.1(m,n, k).
Let p, q be the least positive integers such that ap = aqb 6= 0. Then p < n, q < k and

ap+r = aq+rb for all r > 0, so n − p = k − q, which means p = n − k + q. We have an−k+q = aqb,
so an−k+qb = aq+mb. If n − k 6= m, then an−k+qb = aq+mb = 0, so k 6 min(n − k + q, q + m). In
this case S ∼= E5.2(m,n, k, q). If n− k = m, then S ∼= E5.3(m,n, q).

Case E6. Since a2 = ab, every element of S can be written as ap or bqap for some p. Then
b2 = 0 or b2 = ban for some n. If n > 3, then b2 l a3 = ab2 l b2, which implies b2 = 0. So,
b2 = ba2 6= 0 or b2 = 0.

Let b2 = ba2 6= 0. Then a3 = ab2 = aba2 = a4, so a3 = 0. Thus, b2a = ba3 = 0, b3 = ba2b =
ba3 = 0 and ab2 = a3 = 0, so b2 is an atom. Then S ∼= E6.1. If b2 = 0, then a3 = 0. Hence a2 and
ba are atoms and S ∼= E6.2.

Case E7. Using the same arguments as in case E6, for some m > 2, we have ba = ambl a3 =
abal ba, so ba = 0. Let n be the index of b. Then S consist of elements a, a2, b, b2, . . . , bn−1, 0 and
is isomorphic to E7(n).

Series F. The following cases are possible:
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Case F1. We have a2 < b2 = ba, but a2 6< ab. So, a2 6= 0 and a2 = bka for some k > 2. These
arguments are true for ab, so ab = bla for some l > 2. Then a2 > ab or a2 6 ab, a contradiction.

Case F2. ab < a2, so ab = sa2t for some s, t ∈ S1. If s = s′b for s′ ∈ S1, then ab < ba. If
t = bt′ for t′ ∈ S1, then ab < ab. If s = s′a or t = at′ for some s′, t′ ∈ S1, then ab 6 a3 = ab2 < ab2.
All the possibilities lead to a contradiction.

Cases F3-F5 are analogous to F1 or F2.

Series G. Only one case is possible:

ra2

rab

rb2

rba
G1

Case G1. We have ab < a2, so ab = am for some m > 3. Similarly, ba = bn for some n > 3.
Then am+1 = a2b = aba = abn = ambn−1 = a2m−1bn−2 l am+1, so am+1 = amb = bam = 0.
Similarly, bn+1 = bab = b2a = 0. So, ab and ba are atoms.

Every element of the semigroup S can be written as ap or bp for a suitable p. Let aq = br for
some q < m and r 6 n. Then aq+1 = bra = 0 and am = 0, a contradiction. If q = m and r = n, we
have ab = ba, a contradiction. We obtain that S ∼= G1(m, n).

Series H. The following cases are possible:
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rb2

rab

rba
H1

@
@

ra2

rab

rba
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@

ra2

rab
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@
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Case H1. We have b2 < a2, so b2 = an for n > 3. Since ba < ab and ba 6< b2, the equality
ba = amb holds for some n > m > 2. Every element of the semigroup S can be written as ap or apb
for some p. Now an+1 = b2a = bamb = am2

b2 = am2+n l an+1, so b2 = an+1 = 0, a contradiction.
Therefore b2 = ban = amn = 0 and b2 is an atom. Let k be the least positive integer such that
akb = 0. We have anb = b3 = 0, so m < k 6 n.

If the equality ap = aqb for some p 6 n and q 6 k implies ap = 0, then S ∼= H1.1(m,n, k). Let
ap = aqb for some p 6 n and q 6 k. Then aq+1b = ap+1 = aqba = aq+mb, so ap+1 = 0. If p < n,
then b2 = 0, a contradiction. Let p = n and q > m. We have aq+1b = 0, so q = k − 1. We deduce
S ∼= H1.2(m,n, k).

Case H2. We have ab = an for n > 3 and b2 = bam for m > 2. Since b2 6> ab, then n > m + 1.
Every element of the semigroup S can be written as ap or bap for some p.

Let n > m+1. Then an+m = abam = ab2 = anb = a2n−1lan+m, which implies an+m = 0. Let k
and l be the minimal integers such that ak = 0 and bal = 0. Therefore n < k and m < l 6 k 6 m+n.

If ap = baq implies ap = 0, then S ∼= H2.1(m,n, k, l). Let ap = baq 6= 0. Since ab 6< ba, then
p > n. Therefore baq+1 = ap+1 = abaq = aq+n. If p + 1 6= q + n, then ap+1 = 0. This implies
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p + 1 = k and q + 1 = l, so S ∼= H2.2(m,n, k, l). Let p + 1 = q + n. Then aq+n−1+r = baq+r for
every r > 0, so l = k − n + 1 and k > q + n− 1. We obtain S ∼= H2.3(m, n, k, q).

Let n = m + 1. Let k and l be the minimal integers such that ak = 0 and bal = 0. It is obvious
that m < k − 1, m < l and k > l.

If ap = baq implies ap = 0, then S ∼= H2.4(m, k, l). Let ap = baq 6= 0. Since ab 6< ba, we have
p > m + 1. Therefore baq+1 = ap+1 = abaq = aq+m+1. If p + 1 6= q + m + 1, then ap+1 = 0. This
means p + 1 = k and q + 1 = l, so S ∼= H2.5(m, k, l). Let p + 1 = q + n. Then aq+m+r = baq+r for
every r > 0, so l = k −m and k > q + m, whence we get S ∼= H2.6(m, k, q).

Case H3. We have ab = am for m > 3 and ba = an for n > 3. Then ab > ba or ba > ab, a
contradiction.

Series I. The following cases are possible:

rab

ra2

rba
rb2

I1

@
@
¡

¡
ra2

rb2

rab

rba
I2

@
@
¡

¡
ra2

rab

rb2

rba
I3

@
@
¡

¡
ra2

rab

rba
rb2

I4

@
@
¡

¡

Case I1. We have a2 < ab, a2 < ab, but a2 6< b2, which means that a2 = (ab)l/2 or a2 = (ba)l/2

for some l > 3. We suppose without loss of generality that a2 = (ab)l/2. Then b2 = (ba)l/2. Every
element can be written in the form (ab)p or (ba)p for some p. Two cases are possible:

Case I1.1: a2 = (ab)
2n
2 and b2 = (ba)

2n
2 for some n > 2. Then (ab)

2n+1
2 = a2a = a3 =

aa2 = a(ab)
2n
2 = a2(ba)

2n−1
2 = (ab)

2n
2 (ba)

2n−1
2 = (ab)

2n−1
2 b2(ab)

2n−2
2 = (ab)

2n−1
2 (ba)

2n
2 (ab)

2n−2
2 =

(ab)
4n−1

2 (ab)
2n−2

2 l (ab)
2n+1

2 , so a3 = 0. Analogously, b3 = 0. Then a2b = (ab)
2n
2 b = (ab)

2n−1
2 b2 =

(ab)
2n−1

2 (ba)
2n
2 = (ab)

4n−1
2 l a3, so a2b = 0. Similarly, ba2 = ab2 = b2a = 0, which means that a2

and b2 are atoms. Hence S ∼= I1.1(n).

Case I1.2: a2 = (ba)
2n+1

2 and b2 = (ab)
2n+1

2 for some n > 1. Then (ba)
2n+2

2 = a2a = aa2 =
(ab)

2n+2
2 . It is easy to see that (ba)

2n+2
2 = (ab)

2n+2
2 is either an atom or a zero. If it is an atom,

then S ∼= I1.2(n). If it is a zero, then S ∼= I1.3.

Case I1.3: a2 = (ab)
2n+1

2 and b2 = (ba)
2n+1

2 for some n > 1. Let m be the least positive integer
such that (ab)

m
2 = 0 and k be the least positive integer such that (ba)

k
2 = 0. Then |m− k| 6 1 and

m > 2n + 1, k > 2n + 1. Hence S ∼= I1.4(n,m, k).

Case I2. We have b2 < ab and b2 < a2, so b2 = akb for some k > 3. By the same arguments
ba = alb for some l > 3. Then b2 and ba are comparable, a contradiction.

Cases I3 and I4 lead to a contradiction in a similar way.

Series J. The following cases are possible:

J1
rb2

rab = ba

ra2

J2
rab = ba

rb2

ra2

J3
rba
rb2 = ab

ra2

J4
rb2 = ba

rab

ra2

J5
rba
rb2

ra2 = ab

J6
rb2

rba
ra2 = ab

Case J1. We have ab = ba = am for some m > 3. Then b2 = an for m < n 6 2m− 2. Hence
an+1 = ab2 = amb = a2m−1. If n < 2m − 2, then ab2 = 0 and b3 = 0. So, b2 is an atom or zero,
which means that S ∼= J1.1(n,m) or S ∼= J1.2(n,m) respectively.
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Let n = 2m− 2 and let k be the index of a. Then S ∼= J3(m, k).

Case J2. We have b2 = an for some n > 3. Also, ab < b2, so ab = sb2t for some s, t ∈ S1. If
s = s′a or t = at′ for s′, t′ ∈ S1, then ab 6 an+1 = ab2 l ab. Cases s = s′b or t = at′ for s′, t′ ∈ S1

are similar. So, ab = ba = an+1 = 0 and S ∼= J2(n).

Case J3. In this case 0 < b2 = ab < a2 implies that b2 = ab = an for some n > 3. Then
an+1 = b2a < ba and anb = b3 = ban l ba. So, ba = an+1 = 0 and S ∼= J3(n).

Case J4. We have ab = an for some n > 3. Then an+1 = aba l ba and anb = ab2 l b2 = ba.
But ba < ab, so ba = 0 and S ∼= J4(n).

Case J5. The inequality b2 < a2 implies that b2 = sa2t for some s, t ∈ S1. If s = s′b for
s′ ∈ S1, then b2 < ba, a contradiction. In other cases we have b2 < a3 = ab2, which implies b2 = 0
and b2 < ba, a contradiction.

Case J6. As in the previous case, ba 6 a3 = aba, whence ba = 0 and ba < b2, a contradiction.

Series K. All cases from this series are impossible by Lemma 3.

Series L.

L1
rab

rb2 rba
ra2

¡
¡

@
@

L2
rab

rba rb2

ra2

¡
¡

@
@

L3
rb2

rab rba
ra2

¡
¡

@
@

Case L1. We have b2 = am for some m > 3. If ab = ap for p > m, then ab = ap = ap−mb2lab.
If ab = baq for q > m, then ab = baq = b3aq−m = ambaq−m l ab. Anyway, ab = 0. Every element
of the semigroup S can be written in the form ap or bap for some p.

Since am+1 = ab2 = 0 and bam = b3 = amb = 0, the element b2 is an atom. Let n be the
minimal integer such that ban = 0. Then ban−1 is an atom and n 6 m + 1. Every element of the
semigroup S can be written in the form ap or bap for some p.

Let ap = baq for p, q 6 n. Then b2 = an = an−pap = an−pbaq = 0, a contradiction. So,
S ∼= L1(m,n).

Case L2. We have ba = am for some m > 3. Then am+1 = abalab, amblab, bam = a2m−1lab,
but ab < ba, so ab = 0 and ba = am is an atom. Every element of the semigroup S can be written
in the form ap or bp for some p. Let n be the least positive integer such that bn = 0.

If ap = bq for some p, q leads to ap = 0, then S ∼= L2.1(m,n). Let ap = bq for p 6 m and q < k.
Then ap+1 = abq = 0 = am+1, so p = m and q = n− 1. Then S ∼= L2.2(m,n).

Case L3. ab = am for some m > 3. Since b2 < ba and b2 < ab = am, either b2 = an 6= 0 for
some n > m + 1 or b2 = bal for some l > m or b2 = 0.

Case L3.1. b2 = ak 6= 0 and k 6= 2m − 2. Then b2a = ak+1 = ab2 = amb = a2m−1. Since
k + 1 6= 2m − 1, ak+1=0. Then b2 6= 0, so b2 is an atom. Every element of the semigroup can be
written in the form ap or bap for some p. Note that bak = b3 = akb = am+k−1 = 0. Let n be the
least positive integer such that ban+1 = 0. Then k −m 6 n 6 k, since abal = al+m for all l.

If ap = baq implies ap = 0 for all p, q, then S ∼= L3.1(m, k, n). Suppose that ap = baq 6= 0 for
some p, q and let p, q be the least positive integers with such a property. Then k > p > q. We have
ap+1 = abaq = aq+m, so either p = k or p = q + m− 1. If p = k, then ak = baq and ak+1 = aq+m,
so q > k −m + 1 and S ∼= L3.2(m, k, q). If p = q + m − 1, then ar+m−1 = bar for all r > q. But
baq+m−1 = b2aq = 0, so aq+2m−1 = 0, which implies q > k − 2m + 2. We got S ∼= L3.3(m, k, q).

Case L3.2. b2 = a2m−2 6= 0. Every element of the semigroup can be written in the form ap or
bap for some p. Then ba2m−2 = b3 = a2m−2b = a3m−3 and ba2m−2+r = a3m−3+r for all r > 1. Let
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n be the least positive integer such that an = 0. Then n > 2m− 1, since b2 6= 0. Let l be the least
positive integer such that bal = 0. Then l > m− 1 and n 6 l + m.

If ap = baq implies ap = 0 for all p, q, then S ∼= L3.4(m,n, l). Let ap = baq 6= 0 for some p, q and
let p, q be the least positive integers with such a property. Then ap+1 = abaq = aq+m, so either
ap+1 = aq+m = 0 or p = q +m−1. Let ap+1 = aq+m = 0. Then p+1 = n, q +1 = l and q +m > n.
Therefore S ∼= L3.5(m,n, l).

Let p = q + m− 1. Then q > 2, n > q + m and we have S ∼= L3.6(m, n, q).

Case L3.3. b2 = bal 6= 0 for some l. Since ab > b2, l > m. Every element of the semigroup S
can be written either in the form ap or in the form bap for some p. Then a2m−1 = amb = ab2 =
abal = al+m. Since l > m, a2m−1 = am+l = 0. Let n be the least positive integer such that an = 0
and k be the least positive integer such that bak = 0. Then l < k 6 n 6 2m− 1.

If ap = baq for some p, q implies ap = baq = 0, then S ∼= L3.7(m, l, k, n). Let p, q be the least
positive integers such that ap = baq 6= 0. Obviously, q > 2. Then ap+1 = abaq = aq+m, so either
ap+1 = aq+m = 0 or p = q + m − 1. In the former case we have p = n − 1 and q = l − 1, so
S ∼= L3.8(m, l, k, n). In the latter case we have ar+m−1 = bar for all r > q, then k = n−m + 1 and
S ∼= L3.9(m, l, q, n).

Case L3.4. b2 = 0. Every element of the semigroup can be written in the form ap or bap for
some p. Let n be the least positive integer such that an = 0 and k be the least positive integer
such that bak = 0. Then k 6 n 6 k + m.

Let p, q be the least positive integers such that ap = baq. Then one of the following possibilities
holds:

1) ap = bq = 0;
2) ap+1 = aq+m = 0;
3) p = q + m− 1 and n > p + 1.
In the first case we have p = n and q = k, so S ∼= L3.10(m,n, k). In the second case we have

p + 1 = n and q + 1 = k, whence S ∼= L3.11(m,n, k). In the third case we have ar+m−1 = bar for all
r > q, so k = n−m + 1 and S ∼= L3.12(m,n, q).

Series M. By Lemma 3, all cases lead to a contradiction.

Series N.

N1
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ra2 rab

¡
¡
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@

N2
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¡
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@
@
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¡
@

@
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ra2 rb2

¡
¡

@
@

Case N1. We have b2 < ab, so b2 = sabt for some s, t ∈ S1. If s = s′b or t = at′ for s′, t′ ∈ S1,
then b2 < ba, a contradiction. If t = bt′ for some t′ ∈ S1, then b2 < b2, so b2 = 0 < ba, a
contradiction. Therefore b2 = amb for some m > 2. By the same arguments either ba = 0 or
ba = alb 6= 0 for some l > m.

Case N1.1. ba = alb 6= 0 for some l > m. Every element of the semigroup can be written in
the form ap or apb for some p. Note that a2mb = amb2 = b3 = bambl ba, so l < 2m. Let n be the
least positive integer such that an = 0 and let k be the least positive integer such that bak = 0.
Obviously, l < k 6 n. Since am+lb = amba = b2a = balb = al2b2 = al2+mb, we obtain k 6 m + l.

Let p, q be the least positive integers such that ap = aqb. Then aq+1b = ap+1 = aqba = aq+lb = 0,
so either p = n, q = k and S ∼= N1.1(m, l, n, k) or p = n − 1 and q = k − 1. This means that
S ∼= N1.2(m, l, n, k).

Case N1.2. ba = 0. Every element of the semigroup S can be written either in the form ap or
in the form apb for some p. Let n be the least positive integer such that an = 0 and let k be the
least positive integer such that bak = 0. Trivially, k 6 n.
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Let p, q be the least positive integers such that ap = aqb. Then ap+1 = aqba = 0, so either
p = n, q = k and S ∼= N1.1(m, l, n, l) or p = n− 1 and q = k − 1, i.e. S ∼= N1.2(m, l, n, l).

Case N2. We have ba < ab, so ba = sabt for some s, t ∈ S1. If s = s′b or t = at′ for
some s′, t′ ∈ S1, then ba = 0 < b2, a contradiction. If t = bt′ for some t′ ∈ S1, then ba < b2,
a contradiction. Therefore ba = amb for some m > 2. By the same arguments either b2 = 0 or
b2 = alb 6= 0 for some l > m.

Case N2.1. b2 = alb 6= 0 for some l > m. Every element of the semigroup can written in
the form ap or apb for some p. Let n be the least positive integer such that an = 0 and let k be
the least positive integer such that akb = 0, then l < k 6 n. Since am+lb = alba = b2a = bamb =
am2+lbl am+lb, we have k 6 m + l.

Let p, q be the least positive integers such that ap = aqb. Then aq+1b = ap+1 = aqba = aq+mb,
so either p = n, q = k and S ∼= N2.1(m, l, n, k) or p = n− 1 and q = k− 1, i.e. S ∼= N2.2(m, l, n, k).

Case N2.2. b2 = 0. Every element of the semigroup can be written in the form ap or apb for
some p. Let n be the least positive integer such that an = 0 and let k be the least positive integer
such that akb = 0. Then k 6 n.

Let p, q be the least positive integers such that ap = aqb. Then aq+1b = ap+1 = aqba = aq+mb =
0, so either p = n, q = k and S ∼= N2.1(m, l, n, l) or p = n−1 and q = k−1, i.e. S ∼= N2.2(m, l, n, l).

Case N3. We have a2 < ab and a2 < ba, but a2 6< b2. So a2 = (ab)
p
2 or a2 = (ba)

p
2 for some p.

Obviously, every element of the semigroup can be written in the same form.

Case N3.1. a2 = (ab)
2m+1

2 , b2 = (ab)
2k+1

2 6= 0 for some k > m > 1. Then (ab)
2k+2

2 =
(ab)

2k+1
2 b = b3 = b(ab)

2k+1
2 = (ba)

2k+2
2 . So, (ab)

2k+3
2 = (ab)

2k+2
2 a = (ba)

2k+2
2 a = (ba)

2k+1
2 a2 =

(ba)
2k+1

2 (ab)
2k+1

2 l (ab)
2k+3

2 , whence (ab)
2k+3

2 = 0. Analogously, (ba)
2k+3

2 = 0.
If (ab)

2k+1
2 6= (ba)

2k+1
2 and (ab)

2k+1
2 6= 0, then S ∼= N3.1(m, 2k + 1). If (ab)

2k+1
2 6= (ba)

2k+1
2 6= 0

and (ab)
2k+1

2 = 0, then S ∼= N3.2(m, 2k + 1). If (ab)
2k+1

2 = (ba)
2k+1

2 , then S ∼= N3.3(m, 2k + 1). If
(ab)

2k+1
2 6= 0 and (ba)

2k+1
2 = 0, then S ∼= N3.4(m, 2k + 1).

Case N3.2. a2 = (ab)
2m+1

2 , b2 = (ab)
2k+2

2 6= 0 for some k > m > 1. Then (ba)
2k+3

2 =
b(ab)

2k+2
2 = b3 = (ab)

2k+2
2 b = (ab)

2k+1
2 b2 = (ab)

2k+1
2 (ab)

2k+2
2 =

(ab)
2k
2 a2(ba)

2k+1
2 = (ab)

2k
2 (ab)

2m+1
2 (ba)

2k+1
2 = (ab)

4k+2m+2
2 l (ba)

2k+2
2 , so (ba)

2k+3
2 = b3 = 0. There-

fore b2abl b3 and b2ab = 0.
If b2a 6= 0, then S ∼= N3.1(m, 2k + 2). If b2a = 0 and (ba)

2k+2
2 6= 0, then S ∼= N3.2(m, 2k + 2).

If (ab)
2k+2

2 = (ba)
2k+2

2 6= 0, then S ∼= N3.3(m, 2k + 2). If (ab)
2k+2

2 6= 0 and (ba)
2k+2

2 = 0, then
S ∼= N3.4(m, 2k + 2).

Case N3.3. a2 = (ab)
2m+1

2 , b2 = (ba)
2k+1

2 for some m, k > 2 and k > m. Let n and l be the
least positive integers such that (ab)

n
2 = (ba)

l
2 = 0. Clearly, n, l > 2k + 1 and |n − l| 6 1. Then

S ∼= N3.5(m, k, n, l).

Case N3.4. a2 = (ab)
2m+1

2 , b2 = 0. Let n and l be the least positive integers such that
(ab)

n
2 = 0 and (ab)

l
2 = 0. Obviously, |n− l| 6 1. Then S ∼= N3.6(m,n, l).

Case N3.5. a2 = (ab)
2m
2 for some m > 1. Then (ab)

2m+1
2 = a3 = a(ab)

2m
2 = a2(ba)

2m−1
2 =

(ab)
2m
2 (ba)

2m−1
2 = (ab)

2m−1
2 b2(ab)

2m−2
2 . It is easy to see that (ab)

2m−1
2 b2(ab)

2m−2
2 l (ab)

2m+1
2 , so

(ab)
2m+1

2 = 0. Therefore (ba)
2m+2

2 = 0. Then b2 = (ba)
2m+1

2 or b2 = 0.
If b2 = (ba)

2m+1
2 6= 0, then S ∼= N3.7(2m). If (ba)

2m+1
2 6= 0 and b2 = 0, then S ∼= N3.8(2m). If

b2 = (ba)
2m+1

2 = 0, then S ∼= N3.9(2m).
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Case N3.6. a2 = (ba)
2m+1

2 . Then (ab)
2m+2

2 = a3 = (ba)
2m+2

2 , so (ab)
2m+3

2 = (ba)
2m+3

2 = 0.
Therefore b2 = (ab)

2m+2
2 or b2 = 0.

If b2 = (ab)
2m+2

2 6= 0, then S ∼= N3.7(2m+1). If (ab)
2m+2

2 6= 0 and b2 = 0, then S ∼= N3.8(2m+1).
If b2 = (ab)

2m+2
2 = 0, then S ∼= N3.9(2m + 1).

Case N4. We have ab = an = bm for some n, m > 3. Then bab l ba, a2b = an+1 = aba l ba,
ab2 = bm+1 = bab l ba, but ba < ab. So, ba = 0 and ab is an atom. If ap = bq for 1 < p < n and
1 < q < m, then ap+1 = 0, which means ab = an = 0 = ba, a contradiction. Then S ∼= N4(n, m).

Series O, P, Q leads to a contradiction by Lemma 3 or by arguments from series F.
Theorem 1 is now proved. ¤
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Abstract: The paper deals with the problem of optimal control with a convex integral quality index for a
linear steady-state control system in the class of piecewise continuous controls with a smooth control constraints.
In a general case, for solving such a problem, the Pontryagin maximum principle is applied as the necessary and
sufficient optimum condition. In this work, we deduce an equation to which an initial vector of the conjugate
system satisfies. Then, this equation is extended to the optimal control problem with the convex integral quality
index for a linear system with a fast and slow variables. It is shown that the solution of the corresponding
equation as ε → 0 tends to the solution of an equation corresponding to the limit problem. The results received
are applied to study of the problem which describes the motion of a material point in Rn for a fixed period of
time. The asymptotics of the initial vector of the conjugate system that defines the type of optimal control is
built. It is shown that the asymptotics is a power series of expansion.

Keywords: Optimal control, Singularly perturbed problems, Asymptotic expansion, Small parameter.

Introduction

The paper is devoted to studying the asymptotics of the initial vector of a conjugated state
and an optimal value of the quality index in the optimal control problem [1]–[3] for a linear system
with a fast and slow variables (see review [4]), convex integral quality index [3, Chapter 3], and
smooth geometrical constraints for control.

Singularly perturbed problems of optimal control have been considered in different settings
in [5]–[7].

The method of boundary function that was developed in [4, 10] allows effectively constructing
an asymptotics of solutions for problems with an open control area and smooth controlling actions.

The solving of problems with a closed and bounded control area meets certain difficulties. That
is why the problems with fast and slow variables and closed constraints for control have been studied
to a less extent. A significant contribution to solving these problems was made by Dontchev and
Kokotovic.

Problems of fast operation and terminal control with constraints for control in the form of a
polygon are dealt with in [5, 7]. The structure of such optimal control is a relay function with
values in the apexes of the polygon. No optimal control with constraints in the form of a sphere,
which is a continuous function with a finite and countable number of discontinuity points, has been
considered so far.

The asymptotics of solutions of the perturbed control problem was formulated differently in
papers [7, 9].

In the present work, the basic equation for searching for the asymptotics of the initial vector of
the conjugated state of the problem under consideration and optimal control is obtained. General
relationships are applied to the case of the optimal control with a point of a small mass in an
n-dimensional space under the action of a bounded force.
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1. General statement of problem and condition for optimality

Let us consider a problem that belongs to the class of piecewise continuous controls – optimal
control problem for a linear stationary system with a convex integral quality index:





ż = Az + Bu, z(0) = z0, ‖u(t)‖ 6 1, t ∈ [0;T ],

J(u) = ϕ(z(T )) +
T∫
0

‖u(t)‖2 dt → min,
(1.1)

where z ∈ Ren, u ∈ Rr, ‖ · ‖ is the Euclidean norm in Rr, A, B are constant matrices of the
corresponding dimensional, and ϕ(·) is the convex function that is continuously differentiable in
Ren.

Note that in the considered convex integral quality index J , where the first term can be inter-
preted as a fine for the control error at a finite time instant T , whereas the second, as an account
of an energy spent for the realization of control.

Condition 1. Let us assume that a pair (A,B) is quite controllable,

rank
(B,AB, . . . ,Aen−1B)

= ñ.

Under the conditions stated, the Pontryagin maximum principle in the problem (1.1) is the
necessary and sufficient criterion of optimality. In this case, the problem has the unique solution
[3, p. 3.5, Theorem 14]: if z, η is the unique solution to (1.1) and

η̇ = −A∗η, η(T ) = −∇ϕ(z(T )), (1.2)

then the optimal control uo is determined from the maximum principle

−‖uo(t)‖2 + 〈B∗η(t), uo(t)〉 = max
‖u‖61

(− ‖u‖2 + 〈B∗η(t), u〉). (1.3)

Here 〈·, ·〉 is the scalar product in Rr.
Calculating maximum in (1.3), we find

uo(t) =
B∗η(t)

S(‖B∗η(t)‖) , where S(ξ) :=

{
2, 0 6 ξ 6 2,

ξ, ξ > 2.
(1.4)

Note that the determination of function S(·) leads to the validity of inequality

∀w1, w2 ∈ Rr

∥∥∥∥
w1

S(‖w1‖) −
w2

S(‖w2‖)

∥∥∥∥ 6 ‖w1 − w2‖. (1.5)

Let λ := η(T ). Then

η(t) = e−A
∗(t−T )λ, z(t) = eAtz0 +

t∫

0

eA(t−s)Buo(s)ds.

At a finite time instant t = T we have

z(T ) = eAT z0 +

T∫

0

eA(T−s)BB∗eA∗(T−s)λ

S(‖B∗eA∗(T−s)λ‖) ds.
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Replacing the variable τ :=T − s, we obtain

z(T ) = eAT z0 +

T∫

0

eAτBB∗eA∗τλ
S(‖B∗eA∗τλ‖)dτ.

Thus, the following is valid:

Statement 1. Let condition 1 be valid, z(t), u(t) be a solution of the system from Prob-
lem (1.1), and η(t) be a solution of the system (1.2). Then z(t), η(t), u(t) is the solution of the
maximum principle problem (1.1), (1.2), (1.3) if and only if when η(T ) = λ, u(t) is determined by
the formula (1.4), and a vector λ is the unique solution of equation

−λ = ∇ϕ

(
eAT z0 +

T∫

0

eAτB B∗eA∗τλ
S(‖B∗eA∗τλ‖)dτ

)
. (1.6)

Besides u(t) is the unique optimal control in the problem (1.1).

The vector λ that satisfies the equation (1.6) will be called as a vector determining the optimal
control in the problem (1.1).

Statement 2. Let uo(t) be the optimal control in (1.1). Then uo(t) is continuous on [0;T ] and
infinitely differentiable at points t̃ such that ‖B∗eA∗(T−et )λ‖ 6= 2. Here λ is a vector determining
the optimal control in problem (1.1).

P r o o f. The validity of statement follows from (1.4) and analytical form of the matrix expo-
nent eA∗t. ¤

2. Optimal control problem with fast and slow variables

Consider a particular case of problem (1.1), when the system under control contains fast and
slow variables and the terminal part of the quality index depends only on slow variables:





ẋε = A11xε + A12yε + B1u, t ∈ [0, T ], ‖u‖ 6 1,
εẏε = A21xε + A22yε + B2u, xε(0) = x0, yε(0) = y0,

J(u) := σ(xε(T )) +

T∫

0

‖u(t)‖2 dt → min,

(2.1)

where x ∈ Rn, y ∈ Rm, u ∈ Rr; Aij , Bi (i, j = 1, 2) are the constant matrices of the corresponding
dimensions, and σ(·) is the convex function that is continuously differentiable in Rn.

Condition 2. All eigenvalues of matrix A22 have negative real parts.

For each fixed ε > 0 the problem (2.1) coincides with the problem (1.1):

zε(t) =

(
xε(t)

yε(t)

)
, z0

ε =

(
x0

y0

)
, Aε =

(
A11 A12

ε−1A21 ε−1A22

)
, Bε =

(
B1

ε−1B2

)
,

ñ = n + m, ϕ(zε) = σ(xε).
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As a limit problem for (2.1), the following problem is introduced




ẋ0 = A0x0 + B0u, t ∈ [0, T ], ‖u‖ 6 1,

A0 :=A11 −A12A
−1
22 A21, B0 :=B1 −A12A

−1
22 B2, x0(0) = x0,

J(u) := σ(x0(T )) +

T∫

0

‖u(t)‖2 dt → min .

(2.2)

Condition 3. Pairs (A0, B0) and (A22, B2) are quite controllable.

If the Conditions 2-3 are satisfied, then there exists ε0 > 0 such that the pair (Aε, Bε) is quite
controllable at any ε : 0 < ε 6 ε0 [5, Theorem1].

Note that since ∇ϕ(zε) =
( ∇σ(xε)

0

)
, then the vector λε, which determines the optimal

control in the problem (2.1), has the form λε =
(

lε
0

)
, lε ∈ Rn.

The vector lε also will be called as determining the optimal control in problem (2.1).
Let

eAεt :=
( W11

ε (t) W12
ε (t)

W21
ε (t) W22

ε (t)

)
, (2.3)

then, by virtue of (2.3) the equation (1.6) transforms into

−lε = ∇σ

(
W11

ε (T )x0 +W12
ε (T )y0+

T∫

0

(W11
ε (t)B1 + ε−1W12

ε (t)B2

) (
B∗

1(W11
ε (t))∗ + ε−1B∗

2(W12
ε (t))∗

)
lε

S
(∥∥(

B∗
1(W11

ε (t))∗ + ε−1B∗
2(W12

ε (t))∗
)
lε

∥∥)dt

)
.

(2.4)

Note that the optimal control uo
ε(t) in the problem (2.1) is expressed through the vector lε as

follows:

uo
ε(T − t) =

(
B∗

1(W11
ε (t))∗ + ε−1B∗

2(W12
ε (t))∗

)
lε

S
(∥∥(

B∗
1(W11

ε (t))∗ + ε−1B∗
2(W12

ε (t))∗
)
lε

∥∥) . (2.5)

Theorem 1. Let the Conditions 2 and 3 be valid. Then lε → l0 as ε → +0, where lε is the
unique solution of the equation (2.4), and l0 is the unique solution of the equation

−l0 = ∇σ

(
eA0T x0 +

T∫

0

eA0tB0
B∗

0eA∗0tl0

S
(∥∥B∗

0eA∗0tl0
∥∥)dt

)
. (2.6)

P r o o f. It is known that the attainability set for the controllable system under control from
(2.1) is uniformly bounded by the time instant T at ε ∈ (0; ε0] (see, for example, [6, theorem 3.1]).
Hence, by virtue of (2.4) vectors {lε} are also bounded at ε ∈ (0; ε0]. Therefore, to prove the
theorem, it is sufficient to show that all partial limits {lε} as ε → +0 are equal to l0.

As follows from the A. B. Vasil’eva’s results (see, for example [10, Chapter 3]) there is γ > 0
such that

W11
ε (t) = eA0t + O(ε), W12

ε (t) = −εeA0tA12A
−1
22 + O(εe−γt/ε) + O(ε2),

W21
ε (t) = −A−1

22 A21e
A0t + O(e−γt/ε) + O(ε), W22

ε (t) = O(e−γt/ε).
(2.7)

Moreover, asymptotic estimates are uniform in t ∈ [0;T ].
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Hence, by virtue of (2.2) which determines the matrices A0 and B0 and by formulas (2.7) the
expression standing ∇σ for the formula (2.4) has the form

eA0T x0 + O(ε) +

T∫

0

(
eA0tB0 + O(e−γt/ε) + O(ε))

(
B∗

0eA∗0t + O(e−γt/ε) + O(ε)
)
lε

S
(∥∥(

B∗
0eA∗0t + O(e−γt/ε) + O(ε)

)
lε

∥∥)dt. (2.8)

Let us divide the integral from (2.8) into two terms
∫ T
0 =

∫ √ε
0 +

∫ T√
ε. Then, taking into account

that the expression under integral is uniformly constrained and that O(e−γ/
√

ε) = O(εα) as ε → 0
for any α > 0, we obtain from (2.4) and (2.8)

−lε = ∇σ

(
eA0T x0 + O(ε) + O(

√
ε) +

T∫

√
ε

eA0tB0

(
B∗

0eA∗0t + O(ε)
)
lε

S
(∥∥(

B∗
0eA∗0t + O(ε)

)
lε

∥∥)dt

)
. (2.9)

Let l be a partial limit of the vectors {lε} as ε → +0, i.e. lεk
→ l for a certain {εk} so that

εk → +0. Going to the limit as k → ∞ in (2.9) we obtain that l is the solution of (2.6). Because
of the uniqueness of such a solution we have l = l0. ¤

The main problem for (2.1) is to find the complete asymptotic expansion in powers of small
parameter ε of the optimal control, optimal values of the quality index, and the optimal process.
Formulas (2.5) and (1.5) show that if one manages to gain the complete asymptotic expansion of
vector lε, which determines the optimal control in problem (2.1), this vector can be used for the
asymptotic expansions of the above values as well.

3. Construction of complete asymptotic expansion of vector lε for an optimal
control problem with fast and slow variables

Consider a partial case of problem (2.1):




ẋε = yε, t ∈ [0, T ], ‖u‖ 6 1,
εẏε = −yε + u, xε(0) = x0, yε(0) = y0,

J(u) := 1
2‖xε(T )‖2 +

T∫
0

‖u(t)‖2 dt → min,

(3.1)

where xε, yε, u ∈ Rn.
Problem (3.1) simulates a motion of a material point of small mass ε > 0 with the coefficient

of the medium resistance equals to 1 in the space Rn under action of the constrained control force
u(t).

Here A11 = 0, A12 = I, A21 = 0, A22 = −I, B1 = 0, B2 = I, and 0 and I are the zero and the
identity matrices of dimensional n×n, respectively. For the limit problem we have A0 = 0, B0 = I
and thus, Conditions 2 and 3 are valid.

Calculating eAεt and ∇(1
2‖xε(T )‖2), we obtain

W11
ε (t) = I, W12

ε (t) = ε(1−e−t/ε)I, W21
ε (t) = 0, W22

ε (t) = e−t/εI, ∇
(1

2
‖xε(T )‖2

)
= xε(T ).

Therefore, equations (2.4) and (2.6) for lε and l0 take the form

−lε = x0 + ε(1− e−T/ε)y0 +

T∫

0

(1− e−t/ε)2lε
S

(∥∥(1− e−t/ε)lε
∥∥)dt, −l0 = x0 + T

l0
S(‖l0‖) . (3.2)
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If the vector-function fε(t) is such that fε(t) = O(εα) as ε → 0 for any α > 0 uniformly with
respect to t ∈ [0;T ] then instead of fε(t) we will write O. In particular, e−γT/ε = O.

From (3.2) we obtain

1. ‖x0‖ < T + 2 =⇒ l0 = − 2
2 + T

x0 and ‖l0‖ < 2,

2. ‖x0‖ > T + 2 =⇒ l0 = −‖x
0‖ − T

‖x0‖ x0 and ‖l0‖ > 2.

(3.3)

1. Consider first the case: ‖x0‖ < T + 2.
By virtue of (3.3) and Theorem 1 the inequality ‖lε‖ < 2 is valid for any sufficiently small ε.

Taking into account that (1 − e−t/ε) 6 1 at any t > 0 and ε > 0, from (3.2) we obtain for lε the
equation

−lε = x0 + εy0 +O+
1
2

T∫

0

(1− e−t/ε)2 dt lε. (3.4)

Calculating the integral
T∫
0

(1− e−t/ε)2 dt = T − 3/(2ε) +O, from (3.4) we find

lε = −4(x0 + εy0 +O)
4 + 2T − 3ε

.

It follows from this representation that lε is expanded in the asymptotic series in powers of ε.

Statement 3. Let ‖x0‖ < T + 2. Then the vector lε which determines the optimal control in
problem (3.1), is expanded as ε → 0 in the power asymptotic series

lε
as= l0 +

∞∑

k=1

εklk, where, in particular, l1 = −3l0 + 4y0

4 + 2T
.

2. Now consider the case: ‖x0‖ > T + 2.
By virtue of (3.3) and Theorem 1, the inequality ‖lε‖ < 2 is valid for all sufficiently small

ε. Since for a fixed ε the function (1 − e−t/ε)‖lε‖ increases monotonically from 0 at t = 0 into
(1 − e−t/ε)‖lε‖ at t = T (which for sufficiently small ε gives the inequality (1 − e−t/ε)‖lε‖ > 2),
there is the unique t1,ε ∈ (0;T ) such that (1− e−t1,ε/ε)‖lε‖ = 2, or

(1− e−t1,ε/ε)‖lε‖ = 2, t1,ε = −ε ln
(
1− 2

‖lε‖
)
. (3.5)

Therefore, the equation (3.2) takes the form

−lε = x0 + ε(1− e−T/ε)y0 +
1
2

t1,ε∫

0

(
1− e−t/ε

)2
dt lε +

T∫

t1,ε

(
1− e−t/ε

)
dt

lε
‖lε‖ . (3.6)

Calculating the integrals in (3.6) and transposing (−lε) into the right part, we obtain

0 = F (ε, lε) := lε + x0 + ε(1− e−T/ε)y0 − ε

(
1
‖lε‖ +

1
‖lε‖2

+
1
2

ln
(
1− 2

‖lε‖
))

lε

+
(

T + ε ln
(
1− 2

‖lε‖
)

+ εe−T/ε − ε + ε
2
‖lε‖

)
lε
‖lε‖ .

(3.7)
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Theorem 2. Let ‖x0‖ > T + 2. Then the vector lε which determines the optimal control in
problem (3.1) is expanded into a power asymptotic series (for ε → 0)

lε
as= l0 +

∞∑

k=1

εklk.

P r o o f. Consider the equation 0 = F (ε, l), where F (·, ·) is defined in (3.7). Additionally
predetermine e−T/ε at the point ε = 0 as zero. Then we obtain that 0 = F (0, l0) and F (·, ·) is
infinitely differentiable in ε and l in a certain neighborhood of the point (0; l0). Since

Fρ :=
∂F (ε, l)

∂l

∣∣∣
ε=0,l=l0

ρ = ρ +
‖l0‖2ρ− 〈l0, ρ〉l0

‖l0‖3
T,

then operator F is continuously reversible and

F−1g =
(

g +
T 〈l0, g〉l0
‖l0‖3

) ‖l0‖
T + ‖l0‖ . (3.8)

In this way, the theorem of implicitly specified function is applicable, which means that lε (as
a function of ε) is infinitely differentiable in ε for all small ε and, therefore, lε is expanded into
the asymptotic series. The coefficients of this series can be found via the standard procedure:
substituting the series into the equation (3.7), expanding values dependent on ε into asymptotic
series in power of ε, and equaling terms of the same order of smallness with respect to ε, we obtain
an equation of the F lk = gk with the known right parts. Then, by the formula (3.8) we find lk.

In particular, for l1 we obtain the equation

F l1 = g1 :=−x0 − y0 +
(

1
‖l0‖ +

1
‖l0‖2

+
1
2

ln
(
1− 2

‖l0‖
))

l0 −
(

ln
(
1− 2

‖l0‖
)
− 1 +

2
‖l0‖

)
l0
‖l0‖ .

Hence, by virtue of (3.8) we obtain

l1 =
(

g1 +
T 〈l0, g1〉l0
‖l0‖3

) ‖l0‖
T + ‖l0‖ .

¤

4. Remarks

1. Both in the first and the second cases under consideration, from (3.2), (3.5) and asymptotic
expansion of lε, the asymptotic expansions of both the quality index and optimal control as well
as optimal state of the system are conventionally obtained. With this, the asymptotic expansions
of the optimal control and optimal state of the system will be exponentially decreasing boundary
layers in the neighborhood of point t = 0. Moreover, if t > εβ and β ∈ (0; 1), the optimal control
uo(t) is a constant plus the asymptotic zero.

2. It follows from the formula (3.7) that lε lies in the subspace Π created by vectors x0 and y0.
Therefore, for all t ∈ [0;T ] and uo

ε(t), xε(t) and yε(t) lie in the same subspace Π. In this way, the
problem (3.1) is equivalent to the corresponding two-dimensional problem.
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Abstract: The paper deals with generalized linear and parabolic B–splines with the uniform nodes con-
structed by means only one function ϕ(x). For such splines in this paper conditions have been found that
guarantee satisfaction of two–scale relations.

Key words: B-spline, uniform nodes, two-scale relations.

Introduction

In contemporary mathematics, various generalizations of the polynomial spline–functions reg-
ularly appear. Besides the well–known L-splines (see, for example [1]), let us note the source-
representative splines [2], the Rvachev functions [3], the Leontiev splines [4], the Kvasov iso–
geometric splines [5], the Demyanovich Bϕ–splines [6], and so on.

Recently, the Author [7] suggested another generalization of a known construction of the par-
abolic basis spline (of the B–spline) with the uniform nodes; this spline is constructed by means of
only one function ϕ ∈ C1[−h, h] (h > 0).

In [7], the approximative and form–retaining properties of the local non-interpolating splines
were investigated. These ones are linear combinations of shifts of the suggested B–splines. As
particular cases, there were considered examples of exponential, elliptic, and hyperbolic local splines
with arbitrary collocation of nodes.

It is well known that the polynomial splines have played important role in development of the
wavelet theory (see, e.g., [8–10]). Namely, in constructing the wavelet decompositions of the space
L2(R), embeddedness of spaces {Vj}∞j=−∞ on refining meshes is used. This embeddedness follows
from presence of scaling (multiple–scaled) relations (see [8, § 4.3])) for the basis functions.

But note that not each basis function B(x) satisfies the general scaling equation of the form

B(x) =
∑

j∈Z
hjB(2x− jh) (x ∈ R),

and finding such functions B(x) is a complicated problem.
In the present paper, conditions on the function ϕ are given that guarantee implementation

of analogues for the two–scaled relations for the generalized parabolic B–splines from work [7]
(all necessary definitions are given below). Moreover, an analogous problem is considered for the
generalized linear B–splines and corresponding examples are given.

It is worthy to note that we have obtained these results without application of the harmonic
analysis techniques.

1The paper was originally published in Trudy Institute of Mathematics and Mechanics, Ural Branch of
the Russian Academy of Sciences, 2011. Vol. 17, no 3. P. 319–323 (in Russian).
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1. Generalized parabolic B–splines

Let h > 0 and C = C[a, b] be the space of continuous functions given on the segment [a, b] with
usual definition of the norm

‖f‖C = max
x∈[a,b]

|f(x)|.

Fix the function ϕ given on the segment [−2h, 2h] and satisfying the following conditions:

ϕ′ ∈ C[−2h, 2h], ϕ(−x) = ϕ(x) (x ∈ [0, 2h]), ϕ(0) = ϕ′(0) = 0. (1.1)

The B–spline corresponding to this function ϕ (see [7]) is described by the formula

Bh,2(x) = m(h)





ϕ(x), x ∈ [0, h],

2ϕ(h)− ϕ(x− h)− ϕ(x− 2h), x ∈ [h, 2h],

ϕ(3h− x), x ∈ [2h, 3h],

0, x /∈ [0, 3h].

(1.2)

Here, m = m(h) > 0 is the normalizing multiplier.
In the classic case, the normalized parabolic B–spline with the uniform nodes 0, h, 2h 3h (see

[11]) is obtained from this definition if to set ϕ(x) = x2 and m(h) = 1/(2h2).
Note evident properties of the function Bh,2(x) that follow from conditions (1.1):

suppBh,2(x) = [0, 3h], B′
h,2 ∈ C(R), Bh,2(3h− x) = Bh,2(x),

(i.e., the function Bh,2 is even w.r.t. the middle carrier point x = (3h)/2). If to suppose another
condition to be satisfied that the function ϕ(x) does not decrease on [0, h], then the graph of Bh,2(x)
will have the form of a symmetric “cap” (w.r.t. the point x = (3h)/2) as a the parabolic B–spline
with the uniform nodes.

In [7], for such functions ϕ, the local splines of the following form were investigated

S(x) = S(f, x) =
∑

j∈Z
yjBh,2

(
x +

3h

2
− jh

)
,

where yj = f(jh), f : R→ R. It has been proved that these splines locally satisfy to the property
of retaining the original data yj (of the 1–monotonicity type) in the following sense: if yl−1 ≤ yl ≤
yl+1 (l ∈ Z), then the spline S(x) does not decrease on the segment [(l−1/2)h, (l+1/2)h] (l ∈ Z).

Together with the function Bh,2(x), consider the function

B2h,2(x) = m(2h)





ϕ(x), x ∈ [0, 2h],

2ϕ(2h)− ϕ(x− 2h)− ϕ(x− 4h), x ∈ [2h, 4h],

ϕ(6h− x), x ∈ [4h, 6h],

0, x 6∈ [0, 6h]

that is obtained from he function Bh,2 by formal substitution of the parameter h by the 2h one. It
is evident that, in a general case, the graph of this function can not be obtained from the graph
of the function Bh,2 by two-times extension along the horizontal axis as it happened un the classic
polynomial case (see [8, § 4.3]). This is since nowhere the demand of homogeneity property of
the function ϕ is imposed. But this is the key reasoning in the described constructing. So, in the
subsequent investigation of the wavelets on the basis of these basis functions, the embeddedness
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of corresponding subspaces {Vj}∞j=−∞ on the refining meshes must be understood in some other
sense.

In this paper, we are searching for an answer on the following question. For what functions ϕ
satisfying conditions (1.1), there exist real numbers A1, A2, A3, and A4 such that for any x ∈ R
the equality holds

B2h(x) = A1Bh,2(x) + A2Bh,2(x− h) + A3Bh,2(x− 2h) + A4Bh,2(x− 3h)? (1.3)

We call this equation the scaling (two–scaled) relation for the generalized B–spline that is deter-
mined by formula (1.2). In the subsequent formulas, the expression o/o is supposed to be equal to 1.

Theorem 1. Let the function ϕ satisfy conditions (1.1). Then equality (1.3) holds iff there
exists such a number λ ∈ R, for which the following equalities hold:

λ =
ϕ(t + h)− 2ϕ(h) + ϕ(t− h) + ϕ(t)

ϕ(t)
=

ϕ(t− 2h)− 2ϕ(h) + ϕ(t− h) + ϕ(t)
ϕ(t− h)

=

=
2ϕ(2h)− ϕ(t− 2h)− ϕ(t)− ϕ(t− h)

2ϕ(h)− ϕ(t− h)
=

2ϕ(2h)− ϕ(t− h)− ϕ(t + h)− ϕ(t)
2ϕ(h)− ϕ(t)

, (1.4)

0 ≤ t ≤ h.

P r o o f. By virtue of symmetry of the generalized B–spline w.r.t. the middle of the segment
carrier, it is possible to think that A1 = A4 and A2 = A3.

Consider equality (1.3) as an equation w.r.t. the coefficients A1, A2, A3 and A4 on each segment
[0, h], [h, 2h], . . . , [5h, 6h]. We obtain that

A1 = A4 =
m(2h)
m(h)

,

A2 = A3 =
m(2h)
m(h)

[ϕ(t + h)− 2ϕ(h) + ϕ(t− h) + ϕ(t)]
ϕ(t)

=

=
m(2h)
m(h)

[ϕ(2h− t)− 2ϕ(h) + ϕ(t− h) + ϕ(t)]
ϕ(t− h)

=

=
m(2h)
m(h)

[2ϕ(2h)− ϕ(t− 2h)− ϕ(t)− ϕ(t− h)]
2ϕ(h)− ϕ(t− h)

=

=
m(2h)
m(h)

[2ϕ(2h)− ϕ(t− h)− ϕ(t + h)− ϕ(t)]
2ϕ(h)− ϕ(t)

.

¤
Examples. Give examples of three functions ϕ that satisfy equalities (1.4). In the sequel for

simplicity, we put m(2h) = m(h).

Example 1. Let ϕ(x) = x2 (the parabolic splines). Then A1 = A4 = 1, A2 = A3 = 3 are the
binomial coefficients from [8, formula 4.3.4].

Example 2. Let ϕ(x) = cosh(βx) − 1 (β > 0) (the exponential splines corresponding to the
linear differential operator of the third order with the form L3 = L3(D) = D(D2− β2), where D is
the differentiation symbol). Then A1 = A4 = 1, A2 = A3 = 1 + 2 coshβh.
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Example 3. Let ϕ(x) = 1 − cosαx (α > 0), i.e., be the trigonometric splines corresponding
to the linear differential operator of the third order with the form L3 = L3(D) = D(D2 + α2).
Then A1 = A4 = 1, A2 = A3 = 1 + 2 cosαh.

In connection with the latter two examples, note the Author’s work [12]. There the scaling
relations are constructed for the B-L–splines (of an arbitrary order) in more generalized form than
in (1.3).

2. Generalized linear B–splines

The scheme suggested for obtaining the two–scaled relations can be expanded onto the gener-
alized linear B–splines.

Let the function ϕ be given on the segment [0, 2h] and satisfy the following conditions:

ϕ ∈ C[0, 2h], ϕ(0) = 0. (2.1)

The generalized linear B–spline is described by the formula

Bh,1(x) = m(h)





ϕ(x), x ∈ [0, h],

ϕ(2h− x), x ∈ [h, 2h],

0, x 6∈ [0, 2h].

(2.2)

Here, m(h) > 0 is the normalizing multiplier. If to put ϕ(x) = x and m(h) = 1/h, then formula
(2.2) defines the normalized linear B–spline (see, for example [11]).

It is evident that suppBh,1 = [0, 2h], Bh,1 ∈ C(R), Bh,1(2h− x) = Bh,1(x) (x ∈ [0, h]). Also,
consider the function

B2h,1(x) = m(2h)





ϕ(x), x ∈ [0, 2h],

ϕ(4h− x), x ∈ [2h, 4h],

0, x 6∈ [0, 4h]

that was obtained by formal substitution of the parameter h by 2h one in the function Bh,1. We
are interested in the question: for what ϕ the equality holds

B2h,1(x) = C1Bh,1(x) + C2Bh,1(x− h) + C3Bh,1(x− 2h) (x ∈ R), (2.3)

where C1, C2, and C3 are some real numbers?

Theorem 2. Let the function ϕ satisfy conditions (2.1). Then equality (2.3) holds iff there
exists such a number λ ∈ R for which the following equalities hold:

λ =
ϕ(t + h)− ϕ(h− t)

ϕ(t)
=

ϕ(2h− t)− ϕ(t)
ϕ(h− t)

(0 ≤ t ≤ h). (2.4)

P r o o f. It is similar to one of Theorem 1. Under this,

C1 = C3 =
m(2h)
m(h)

,

C2 =
m(2h)
m(h)

[ϕ(t + h)− ϕ(h− t)]
ϕ(t)

=
m(2h)
m(h)

[ϕ(2h− t)− ϕ(t)]
ϕ(h− t)

.

¤
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Examples. As in the previous paragraph, it is possible to give examples of three functions ϕ
satisfying equalities (2.4). Again for simplicity, we put m(2h) = m(h).

Example 4. Let ϕ(x) = x (the linear splines). Then C1 = C3 = 1, C2 = 2 are the binomial
coefficients from [8, formula 4.3.4].

Example 5. Let ϕ(x) = sinhβx (β > 0), i.e., be the exponential splines of the second or-
der corresponding to the linear differential operator of the form L2 = L2(D) = D2 − β2. Then
C1 = C3 = 1, C2 = 2 cosh βh.

Example 6. Let ϕ(x) = sinhαx (α > 0), i.e., be the trigonometric splines of the second or-
der corresponding to the linear differential operator of the form L2 = L2(D) = D2 + α2. Then
C1 = C3 = 1, C2 = 2 cos αh.

3. Conclusion

It would be interesting to construct examples of other functions ϕ satisfying relations (1.4) or
(2.4). But it is not clear, how using only one function ϕ, it is possible to construct analogues of
the polynomial B–splines of more high degrees, i.e., to derive formules of the type (1.2).
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Abstract: The paper deals with approximative and form–retaining properties of the local parabolic splines
of the form S(x) =

P
j

yjB2(x− jh), (h > 0), where B2 is a normalized parabolic spline with the uniform nodes

and functionals yj = yj(f) are given for an arbitrary function f defined on R by means of the equalities

yj =
1

h1

h1
2Z

−h1
2

f(jh + t)dt (j ∈ Z).

On the class W 2∞ of functions under 0 < h1 ≤ 2h, the approximation error value is calculated exactly for the
case of approximation by such splines in the uniform metrics.

Key words: Local parabolic splines, Approximation, Mean.

Introduction

In the function approximation theory, the local polynomial splines of the order r and of minimal
defect are usually constructed as linear combinations of the corresponding B-splines Br,j(x). For a
function f from the class of continuous ones, the local polynomial spline S(x) = S(f, x) is defined
as follows:

S(x) =
∑

j

bj(f)Br,j(x), (0.1)

where bj(f) is the sequence of linear continuous functionals, whose choice determines the form of
the approximation.

As the functionals bj(f), one chooses the linear combinations of the function values and its
derivatives at the mesh nodes or its divided differences.

The most simple and convenient (in computation) version of this choice is bj(f) = f(xj) (here,
xj are the nodes of the spline S mesh). It leads to the well known local spline (see, for example,
[1–4]):

S(x) =
∑

j

f(xj)Br,j(x). (0.2)

In formula (0.2) instead of xj , the arithmetic mean is often used that is calculated over all nodes
of the B–spline Br,j(x) ([1–3]).

1The paper was originally published in Trudy Institute of Mathematics and Mechanics, Ural Branch of
the Russian Academy of Sciences, 2007. Vol. 13, no. 4. P. 169–189 (in Russian).
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A spline (constructed in such a way) is not an interpolation one. But in the case r = 2 (i.e., of
the parabolic splines), it is a continuously differentiable function on the whole number axis R and
possesses both the form–retaining and extremal features [5].

But if the function f is not continuous but only integrable, it is not natural to consider aspects
of this function approximation taking into account only its values at the mesh nodes. It is so since
its values at separate points are not essential for functions of such a type. In such case, one uses the
interpolation on the average. Aspects of existence, uniqueness, and approximative and extremal
properties of such splines were investigated in works [6–8]. (Generalizations onto the L-splines see,
also, on [9, 10]).

Let two real numbers h > 0 and h1 > 0 be given. For a function integrable on the whole number
axis f : R→ R assume

bj(f) = yj =





1
h1

h1
2∫

−h1
2

f(jh + t)dt, h1 > 0,

f(jh), h1 = 0.

(0.3)

Let B2,0(x) be a normalized parabolic B–spline (see, for example, [1]) with nodes −3h

2
, −h

2
,
h

2
,
3h

2
,

and B2,j(x) = B2,0(x− jh).
Let, also, W 2∞ = W 2∞(X) = {f : f ′ ∈ AC, ‖f ′′‖∞ ≤ 1} be a class of functions given on the set

X (X = R or X = [a, b]).
Here, AC is the class of locally absolute continuous functions ‖ · ‖∞ = ‖ · ‖L∞(X), L∞(X) is the

class of the functions essentially restricted on X with the usual definition of the norm

‖f‖∞ = ess sup
x∈X

|f(x)|.

In the present work, we investigate in details aspects of approximation of smooth functions f
by the local parabolic splines of the form (0.1) (i.e., for r = 2) with the choice of the functionals
bj(f) in the form (0.3).

1. Properties of the spline S

On the axis R (on both its sides), consider the following mesh of nodes: · · · < x−2 < x−1 <

x0 < x1 < x2 < · · · ; and let xj = jh, h = xj+1 − xj , xj+1/2 = xj +
h

2
(j ∈ Z).

For xj ≤ x ≤ xj+1/2 from formulas (0.1) and (0.3), it follows

S(x) = yj−1 ·
(x− xj+1/2)2

2h2
+ yj ·

(
xj+1 − x

h
− (x− xj+1/2)2

h2

)

+yj+1 ·
(

(x− xj+1/2)2

2h2
+

x− xj

h

)
,

(1.1)

and for xj+1/2 ≤ x ≤ xj+1

S(x) = yj ·
(

(x− xj+1/2)2

2h2
+

xj+1 − x

h

)
+ yj+1 ·

(
x− xj

h
− (x− xj+1/2)2

h2

)

+yj+2 ·
(x− xj+1/2)2

2h2
.

(1.2)
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To the function f(x) ∈ W 2∞(R), we put in correspondence the parabolic spline S(x) = S(f, x)
(see (1.1)–(1.2)), where the functionals yj are defined by formula (0.3).

For h1 = 0, the form-retaining and approximation properties of such splines were investigated
in [5]; so, we shall consider the case h1 > 0.

Denote by Aj the interval
(
xj − h1

2
; xj +

h1

2

)
, j ∈ Z.

Theorem 1. The local spline S(x) defined by formulas (1.1) − (1.2), possesses the following
properties:
1) locally inherits the sign of the original function f in the sense that

a) if f(x) ≥ 0 (≤ 0) for x ∈ Aj−1
⋃

Aj
⋃

Aj+1, then S(x) ≥ 0 (≤ 0) for xj ≤ x ≤ xj+1/2 (j ∈ Z);
b) if f(x) ≥ 0 (≤ 0) for x ∈ Aj

⋃
Aj+1

⋃
Aj+2, then S(x) ≥ 0 (≤ 0) for xj+1/2≤x≤xj+1 (j∈Z);

2) locally inherits the monotonicity property of the original function f , namely,

a) if the function f(x) does not decrease (does not increase) in the interval
(
xj−1−h1

2
; xj+1+

h1

2

)
,

then the spline S(x) does not decrease (does not increase) in the interval (xj ; xj+1/2) (j ∈ Z);

b) if the function f(x) does not decrease (does not increase) in the interval
(
xj − h1

2
;xj+2 +

h1

2

)
,

then the spline S(x) does not decrease (does not increase) in the interval (xj+1/2; xj+1) (j ∈ Z).

P r o o f. For the point 1), the proof follows directly from non-negativity of the B–spline
B2,0(x), formula (0.2), and non-negativity of yj for x ∈ Aj .

Point 2a). From condition of point 2) of Theorem 1 and definition of yj it follows yj+1 ≥ yj ≥
yj−1. By differentiation of the right-hand side of equations (1.1), we obtain that for x ∈ (

xj ; xj+1/2

)
the derivative

S′(x) =
yj+1 − yj

h
+

x− xj+1/2

h2
· (yj+1 − 2yj + yj+1)

of the spline S in this interval is a linear function in the variable x. So, to prove point 2), it is
sufficient to verify that for yj+1 ≥ yj ≥ yj−1, inequalities S′(xj + 0) ≥ 0, S′(xj+1/2 − 0) ≥ 0 hold.
Validity of these inequalities follows from the formulas

S′(xj + 0) =
yj+1 − yj−1

2h
,

S′(xj+1/2 − 0) =
yj+1 − yj

h
;

and point 2a) of Theorem 1 is proved.
Point 2b). From conditions of point 2b) of Theorem 1 and definition of yj , it follows yj+2 ≥

yj+1 ≥ yj . By differentiation of the right-hand side of equality (1.2), we obtain that for x ∈(
xj+1/2;xj

)
, the derivative

S′(x) =
yj+1 − yj

h
+

x− xj+1/2

h2
· (yj+2 − 2yj+1 + yj)

of the spline S in this interval is a linear function in the variable x. So, to prove point b), it is
sufficient to verify that for yj+2 ≥ yj+1 ≥ yj , the equalities S′(xj+1/2 + 0) ≥ 0, S′(xj+1 − 0) ≥ 0
hold. But this follows from the formulae

S′(xj+1/2 + 0) =
yj+1 − yj

h
,

S′(xj+1 − 0) =
yj+2 − yj

2h
.

¤
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Before formulation of further statements, obtain the integral representation for the difference
S(x)− f(x) in the interval [xj ; xj+1] for 0 < h1 ≤ 2h.

Let for the beginning x ∈ [xj ; xj+1/2]. Then, by the Taylor formula for the function f(x) ∈
W 2∞(R) we have

f(x) = f(xj) + f ′(xj)(x− xj) +

x∫

xj

(x− t)f ′′(t)dt. (1.3)

Using (1.3) and definition yj (see (0.3)), we derive

yj−1 = f(xj)− f ′(xj)h +
1
h1

h1
2∫

−h1
2

ds

s+xj−1∫

xj

(xj−1 + s− t)f ′′(t)dt,

yj = f(xj) +
1
h1

h1
2∫

−h1
2

ds

s+xj∫

xj

(xj + s− t)f ′′(t)dt,

yj+1 = f(xj) + f ′(xj)h +
1
h1

h1
2∫

−h1
2

ds

s+xj+1∫

xj

(xj+1 + s− t)f ′′(t)dt.

Therefore, from (1.1), we obtain

S(x) =
(x− xj+1/2)2

2h2

[
f(xj)− f ′(xj)h +

1
h1

h1
2∫

−h1
2

ds

s+xj−1∫

xj

(xj−1 + s− t)f ′′(t)dt

]

+
(

xj+1 − x

h
− (x− xj+1/2)2

h2

)[
f(xj) +

1
h1

h1
2∫

−h1
2

ds

s+xj∫

xj

(xj + s− t)f ′′(t)dt

]

+
(

(x− xj+1/2)2

2h2
+

x− xj

h

)[
f(xj) + f ′(xj)h +

1
h1

h1
2∫

−h1
2

ds

s+xj+1∫

xj

(xj+1 + s− t)f ′′(t)dt

]
.

(1.4)

Taking into account that 0 < h1 ≤ 2h, change the integration order in the integrals entering
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into representation (1.4). Hence, we obtain

S(x) =
(x− xj+1/2)2

2h2

{
f(xj)− f ′(xj)h +

1
h1

[ xj−1+
h1
2∫

xj−1−h1
2

1
2
f ′′(t)

(
t− xj−1 +

h1

2

)2
dt

+

xj∫

xj−1+
h1
2

f ′′(t)h1(t− xj−1)dt
]}

+
(xj+1 − x

h
− (x− xj+1/2)2

h2

)

×
{

f(xj) +
1
h1

[ xj∫

xj−h1
2

1
2
f ′′(t)

(
t− xj +

h1

2

)2
dt +

xj+
h1
2∫

xj

1
2
f ′′(t)

(
t− xj − h1

2

)2
dt

]}

+
((x− xj+1/2)2

2h2
+

x− xj

h

){
f(xj) + f ′(xj)h +

1
h1

[ xj+1−h1
2∫

xj

f ′′(t)h1(xj+1 − t)dt

+

xj+1+
h1
2∫

xj+1−h1
2

1
2
f ′′(t)

(
t− xj+1 − h1

2

)2
dt

]}
, x ∈ [xj ;xj+1/2].

(1.5)

By virtue of symmetry of formulas for S(x) w.r.t. the middle xj+1/2 of the interval [xj ; xj+1],
we obtain the following similar representation of S(x) for x ∈ [xj+1/2, xj+1]:

S(x) =
((x− xj+1/2)2

2h2
+

xj+1 − x

h

){
f(xj) +

1
h1

[ xj∫

xj−h1
2

1
2
f ′′(t)

(
t− xj +

h1

2

)2
dt

+

xj+
h1
2∫

xj

1
2
f ′′(t)

(
t− xj − h1

2

)2
dt

]}
+

(x− xj

h
− (x− xj+1/2)2

h2

){
f(xj) + f ′(xj)h

+
1
h1

[ xj+1−h1
2∫

xj

f ′′(t)h1(xj+1 − t)dt +

xj+1+
h1
2∫

xj+1−h1
2

1
2
f ′′(t)

(
t− xj+1 − h1

2

)2
dt

]}

+
(x− xj+1/2)2

2h2

{
f(xj) + f ′(xj)2h +

1
h1

[ xj+2−h1
2∫

xj

f ′′(t)h1(xj+2 − t)dt

+

xj+2+
h1
2∫

xj+2−h1
2

1
2
f ′′(t)

(
t− xj+2 − h1

2

)2
dt

]}
, x ∈ [xj+1/2, xj+1].

¤

Theorem 2. A local spline S(x) defined by formula (1.1) − (1.2), for 0 < h1 ≤ 2h, possesses
the following properties:



86 Elena V. Strelkova

1) inherits locally the convexity property of the original function f , namely,

a) if the function f(x) is down- (upper) convex in the interval
(
xj−1 − h1

2
; xj+1 +

h1

2

)
, then

the spline S(x) is the down- (upper-) convex function in the interval (xj ; xj+1/2) (j ∈ Z);

b) if the function f(x) is down- (upper-) convex in the interval
(
xj − h1

2
; xj+2 +

h1

2

)
, then the

spline S(x) is the down- (upper-) convex function in the interval (xj+1/2; xj+1) (j ∈ Z).

2) a) for any function f ∈ W 2∞
[
xj−1 − h1

2
; xj+1 +

h1

2

]
, the exact inequality holds

| S′′(x) |≤ 1, x ∈ (
xj ;xj+1/2

)
,

and, moreover, for all x ∈ (
xj ;xj+1/2

)
, the inequality sign is provided by the function f(x) =

x2

2
;

b) for any function f ∈ W 2∞
[
xj − h1

2
;xj+2 +

h1

2

]
, the exact inequality holds

| S′′(x) |≤ 1, x ∈ (
xj+1/2; xj+1

)
,

and, moreover, for all x ∈ (
xj+1/2; xj+1

)
, the inequality sign is provided by the function f(x) =

x2

2
.

P r o o f. To prove 1a), it is necessary to verify that if

f ′′(x) ≥ 0 (≤ 0) for x ∈
(
xj−1 − h1

2
; xj+1 +

h1

2

)
,

then S′′(x) ≥ 0 (≤ 0) for x ∈ (
xj ; xj+1/2

)
.

By the twice differentiation of the function S(x), we obtain from formula (1.5)

S′′(x) =

xj−1+
h1
2∫

xj−1−h1
2

f ′′(t)C1(t)dt +

xj∫

xj−1+
h1
2

f ′′(t)C2(t)dt +

xj∫

xj−h1
2

f ′′(t)C3(t)dt

+

xj+
h1
2∫

xj

f ′′(t)C4(t)dt +

xj+1−h1
2∫

xj

f ′′(t)C5(t)dt +

xj+1+
h1
2∫

xj+1−h1
2

f ′′(t)C6(t)dt,

(1.6)

where

C1(t) =
1

2h2h1

(
t− xj−1 +

h1

2

)2

, C2(t) =
1
h2

(t− xj−1), C3(t) = − 1
h2h1

(
t− xj +

h1

2

)2

,

C4(t) = − 1
h2h1

(
t− xj − h1

2

)2

, C5(t) =
1
h2

(xj+1 − t), C6(t) =
1

2h2h1

(
t− xj+1 − h1

2

)2

.

Divide the further proof into two cases: 1) 0 < h1 ≤ h, and 2) h < h1 ≤ 2h.
Case 1). Let 0 < h1 ≤ h. Under this, the function S′′(x) is transformed to the form

S′′(x) =

xj−1+
h1
2∫

xj−1−h1
2

f ′′(t)C1(t)dt +

xj−h1
2∫

xj−1+
h1
2

f ′′(t)C2(t)dt +

xj∫

xj−h1
2

f ′′(t)(C2(t) + C3(t))dt

+

xj+
h1
2∫

xj

f ′′(t)(C4(t) + C5(t))dt +

xj+1−h1
2∫

xj+
h1
2

f ′′(t)C5(t)dt +

xj+1+
h1
2∫

xj+1−h1
2

f ′′(t)C6(t)dt.

(1.7)
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From the definitions of Cj(t) (j = 1, 6), it follows that C1(t) ≥ 0 for t ∈
[
xj−1− h1

2
; xj−1 +

h1

2

]
,

C2(t) ≥ 0 for t ∈
[
xj−1 +

h1

2
; xj − h1

2

]
, C5(t) ≥ 0 for t ∈

[
xj +

h1

2
;xj+1 − h1

2

]
, and C6(t) ≥ 0 for

t ∈
[
xj+1 − h1

2
; xj+1 +

h1

2

]
.

Now it remains to investigate the quadratic trinomials C2(t) + C3(t) for t ∈
[
xj − h1

2
; xj

]
and

C4(t) + C5(t) for t ∈
[
xj ; xj +

h1

2

]
.

Non-negativity of the functions C2(t) + C3(t) for t ∈
[
xj − h1

2
; xj

]
and C4(t) + C5(t) for

t ∈
[
xj ;xj +

h1

2

]
follows from the fact that the branches of corresponding parabolas are down-

directed and their values (at the ends of the intervals under investigation) are non-negative. Namely,

C2(xj) + C3(xj) = C4(xj) + C5(xj) =
4h− h1

4h2
≥ 0,

C2(xj − h1

2
) + C3(xj − h1

2
) = C4(xj +

h1

2
) + C5(xj +

h1

2
) =

2h− h1

2h2
≥ 0.

From the statements proved, representation (1.7), and the condition f ′′(t) ≥ 0 for

t ∈
(
xj−1 − h1

2
;xj+1 +

h1

2

)
, it follows that S′′(x) ≥ 0 for x ∈ (xj ;xj+1/2).

Case 2). Let h < h1 ≤ 2h. Under this, the function S′′(x) is transformed to the form

S′′(x) =

xj−h1
2∫

xj−1−h1
2

f ′′(t)C1(t)dt+

xj−1+
h1
2∫

xj−h1
2

f ′′(t)(C1(t)+C3(t))dt +

xj∫

xj−1+
h1
2

f ′′(t)(C2(t)+C3(t))dt

+

xj+1−h1
2∫

xj

f ′′(t)(C4(t)+C5(t))dt+

xj+
h1
2∫

xj+1−h1
2

f ′′(t)(C4(t)+C6(t))dt +

xj+1+
h1
2∫

xj+
h1
2

f ′′(t)C6(t)dt. (1.8)

From the definitions of Cj(t) (j = 1, 6), it follows that C1(t) ≥ 0 for

t ∈
[
xj−1 − h1

2
; xj − h1

2

]
and C6(t) ≥ 0 for t ∈

[
xj +

h1

2
;xj+1 +

h1

2

]
.

Elementary calculations show that

C1

(
xj − h1

2

)
+ C3

(
xj − h1

2

)
= C4

(
xj +

h1

2

)
+ C6

(
xj +

h1

2

)
=

1
2h1

≥ 0,

C1

(
xj−1 +

h1

2

)
+ C3

(
xj−1 +

h1

2

)
= C4

(
xj+1 +

h1

2

)
+ C6

(
xj+1 +

h1

2

)
=

2h2 − (h1 − 2h)2

2h1h2
≥ 0,

C2(xj) + C3(xj) = C4(xj) + C5(xj) =
1
h2

(
h− h1

4

)
≥ 0,

C2

(
xj−1 +

h1

2

)
+ C3

(
xj−1 +

h1

2

)
= C4

(
xj+1 − h1

2

)
+ C5

(
xj+1 − h1

2

)
=

2h2 − (h1 − 2h)2

2h1h2
≥ 0.

Since the quadratic trinomials C1(t) + C3(t), C2(t) + C3(t), C4(t) + C5(t), and C4(t) + C6(t)
have negative leading coefficients and their values at the ends of the corresponding intervals are
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non-negative, we have

C1(t) + C3(t) ≥ 0 for t ∈
[
xj − h1

2
; xj−1 +

h1

2

]
,

C2(t) + C3(t) ≥ 0 for t ∈
[
xj−1 +

h1

2
; xj

]
,

C4(t) + C5(t) ≥ 0 for t ∈
[
xj ; xj+1 − h1

2

]
,

C4(t) + C6(t) ≥ 0 for t ∈
[
xj+1 − h1

2
;xj +

h1

2

]
.

From the statements proved, representation (1.8), and the condition f ′′(t) ≥ 0 for t ∈
(
xj−1 −

h1

2
; xj+1 +

h1

2

)
, it follows that S′′(x) ≥ 0 for x ∈ (xj ; xj+1/2).

Proof of point 1b) one-to-one repeats the reasonings mentioned in the prof of point 1a) after
substitution the variable x− xj by the xj+1 − x one.

Point 2a). Estimate |S′′(x)| for x ∈ [xj ; xj+1/2]. Under 0 < h1 ≤ h by (1.7) for any function

f ∈ W 2∞
[
xj−1− h1

2
; xj+1 +

h1

2

]
, the value |S′′(x)| is estimated from above by the sum of integrals,

and this sum is equal to 1. Namely,

|S′′(x)| ≤
xj−1+

h1
2∫

xj−1−h1
2

C1(t)dt +

xj−h1
2∫

xj−1+
h1
2

C2(t)dt +

xj∫

xj−h1
2

(C2(t) + C3(t))dt

+

xj+
h1
2∫

xj

(C4(t) + C5(t))dt +

xj+1−h1
2∫

xj+
h1
2

C5(t)dt +

xj+1+
h1
2∫

xj+1−h1
2

C6(t)dt = 1, x ∈ [xj ; xj+1/2].

Similarly, for h < h1 ≤ 2h from (1.7), we derive that for any function

f ∈ W 2∞
[
xj − h1

2
;xj+2 +

h1

2

]
for x ∈ [xj ; xj+1/2], the following inequality holds:

|S′′(x)| ≤
xj−h1

2∫

xj−1−h1
2

C1(t)dt +

xj−1+
h1
2∫

xj−h1
2

(C1(t) + C3(t))dt +

xj∫

xj−1+
h1
2

(C2(t) + C3(t))dt

+

xj+1−h1
2∫

xj

(C4(t) + C5(t))dt +

xj+
h1
2∫

xj+1−h1
2

(C4(t) + C6(t))dt +

xj+1+
h1
2∫

xj+
h1
2

C6(t)dt = 1.

From the proofs considered above, it follows that in both cases the function that realizes exact

equality in the inequalities proved is the function f(x) =
x2

2
.

Point 2b). The proof follows directly from the function S(x) symmetry w.r.t. the middle
point xj+1/2 of the interval [xj ; xj+1].

¤
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2. Estimations of approximation errors

Theorem 3. For 0 ≤ h1 ≤ 2h, the following equality holds:

sup
f∈W 2∞(R)

‖f − S‖∞ =
h2

8
+

h2
1

24
.

P r o o f. Consider for x ∈ [xj ; xj+1/2] non-integral terms in the function f ∈ W 2∞
[
xj−1 −

h1

2
; xj+1 +

h1

2

]
in representation (1.3) and in the function S(x) in representation (1.5). Note that

they coincide since

(x− xj+1/2)2

2h2
(f(xj)− f ′(xj)h) +

(
xj+1 − x

h
− (x− xj+1/2)2

h2

)
f(xj)

+
(

(x− xj+1/2)2

2h2
+

x− xj

h

)
(f(xj) + f ′(xj)h) = f(xj) + f ′(xj).

Taking this into account, we have for any x ∈ [xj ; xj+1/2]

S(x)− f(x) =
(x− xj+1/2)2

2h2

1
h1

[xj−1+
h1
2∫

xj−1−h1
2

1
2
f ′′(t)

(
t− xj−1 +

h1

2

)2
dt +

xj∫

xj−1+
h1
2

f ′′(t)h1(t− xj−1)dt

]

+
(

xj+1 − x

h
− (x− xj+1/2)2

h2

)
1
h1

[ xj∫

xj−h1
2

1
2
f ′′(t)

(
t− xj +

h1

2

)2
dt +

xj+
h1
2∫

xj

1
2
f ′′(t)

(
t− xj − h1

2

)2
dt

]

+
(

(x− xj+1/2)2

2h2
+

x− xj

h

)
1
h1

[xj+1−h1
2∫

xj

f ′′(t)h1(xj+1 − t)dt +

xj+1+
h1
2∫

xj+1−h1
2

1
2
f ′′(t)

(
t− xj+1 − h1

2

)2
dt

]

−
x∫

xj

f ′′(t)(x− t)dt. (2.1)

So, for any x ∈ [xj ; xj+1/2], the following equality holds:

S(x)− f(x) =

xj−1+
h1
2∫

xj−1−h1
2

f ′′(t)K1(x, t)dt +

xj∫

xj−1+
h1
2

f ′′(t)K2(x, t)dt

+

xj∫

xj−h1
2

f ′′(t)K3(x, t)dt +

xj+
h1
2∫

xj

f ′′(t)K4(x, t)dt +

xj+1−h1
2∫

xj

f ′′(t)K5(x, t)dt

+

xj+1+
h1
2∫

xj+1−h1
2

f ′′(t)K6(x, t)dt−
x∫

xj

f ′′(t)K7(x, t)dt,

(2.2)
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where

K1(x, t) =
(x− xj+1/2)2

4h2h1

(
t− xj−1 +

h1

2

)2
,

K2(x, t) =
(x− xj+1/2)2

2h2
(t− xj−1),

K3(x, t) =
(

xj+1 − x

h
− (x− xj+1/2)2

h2

)
1

2h1

(
t− xj +

h1

2

)2

,

K4(x, t) =
(

xj+1 − x

h
− (x− xj+1/2)2

h2

)
1

2h1

(
t− xj − h1

2

)2

,

K5(x, t) =
(

(x− xj+1/2)2

2h2
+

x− xj

h

)
(xj+1 − t),

K6(x, t) =
(

(x− xj+1/2)2

2h2
+

x− xj

h

)
1

2h1

(
t− xj+1 − h1

2

)2

,

K7(x, t) = t− x.

Further proof for x ∈ [xj ; xj+1/2] is divided into two cases: 1) 0 < h1 ≤ h and 2) h < h1 ≤ 2h.

Case 1). Let 0 < h1 ≤ h. Under this, the difference S(x) − f(x) for x ∈
[
xj , xj +

h1

2

]
is

transformed to the form

S(x)− f(x) =

xj−1+
h1
2∫

xj−1−h1
2

f ′′(t)K1(x, t)dt +

xj−h1
2∫

xj−1+
h1
2

f ′′(t)K2(x, t)dt

+

xj∫

xj−h1
2

f ′′(t)(K2(x, t) + K3(x, t))dt +

x∫

xj

f ′′(t)(K4(x, t) + K5(x, t) + K7(x, t))dt

+

xj+
h1
2∫

x

f ′′(t)(K4(x, t) + K5(x, t))dt +

xj+1−h1
2∫

xj+
h1
2

f ′′(t)K5(x, t)dt +

xj+1+
h1
2∫

xj+1−h1
2

f ′′(t)K6(x, t)dt.

(2.3)

But for x ∈
[
xj +

h1

2
, xj+1/2

]
, its form is

S(x)− f(x) =

xj−1+
h1
2∫

xj−1−h1
2

f ′′(t)K1(x, t)dt +

xj−h1
2∫

xj−1+
h1
2

f ′′(t)K2(x, t)dt

+

xj∫

xj−h1
2

f ′′(t)(K2(x, t) + K3(x, t))dt +

xj+
h1
2∫

xj

f ′′(t)(K4(x, t) + K5(x, t) + K7(x, t))dt

+

x∫

xj+
h1
2

f ′′(t)(K5(x, t) + K7(x, t))dt +

xj+1−h1
2∫

x

f ′′(t)K5(x, t)dt +

xj+1+
h1
2∫

xj+1−h1
2

f ′′(t)K6(x, t)dt.

(2.4)
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To obtain the estimation value on the function class W 2∞ = W 2∞(R), we shall prove that

under x ∈ [xj , xj+1/2]: K1(x, t) ≥ 0 for t ∈
[
xj−1 − h1

2
; xj−1 +

h1

2

]
, K2(x, t) ≥ 0 for

t ∈
[
xj−1 +

h1

2
; xj − h1

2

]
, K2(x, t) + K3(x, t) ≥ 0 for t ∈

[
xj − h1

2
; xj

]
, K6(x, t) ≥ 0 for

t ∈
[
xj+1 − h1

2
; xj+1 +

h1

2

]
;

under x ∈
[
xj , xj +

h1

2

]
: K4(x, t)+K5(x, t)+K7(x, t) ≥ 0 for t ∈ [xj ; x], K4(x, t)+K5(x, t) ≥ 0

for t ∈
[
x; xj +

h1

2

]
, K5(x, t) ≥ 0 for t ∈

[
xj +

h1

2
; xj+1 − h1

2

]
;

under x ∈
[
xj +

h1

2
, xj+1/2

]
: K4(x, t)+K5(x, t)+K7(x, t) ≥ 0 for t ∈ [xj ;xj +

h1

2
], K5(x, t)+

K7(x, t) ≥ 0 for t ∈
[
xj +

h1

2
; x

]
, K5(x, t) ≥ 0 for t ∈

[
x; xj+1 − h1

2

]
.

All these inequalities (except only two) immediately follow from definitions of the functions
Kj(x, t) (j = 1, 7). So, it is only necessary to verify that K4(x, t) + K5(x, t) + K7(x, t) ≥ 0 for

x ∈
[
xj , xj +

h1

2

]
, t ∈ [xj ; x], for x ∈

[
xj +

h1

2
, xj+1/2

]
, t ∈

[
xj ; xj +

h1

2

]
and K5(x, t)+K7(x, t) ≥ 0

for x ∈
[
xj +

h1

2
, xj+1/2

]
, t ∈

[
xj +

h1

2
; x

]
.

The function K4(x, t) + K5(x, t) + K7(x, t) is the quadratic trinomial in the variable t with the

positive leading coefficient; at the ends of the intervals [xj ; x],
[
xj ; xj +

h1

2

]
this function (as one of

the variable t) takes the positive values, and abscissa of the corresponding parabola apex is placed
at the left from the point xj . From this, the non-negativity of this function on the mentioned sets
follows.

The function K5(x, t) + K7(x, t) is linear in the variable t and takes non-negative values at the

ends of the interval
[
xj +

h1

2
; x

]
. Hence, K5(x, t) + K7(x, t) ≥ 0 in the whole interval

[
xj +

h1

2
;x

]

for x ∈
[
xj +

h1

2
, xj+1/2

]
.

Taking into account the above proved facts, it follows from formulas (2.3) and (2.4) that to
obtain the estimate from above for the value |S(x)− f(x)| (for these formulas) in the class W 2∞(R)
and, hence, in formula (2.1), the function f ′′(t) can be substituted by 1 in (2.3) and (2.4).

Put f ′′(t) = 1 and calculate for it values of integrals in the right-hand side of formula (2.1);

denote this value by the symbol J . After elementary calculations, we obtain that J =
h2

8
+

h2
1

24
. It

implies that the exact inequality

|f(x)− S(x)| ≤ h2

8
+

h2
1

24

holds for any function f ∈ W 2∞
[
xj−1 − h1

2
; xj+1 +

h1

2

]
for any x ∈ [xj ; xj+1/2]. Moreover, the sign

of equality is provided by the function f(t) =
t2

2
for t ∈

[
xj−1 − h1

2
; xj+1 +

h1

2

]
.

Similarly, for the function f ∈ W 2∞
[
xj − h1

2
;xj+2 +

h1

2

]
for any x ∈ [xj+1/2; xj+1], we derive

the exact inequality

|f(x)− S(x)| ≤ h2

8
+

h2
1

24
,

and the sign of equality is provided by the function f(t) =
t2

2
for t ∈

[
xj − h1

2
; xj+2 +

h1

2

]
.
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Case 2). Let h < h1 ≤ 2h. In this case, the difference S(x)− f(x) for x ∈
[
xj , xj+1 − h1

2

]
is

transformed to the form

S(x)− f(x) =

xj−h1
2∫

xj−1−h1
2

f ′′(t)K1(x, t)dt +

xj−1+
h1
2∫

xj−h1
2

f ′′(t)(K1(x, t) + K3(x, t))dt

+

xj∫

xj−1+
h1
2

f ′′(t)(K2(x, t) + K3(x, t))dt +

x∫

xj

f ′′(t)(K4(x, t) + K5(x, t) + K7(x, t))dt

+

xj+1−h1
2∫

x

f ′′(t)(K4(x, t) + K5(x, t))dt +

xj+
h1
2∫

xj+1−h1
2

f ′′(t)(K4(x, t) + K6(x, t))dt

+

xj+1+
h1
2∫

xj+
h1
2

f ′′(t)K6(x, t)dt,

(2.5)

S(x)− f(x) =

xj−h1
2∫

xj−1−h1
2

f ′′(t)K1(x, t)dt +

xj−1+
h1
2∫

xj−h1
2

f ′′(t)(K1(x, t) + K3(x, t))dt

+

xj∫

xj−1+
h1
2

f ′′(t)(K2(x, t) + K3(x, t))dt +

xj+1−h1
2∫

xj

f ′′(t)(K4(x, t) + K5(x, t) + K7(x, t))dt

+

x∫

xj+1−h1
2

f ′′(t)(K4(x, t) + K6(x, t) + K7(x, t))dt +

xj+
h1
2∫

x

f ′′(t)(K4(x, t) + K6(x, t))dt

+

xj+1+
h1
2∫

xj+
h1
2

f ′′(t)K6(x, t)dt.

(2.6)

To obtain the error estimate in the class W 2∞(R), prove that

under x ∈ [
xj , xj+1/2

]
, the following inequalities hold: K1(x, t) ≥ 0 for t ∈

[
xj−1−h1

2
;xj−h1

2

]
,

K1(x, t)+K3(x, t) ≥ 0 for t ∈
[
xj− h1

2
; xj−1 +

h1

2

]
, K2(x, t)+K3(x, t) ≥ 0 for t ∈

[
xj−1 +

h1

2
;xj

]
,

K6(x, t) ≥ 0 for t ∈
[
xj +

h1

2
; xj+1 +

h1

2

]
;

under x ∈
[
xj , xj+1−h1

2

]
these inequalities are: K4(x, t)+K5(x, t)+K7(x, t) ≥ 0 for t ∈ [xj ; x],

K4(x, t) + K5(x, t) ≥ 0 for t ∈
[
x; xj+1 − h1

2

]
, K4(x, t) + K6(x, t) ≥ 0 for t ∈

[
xj+1 − h1

2
; xj +

h1

2

]
;
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under x ∈
[
xj+1 − h1

2
, xj+1/2

]
the inequalities hold: K4(x, t) + K5(x, t) + K7(x, t) ≥ 0 for t ∈

[
xj ; xj+1− h1

2

]
, K4(x, t)+K6(x, t) = K7(x, t) ≥ 0 for t ∈

[
xj+1− h1

2
; x

]
, and K4(x, t)+K6(x, t) ≥ 0

for t ∈
[
x; xj +

h1

2

]
.

All these inequalities (except two ones) immediately follow from definitions of the function
Kj(x, t) (j = 1, 7). It is only necessary to verify that K4(x, t) + K5(x, t) + K7(x, t) ≥ 0 under

x ∈
[
xj , xj+1 − h1

2

]
, t ∈ [xj ;x] and under x ∈

[
xj+1 − h1

2
, xj+1/2

]
, t ∈

[
xj ; xj+1 − h1

2

]
, and

K4(x, t) + K6(x, t) + K7(x, t) ≥ 0 under x ∈
[
xj+1 − h1

2
, xj+1/2

]
, t ∈

[
xj+1 − h1

2
;x

]
.

The function K4(x, t) + K5(x, t) + K7(x, t) is the quadratic trinomial in the variable t with the

positive leading coefficient; at the ends of the intervals [xj ; x],
[
xj ; xj+1− h1

2

]
, this trinomial takes

positive values, and abscissa of the corresponding parabola apex is placed at the left from the point
xj .

The function K4(x, t) + K6(x, t) + K7(x, t) for x ∈
[
xj+1 − h1

2
;xj+1/2

]
, t ∈

[
xj+1 − h1

2
;x

]

possesses the same properties. Remind that this function is also the quadratic trinomial in the

variable t with the positive leading coefficient; at the ends of the interval
[
xj+1 − h1

2
; x

]
, this

trinomial takes positive values, and abscissa of the corresponding parabola apex is placed at the

left from the point xj+1− h1

2
. It implies non-negativity of the considered functions in the mentioned

sets.
Taking into account the above proved facts, it follows from formulas (2.5) and (2.6) that to

obtain the estimate from above for the value |S(x)− f(x)| (for these formulas) in the class W 2∞(R)
and, hence, in formula (2.1), the function f ′′(t) can be substituted by 1.

Put f ′′(t) = 1 and calculate for it values of integrals in the right-hand side of formula (2.1);

denote this value by the symbol J . After elementary calculations, we obtain that J =
h2

8
+

h2
1

24
. It

implies that the exact inequality

|f(x)− S(x)| ≤ h2

8
+

h2
1

24

holds for any function f ∈ W 2∞
[
xj−1 − h1

2
;xj+1 +

h1

2

]
under any x ∈ [xj ; xj+1/2]. Moreover, the

equality sign is provided by the function f(t) =
t2

2
for t ∈

[
xj−1 − h1

2
; xj+1 +

h1

2

]
.

Similarly, for the function f ∈ W 2∞
[
xj − h1

2
; xj+2 +

h1

2

]
under any x ∈ [xj+1/2; xj+1], we derive

the exact inequality

|S(x)− f(x)| ≤ h2

8
+

h2
1

24
,

and the equality sign is provided by the function f(t) =
t2

2
for t ∈

[
xj − h1

2
; xj+2 +

h1

2

]
.
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