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Abstract: The article is devoted to the description of Academician Arkady Kryazhimskiy’s life path. The
facts of the scientific biography of Acad. Kryazhimskiy are presented with the emphasis on his outstanding
contribution into the theory of dynamic inversion, the theory of differential games, and control theory. His
personal talents in different spheres are also marked out.

Key words: Arkady Viktorovich Kryazhimskiy.

Arkady Viktorovich Kryazhimskiy was born on January 2, 1949, in Qingdao, China. In 1971
he graduated from the Department of Mathematics and Mechanics of Gor’kii Ural State University
in Sverdlovsk (now, Ekaterinburg) and entered a postgraduate program under the supervision of
Yurii Sergeevich Osipov. In 1971 Osipov completed the development of the foundations of positional
game theory for control systems with delayed argument and suggested Kryazhimskiy to study an
pursuit–evasion differential game for a target set given in an infinite-dimensional phase space of a
delay system. That was the time when convex analysis in Hilbert spaces, a division of functional
analysis, was actively developed. Kryazhimskiy used technique from this research area to design
solution methods for the described problem. He carried out a comprehensive study of an pursuit–
evasion game with a functional target. Based on the results of these studies, Kryazhimskiy defended
his candidate’s dissertation “Some Game Problems of Pursuit–Evasion” in 1974.

In July 1972, the Laboratory (later, Department) of Differential Equations, headed by Osipov,
was created at the Institute of Mathematics and Mechanics of the Ural Scientific Center of the
Russian Academy of Sciences (in Sverdlovsk). Kryazhimskiy worked at this department from its
creation till the beginning of the 1990s. In the 1970s, after defending his candidate’s dissertation,
he abandoned his work on differential games for delayed systems and turned to studying differ-
ential games for “ordinary” systems with incomplete information as well as infinite-dimensional
control systems. Numerous workshops were held on these topics at the Laboratory of Differential
Equations. One of difficult important problems was to extend the basic principles of the theory
of positional differential games to “ordinary” systems whose right-hand sides did not satisfy the
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Lipschitz condition in the phase variable. Working on this problem, Kryazhimskiy designed a “uni-
versal” implementation of the extremal shift principle, which was independent of the specifics of a
control system’s phase space. The implementation was based on an interesting idea: if a control
system is looked upon as a “control–trajectory” transformation, then the extremal shift rule can be
specified in the space of “inputs,” i.e., controls, rather than in the space of “outputs,” i.e., trajecto-
ries. This idea showed a way that later led Kryazhimskiy to the following solution of a differential
game for non-Lipschitz “ordinary” systems: passage to the infinite-dimensional functional control
space, search for an adequate criterion for the deviation between the “true” and “target” controls,
and implementation of extremal shift in terms of this criterion. These results served as a base for
Kryazhimskiy’s doctoral dissertation “Differential Games for Non-Lipschitz Systems” (1981).

By the beginning of the 1980s, the development of fundamental issues of the theory of positional
differential games related to finding general solvability criteria of game problems and describing
the general structure of their solutions has been mostly completed. Scientists at the Institute of
Mathematics and Mechanics who worked in the area of differential games had to decide on the
directions on further studies. One of the possible directions was the development of the theory of
positional differential games “into the depth” by designing new solution methods for differential
game problems; another, the search for new problems and the development of new theoretical
approaches. Kryazhimskiy and his colleagues from the department chose the new research area.
They intended to search for topical problems at the interface of subject areas. At that time, along
with the studies on control theory and differential games, other research directions were developed
successfully at the institute; one of them was concerned with the theory of ill-posed problems.
Despite the remoteness of this theory from differential games, specialists within game theory were
familiar with the idea of regularization, which played an important role in the theory of ill-posed
problems. In particular, the widely known method of positional control with a guide proposed by
Nikolai Nikolaevich Krasovskii in the first half of the 1970s was based on the effect of regularization,
i.e., elimination of instability in the presence of small information noise. Kryazhimskiy and Osipov
set a goal to find an application direction for methods of the theory of differential games in the
area of ill-posed problems. Finding a specific direction of applications was an extremely difficult
task, since it required problems of a principally new class. In the theory of ill-posed problems, the
so-called inverse problems of control systems are closest to objects studied in control theory. A
typical inverse problem consists in finding a control implementing a specified trajectory of a system
or a given signal from a trajectory. Similar problems in the presence of trajectory perturbations
are close to the process of observing a real trajectory of a system generated by an unknown control,
which in this case loses the traditional meaning of “control,” i.e., rational influence aimed at the
optimization of motion, since the control is replaced by an unobservable and uncontrolled “input”
fed to the system from the environment. According to the ideology of the theory of ill-posed
problems, the unobservable input is to be recovered, and the recovery error must be arbitrarily
small for sufficiently small observation error. Since a direct observation of perturbing inputs, as a
rule, was not possible, a new problem of dynamic inversion arose, which consisted in the real-time
recovery of current values of unobservable inputs from an available signal about the trajectory.
Later, the problem of dynamic inversion became an “inversion block” in the general “inversion–
control” scheme, in which, in the process of operation of a control system exposed to the action
of unobservable inputs, current values of inputs are recovered approximately in real time from
current, generally speaking, inaccurate observations of states of the system (the “inversion block”);
these values, together with the results of direct observations of the system’s states are fed to an
automatic regulator, which produces current values of the control parameter (the “control block”).

In the problem of dynamic inversion, an important requirement on the solution algorithm is its
dynamic property, i.e., the real–time mode of operation. With reference to the theory of ill-posed
problems, this requirement restricts the class of admissible regularizing algorithms, and the problem
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of dynamic inversion can be referred to as a dynamic regularization problem. Kryazhimskiy and
Osipov proposed a new methodological approach to dynamic regularization, which became known
as the principle of regularized extremal shift. It is based on the procedure of control with a guide
from the theory of positional differential games and consists in the following. The process of
dynamic recovery of an unobservable input is interpreted as the process of control of an auxiliary
dynamic system (model). The model, which is often a copy of the original system, is essentially
different from the latter in that it is controllable: the uncontrolled input is replaced by a control
parameter. Current values of the model control are formed in real time by means of the feedback
principle, as a reaction to the “real” (inaccurate) information on the current state of the original
system and to the accurate information on the current state of the model. The feedback in the
control loop of the model is chosen so that the implementation of the model control as a function
of time track accurately enough the implementation of the input of the original system.

The described scheme was developed initially for “ordinary” finite-dimensional systems affine
in the input variable. For such systems, the choice of a model feedback guaranteeing the proximity
of trajectories of the model and of the system was not difficult: it was sufficient to use the standard
rule of extremal shift of the model’s current state toward the current signal about the system’s state.
The crucial step, which shaped the further development of the approach, was the understanding
that an appropriate regularization of the extremal shift rule provides the required much stronger
property—the proximity of the model control to the input of the system in the mean-square metric.
The proposed regularization involves the combination of the basic criterion—the extremal shift—
with an auxiliary criterion—the minimum criterion for the norm of the current value of the control
parameter. The basic version of the method includes the auxiliary criterion by adding to the main,
linear, shift criterion a quadratic smoothing function multiplied by a small regularization parameter.
The regularized extremal shift, which consists in the minimization of the resulting criterion in the
control variable, corresponds exactly to the application of Tikhonov’s regularization method to the
extremal shift method. Thus, at the interface of the theory of ill-posed problems and the theory of
positional control, a new range of problems was found—dynamic regularization problems—and an
approach to their solution was proposed—the method of regularized extremal shift.

The studies on the dynamic inversion of “ordinary” finite-dimensional systems carried out by
Kryazhimskiy mainly in the 1980s were summarized in the famous monograph, which presents
to the reader a deep theory covering a wide range of issues, from the formulation of dynamic
inversion problems, investigation of their solvability, and comparison of the possibilities of dynamic
and a posteriori methods to the construction of optimal algorithms and detailed implementation
of the “inversion–control” scheme, which played an important motivating role at the initial stage
of research. The theory is based on the methods of regularized extremal shift, which combine, as
mentioned above, approaches from the theory of positional differential games and the theory of
ill-posed problems. Certain divisions of the theory involve methods of the theory of differential
equations, control theory (in particular, the techniques of generalized controls), estimation theory,
functional analysis, convex analysis, and function approximation theory. Explicit descriptions of
algorithms of inversion and inversion–control, which are ready for immediate application and are
accompanied by accuracy estimates, are combined with the study of delicate theoretical issues,
such as regularizability, order optimality, asymptotic optimality, etc.

In the process of creating the theory of dynamic inversion, its authors developed a new approach
to the investigation of some divisions of the theory of solution of operator equations, function
approximation theory, etc. One of the strongest developments concerned the application of the
dynamic inversion ideology to problems of the classical infinite-dimensional optimization. Studies
in this direction began in the second half of the 1980s, when a new iterative algorithm for solving
a linear–convex problem of optimal control under phase constraints was proposed. The algorithm
was based on the principle of regularized extremal shift applied to an artificially designed dynamic
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model with discrete time. An original optimal control problem is interpreted as an optimization
problem in the space of artificially created processes under constraints of the type of equality
(provided by the equation of the system) and inclusion (provided by the original phase constraints
and the original constraints on the control). A special Lyapunov functional related to the Tikhonov
regularization method was introduced and stabilized by means of extremal shift; as a result, the
model’s states converge to the required solution. In further studies, similar algorithmic schemes,
based on regularization ideas, were refined and extended to various classes of extremal problems.
This series of papers was mainly concerned with the advance into the area of methods of global
nonconvex optimization. One of the papers was devoted to studying a wide class of nonconvex
optimization problems with constraints; for these problems, the regularized extremal shift principle
produces a converging iterative solution algorithm. Problems of this class are characterized by a
geometric condition on the separability of the graph of the “perturbed optimal value” function.

In the middle of the 1980s, Kryazhimskiy started investigations related to defense projects. Until
the collapse of the Soviet Union in 1991, the researchers of the Department of Differential Equations
of the Institute of Mathematics and Mechanics who worked in the sector headed by Kryazhimskiy
took part in joint studies with their colleagues from NPO Energiya (Korolev, Moscow region) and
NPO Avtomatika (Sverdlovsk). These studies were devoted to processes of interaction of dynamic
systems under incomplete and varying information.

In the beginning of the 1990s, Kryazhimskiy moved to Laxenburg, Austria, where he started to
work at the International Institute of Applied Systems Analysis. Until the end of 2012, he headed
the Dynamic Systems Program (later integrated into the Advanced Systems Analysis Program).
The systemic, comprehensive, approach to the solution of difficult interdisciplinary problems, which
is a sort of trademark of the institute, was natural to Kryazhimskiy to the full extent. His role in
the investigation of certain large-scale problems, such as various applied game problems, economic
growth modeling, finding optimal ways of sustainable development on the global scale, modeling of
innovation market dynamics, optimal gas transportation, etc., cannot be overestimated.

Since 1996, Kryazhimskiy had worked at the Steklov Institute of Mathematics of the RAS:
first, as a leading researcher and, from 1997, as a chief researcher. Simultaneously, he had been a
lecturer at the Department of Optimal Control of the Faculty of Computational Mathematics and
Cybernetics at Moscow State University. His lectures were very popular with the students because
of their rich content, informative value, and clarity of presentation. The lecturer’s personal charm
was of no less importance.

The wide scientific scope and industriousness at the highest intellectual level were Kryazhim-
skiy’s important traits. He was successful at solving problems from the most diverse divisions
of mathematics and borderline disciplines. His main motives in choosing new problems were the
synthesis of disciplines and rich practical content.

A result of Kryazhimskiy’s fruitful work and acknowledgement of his remarkable contribution
to the development of Russian science was his election to the Academy of Sciences. He has been a
corresponding member of the academy since May 1997 and a full member since May 2006.

A talented person is talented in everything. This popular saying is Kryazhimskiy’s best charac-
terization. He had been attracted to music and literature since his childhood, being a brilliant guitar
player and an author of poetry and songs. Arkady Viktorovich was a responsive and warm-hearted
person. He was open to people and did not dominate because of his position and well-deserved
authority. His relatives and colleagues noticed his tact, enthusiasm, polymathy, and amazing will-
ingness to both share his ideas and appreciate and discuss ideas of other people.

All who knew him were shocked to receive the news of Arkady Viktorovich’s untimely death on
3rd of November 2014.

The International Conference in memory of Arkady Viktorovich Kryazhimskiy was organized
by the Krasovskii Institute of Mathematics and Mechanics and the Ural Federal University. The
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conference named “System analysis: modeling and control” was held in Ekaterinburg in October
2016 to get together the colleagues of Kryazhimskiy from different countries for discussing actual
scientific problems. The event was a success: more than fifty participants, more than thirty plenary
reports. Several selected papers presented at the conference are published in this issue of the journal.

KRYAZHIMSKIY’S MAIN SCIENTIFIC PAPERS

1. A.V. Kryazhimskii and Yu.S. Osipov, Differential–difference game of encounter with a func-
tional target set, J. Appl. Math. Mech. 37 (1), pp. 1–10 (1973).

2. A.V. Kryazhimskii, A differential-difference game of evasion from a functional target, Izv.
Akad. Nauk SSSR, Ser. Tekhn. Kibernet., No. 4, pp. 71–79 (1973).

3. A.V. Kryazhimskii, Some Game Problems of Pursuit–Evasion, Candidates Dissertation in
Physics and Mathematics (Sverdlovsk, 1974).

4. A.V. Kryazhimskii, Differential games of pursuit in conditions of imperfect information about
the system, Ukr. Math. J. 27 (4), pp. 425–429 (1975).

5. A.V. Kryazhimskii, On the admissibility of an optimal strategy, in Differential Games and
Control Problems: Collection of Papers (UNTs AN SSSR, Sverdlovsk, 1975), Issue 15,
pp. 125–130 [in Russian].

6. A.V. Kryazhimskii, An alternative in a linear pursuit-evasion game with incomplete infor-
mation, Dokl. Akad. Nauk SSSR 230 (4), pp. 773–776 (1976).

7. A.V. Kryazhimskii and S.D. Filippov, On a game problem on the convergence of two points
on a plane under incomplete information, in Control Problems with Incomplete Information
(IMM UNTs AN SSSR, Sverdlovsk, 1976), Issue 19, pp. 62–77 [in Russian].

8. A.V. Kryazhimskii, On the problem of the deviation of a linear system with aftereffect from
a functional target, in Game Problems of Control: Collection of Papers (IMM UNTs AN
SSSR, Sverdlovsk, 1977), Issue 24, pp. 46–52 [in Russian].

9. A.V. Kryazhimskii, On the theory of positional differential games of pusruit-evasion. Dokl.
Akad. Nauk SSSR 239 (4), pp. 779–782 (1978).

10. A.V. Kryazhimskii, On stochastic approximation in differential games, Sov. Math. Dokl. 19,
pp. 955–959 (1978).

11. A.V. Kryazhimskii and V.I. Maksimov, Approximation in linear differencedifferential games,
J. Appl. Math. Mech. 42 (2), pp. 212–219 (1978).

12. Yu.S. Osipov, A.V. Kryazhimskii, and S. P. Okhezin, Control problems in systems with
distributed parameters, in Dynamics of Control Systems: Proceedings of the Third All-
Union Chetaev Conference, Irkutsk, Russia, 1977 (Nauka, Novosibirsk, 1979), pp. 199–208
[in Russian].

13. A.V. Kryazhimskii, Differential Games for Non-Lipschitz Systems, Doctoral Dissertation in
Physics and Mathematics (Sverdlovsk, 1980).

14. A.V. Kryazhimskii, On some stable bridges for linear controlled systems, in Optimal Control
of Systems with Uncertain Information: Collection of Papers (UNTs AN SSSR, Sverdlovsk,
1980), pp. 35–41 [in Russian].
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15. A.V. Kryazhimskii, On stable position control in differential games, J. Appl. Math. Mech.
42 (6), pp. 1055–1060 (1980).

16. A.V. Kryazhimskii, Deviation of a linear system with aftereffect from a functional target, J.
Dynamic Systems Measurement Control 103 (2), pp. 43–48 (1981).

17. A.V. Kryazhimskii, Game evasion problem for a partially continuous system, in Control and
Estimation in Dynamical Systems: Collection of Papers (UNTs AN SSSR, Sverdlovsk, 1982),
pp. 25–41 [in Russian].
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AN APPLICATION OF MOTION CORRECTION METHODS
TO THE ALIGNMENT PROBLEM IN NAVIGATION1
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Abstract: In this paper, we apply some motion correction methods to the alignment problem in navigation.
This problem consists in matching two coordinate systems having the common origins. As a rule, one of the
systems named as basic coordinate system is located at a ship or airplane. The dependent coordinate system
belongs to another object (e.g. missile ) that starts from the ship. The problem is considered with incomplete
information on state coordinates which can be measured with disturbances without statistical description.

Key words: Alignment problem, Motion correction, Incomplete information, Set-membership description
of uncertainty.

Introduction

Alignment is the process whereby the orientation of the axes of an inertial navigation system
is determined with respect to the reference axis system. The basic concept of aligning an inertial
navigation system is quite simple and straightforward. However, there are many complications that
make alignment both time consuming and complex. Consider a simulated transport ship-airplane

system. Suppose that the base coordinate system (BCS) of the ship is correct. Let
−→
Ω 1 be the

absolute angular velocity of the BCS in the motionless coordinate system η1, η2, η3. The projection
Ω2
1 on vertical 21 equals zero. This system is shown on Fig. 1. The axis 11 is directed along the

 2
1

 M

 3
1

 1
1

η
1

η
2φ

λ

η
3

Figure 1. The section of Earth sphere and the base coordinate system.

parallel to the west. The axis 21 is the local vertical. The axis 31 is directed along the meridian
to the north. The position of the dependent coordinate system (DCS) related to the airplane or

1The research was supported by Russian Science Foundation (RSF), project No. 16-11-10146.
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the missile with respect to the BCS is estimated by the Krylov angles. In Fig. 2, one can see the
sequence of clockwise rotations: θ1 around axis 1, θ3 around new axis 3, and θ2 around new axis 2
coinciding now with 21.

Thus, the transition of coordinates of a vector ~f in the DCS to new coordinates in the BCS is
occurred by the formula ~f1 = M(θ)~f , where the matrix of direction cosines is of the form

M(θ) =



cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2


 ·



cos θ3 − sin θ3 0
sin θ3 cos θ3 0
0 0 1


 ·



1 0 0
0 cos θ1 − sin θ1

0 sin θ1 cos θ1


 = (mij).

1
1

3
1

2
1

2

1

3

r1
r2

r3

θ
3

θ
3

θ
1

θ
1

θ
2

θ
2

ri=dθi/dt, i=1,2,3.

M

Figure 2. The sequence of clockwise rotations.

Projecting the equality ~ω = ~̇θ1 + ~̇θ3 + ~̇θ2 for the angular velocities on the axes of the DCS, we
obtain the kinematic Krylov equations

θ̇1 = ω1 − θ̇2 sin θ3, θ̇2 = (ω2 cos θ1 − ω3 sin θ1)/ cos θ3, θ̇3 = ω2 sin θ1 + ω3 cos θ1, (0.1)

where ωi are the projections of the relative angular velocity. These projections are related with the
absolute velocities by the formulas

ωi = Ωi −m1iΩ
1
1 −m3iΩ

3
1 + εi, i ∈ 1 : 3, (0.2)

where εi are the projections of an uncertain drift.
For measurements, the differences of accelerometer readings in the DCS and BCS are used.

These accelerometers are on the axes and gage the nongravity acceleration ~a = −→wM − ~g. Let
ai be accelerometers readings in the DCS and ai1 be gage readings in the BCS. Therefore, the
measurement equations are of the form

y1 = (m11 − 1)a11 +m21 a
2
1 +m31 a

3
1 + w1, y2 = m12 a

1
1 + (m22 − 1)a21 +m32 a

3
1 +w2,

y3 = m13 a
1
1 +m23 a

2
1 + (m33 − 1)a31 + w3,

(0.3)

where wi are uncertain leavings of zero. About drifts εi in (0.2), the assumption is accepted
that they are constant but unknown. Uncertain functions in relations (0.3) satisfy the integral
inequalities

∫ T

0
(wi)2dt ≤ γ2i T, i ∈ 1 : 3. (0.4)
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Let ~i1,~i2,~i3 be the unit direction vectors of the BCS. The velocity of point M equals

4~vM =
−→
Ω 1 ×

−→
R =

∣∣∣∣∣∣

~i1 ~i2 ~i3
Ω1
1 0 Ω3

1

0 R 0

∣∣∣∣∣∣
,

where R is the radius of Earth. From here we find the projections of velocity on the BCS axes:
v11 = −RΩ3

1, v21 = 0, v31 = RΩ1
1. Computing the derivative of ~vM , we get the acceleration

−→wM = −̃→wM +
−→
Ω 1 × ~vM in the form of the sum of relative and translation accelerations. So, the

accelerometers readings in BCS are of the form:

a11 = −R Ω̇3
1, a21 = g − v2/R, a31 = R Ω̇1

1, (0.5)

where v is the velocity magnitude. As R = 6370 km and the velocity of the ship on water is no
more than 20 m/c, we assume a21 = g.

Further we consider some approaches from motion correction for solving the alignment problem.
This problem in inertial navigation was first in detail considered in [1]. Russian books devoted to
this topic are [2–5]. The alignment problem was mostly solved in [1–5] by statistical methods with
the help of Kalman filter or its modifications. On the other hand, in [2, 6] it was noted that the
statistics of disturbances often happens incomplete or completely absent. Therefore, it is natural
to use here the minimax methods from books [7, 8]. Thus, all the disturbances in our paper are
deterministic.

Consider only the case of small angular deviations (no more than several degrees). Equations
(0.1) are replaced by the follwing ones:

θ̇1 = u1 + ε1 − θ2Ω3
1 − θ3u2, θ̇2 = u2 + ε2 + θ3Ω1

1 − θ1Ω3
1 − θ1u3,

θ̇3 = u3 + ε3 + θ2Ω1
1 + θ1u2.

(0.6)

Here, ui = Ωi−Ωi
1, i ∈ 1 : 3. In the linear approximation, the differences of accelerometer readings

in (0.3) are equal to

y1 = gθ3 + a31θ
2 + w1, y2 = −a11θ

3 + a31θ
1 + w2, y3 = −a11θ

2 − gθ1 + w3. (0.7)

Equations (0.6) contain the multiplications of controls and state variables, but, in the case of small
angles and angular velocities these terms may be neglected. In the specific case of movement on
the equator under condition θ1 = θ2 ≡ 0, we assume θ = θ3 as shown on Fig. 3. The angular
velocity Ω1 = Ω3

1 6= 0 under given movement and the rest projections of absolute angular velocity
are equal to zero. We have

θ̇ = u+ ε, ε̇ = 0, y = gθ + w, (0.8)

where the first equation from (0.7) is taken as the output.

1. Set-membership background

So, we consider a determinate n-dimensional linear system of the form

ẋ(t) = A(t)x+B(t)u+ C(t)v, t ∈ [0, T ], (1.1)

assuming that the initial state x0 of system (1.1) is completely unknown, the matrices A(t), B(t), C(t),
and G(t) below are continuous. In comparison with equations (0.6), the term with disturbance v in
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Ω
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θ θ2

12
1

1
1

Figure 3. System deviation in the simple model.

the system is added here. It corresponds to the case when drifts are not constants. The unknown
function v(·) and the disturbance w(·) in the m-dimensional equation of measurement

y(t) = G(t)x(t) + w(t) (1.2)

are bounded by the constraint

∫ T

0

(
|v(t)|2Q(t) + |w(t)|2R(t)

)
dt ≤ 1, (1.3)

where the symbol |x|2P equals x′Px, prime ′ means the transposition, Q(t), R(t) are symmetrical,
positive-defined, and continuous matrices having suitable dimension. Constraint (1.3) involves that
the elements of vector functions v(·) and w(·) belong to the space L2[0, T ]. We need the following

Assumption 1. The system (1.1), (1.2) under u ≡ 0, v ≡ 0, w ≡ 0 is completely observable [7]
on any subinterval [s, τ ] ⊂ [0, T ].

Assumption 1 means that the vector x(s) can be uniquely restored from the signal observed on
[s, τ ] if the disturbances are absent. Moreover, Assumption 1 holds if and only if

∫ τ

s
X ′(t, s)G′(t)G(t)X(t, s)dt > 0,

where X(t, s) is the fundamental matrix of system (1.1).

We use piecewise-constant functions u(t), for which

u(t) ∈ P ⊂ R
p, (1.4)

where P is a compact convex set. Constraint (1.4) is more realistic than integral constraints in [9].
The aim of the control is to minimize the terminal function |Dx(T )|, where | · | is the Euclidean
norm and D ∈ R

d×n is a matrix. The choice of uncertain parameters {x0, v(·), w(·)} may impede
the minimization.
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1.1. Informational and compatible sets

At first, let us consider a set-membership estimation scheme for system (1.1), (1.2) under
constraint (1.3).

Definition 1. A set X(t, y, u) ⊂ R
n is said to be the informational if it consists of all vectors

x = x(t), which may realize in system (1.1), (1.2) with given signal y(τ), 0 ≤ τ ≤ t, the control

u(τ), and some disturbances satisfying constraint (1.3).

To describe the informational set, we introduce the Bellman function

V (t, x) = inf
v(·)

{∫ t

0

(
|v(s)|2Q(s) + |y(s)−G(s)x(s)|2R(s)

)
ds

}
, x(t) = x.

The Bellman equation for V (t, x) is of the form:

Vt = min
v

{
−(A(t)x+B(t)u(t) + C(t)v)′Vx + |v|2Q(t) + |y(t)−G(t)x|2R(t)

}
, V (0, x) = 0. (1.5)

If the solution of equation (1.5) in any sense is found, the informational set X(t, y, u) is written as
the inequality X(t, y, u) = {x : V (t, x) ≤ 1}. Let us seek a solution of equation (1.5) in the form

V (t, x) = |x|2P (t) − 2x′d(t) + g(t), (1.6)

where P (t) is a positive definite and continuously differentiable matrix, d(t) and g(t) are a contin-
uously differentiable vector function and a function respectively. Substituting (1.6) into (1.5), we
get

|x|2
Ṗ (t)

− 2x′ḋ(t) + ġ(t) = |y(t)−G(t)x|2R(t) − |P (t)x− d(t)|2C(t)Q−1(t)C′(t)−

−2(A(t)x+B(t)u(t))′(P (t)x− d(t)).

Therefore, the parameters of (1.6) must satisfy the equations

Ṗ (t) = G′(t)R(t)G(t) − P (t)C(t)Q−1(t)C ′(t)P (t) −A′(t)P (t)− P (t)A(t), P (0) = 0,

ḋ(t) = G′(t)R(t)y(t)− (P (t)C(t)Q−1(t)C ′(t) +A′(t))d(t) + P (t)B(t)u(t), d(0) = 0,

ġ(t) = |y(t)|2R(t) − |d(t)|2C(t)Q−1(t)C′(t) + 2d′(t)B(t)u(t), g(0) = 0.

(1.7)

It is known [10] that the matrix P (t) is non-singular for any t > 0 under Assumption 1. Then the
ellipsoid (informational set)

X(t, y, u) =
{
x ∈ R

n : V (t, x) = |x|2P (t) − 2x′d(t) + g(t) = |x− x̂(t)|2P (t) + h(t) ≤ 1
}

(1.8)

is bounded for any t > 0 with the center x̂(t) = P−1(t)d(t) and the function h(t) = g(t)−|d(t)|2P−1(t).

Differentiating the x̂(t) and h(t), we obtain the equations

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + P−1(t)G′(t)R(t)(y(t)−G(t)x̂(t)),

ḣ(t) = |y(t)−G(t)x̂(t)|2R(t).
(1.9)

Let us introduce the function

f(t) = y(t)−G(t)x̂(t), t ∈ (0, T ], (1.10)

that is similar to the innovation process in theory of Kalman filtering [10].
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Lemma 1. Function (1.10) does not depend on the control u(t), belongs to the space Lm
2 [0, T ],

and we have

h(t) =

∫ t

0
|y(s)−G(s)x̂(s)|2R(s)ds ≤ 1, t ∈ [0, T ].

On the other hand, let the instant τ ∈ (0, T ) and f(·) be any function from Lm
2 [τ, T ] with

∫ T

τ
|f(s)|2R(s)ds ≤ 1− h(τ).

Then we obtain

X(t, y, u) =
{
x ∈ R

n : |x− x̌(t)|2P (t) + h(t) ≤ 1
}
, t ∈ [τ, T ], (1.11)

where

˙̌x(t) = A(t)x̌(t) +B(t)u(t) + P−1(t)G′(t)R(t)f(t),

x̌(τ) = x̂(τ); h(t) = h(τ) +

∫ t

τ
|f(s)|2R(s)ds.

Here, we set y(t) = f(t) +G(t)x̌(t), t ∈ [τ, T ].

P r o o f. As 0 ≤ h(t) ≤ g(t) and g(0) = 0, we conclude that h(0) = 0. From (1.8) and (1.9) we
obtain the formula for h(t). The signal y(·) may realize in system (1.1), (1.2) on [τ, t], t ∈ (τ, T ],
under closed-loop disturbance v(s) = Q−1(s)C ′(s)(P (s)x(s) − d(s)) that gives minimum to the
functional according to (1.5), (1.6), and (1.7) with any final state x(t) = x ∈ X(t, y, u). As the
formulas for x̌(t) coincide with (1.9), formula (1.11) holds. �

From now on, the narrowings of a measurable vector-function x(s), s ∈ [0, T ], on intervals [0, t]
and [t, T ] are denoted by xt(·) and xt(·) respectively. The narrowing on [t, s] is denoted by xst(·).
Let the dimension of the disturbance v be equal q.

Definition 2. A set V(t, y, u) ⊂ R
n × Lq

2[t, T ] × Lm
2 [t, T ] is said to be the compatible if it

consists of all triples {(x(t), vt(·), wt(·))}, for which there exist functions (v(·), w(·)) satisfying (1.3)
such that output (1.2) on [0, t] with final state x = x(t) almost everywhere coincides with the given

signal yt(·).

Note that the sets X(t, y, u) and V(t, y, u) depend only on yt(·) and ut(·). Suppose that we have
the compatible set V(t, y, u), and on the interval [t, s] a signal yst (·) and a control ust (·) are realized.
Similarly to Definitions 1 and 2, we can define the sets X(s, yst , u

s
t | V(t, y, u)) and V(s, yst , u

s
t |

V(t, y, u)). The following assertion seems to be obvious.

Lemma 2. The relation between compatible and information sets is given by the equality X(t, y,
u) = projRnV(t, y, u). The compatible set is described by the formula

V(t, y, u) =

{
(x, vt, wt) :

∫ T

t

(
|vt(s)|2Q(s) + |wt(s)|R(s)

)
ds+ V (t, x) ≤ 1

}
, (1.12)

where V (t, x) is defined in (1.6) or (1.8). Under Assumption 1, set (1.12) is weakly compact in

the space R
n × Lq

2[t, T ]×Lm
2 [t, T ] when t ∈ (0, T ). Moreover, compatible sets posses the semigroup

property: V(s, yst , u
s
t | V(t, y, u)) = V(s, y, u), where 0 < t < s ≤ T . As a consequence, we have

X(s, yst , u
s
t | V(t, y, u)) = X(s, y, u).

The final reachable set of system (1.1) from the compatible set V (t, y, u) is denoted further by
XT (ut|V(t, y, u)). This set consists of all vectors x(T ) under searching in (1.12) for the set V (t, y, u)
with wt = 0.
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2. Problems formulation

Let λ : 0 < t1 < · · · < tN+1 = T be a partition of the interval [0, T ]. The times ti are called the
instants of control correction. It is easily seen that the compatible set V(t, y, u) depends only on the
pair (x̂(t), h(t)) which is called the position at the instant t. The transition between two adjacent
positions (x̂(ti), h(ti)) and (x̂(ti+1), h(ti+1)) depends on the control ui(·) and the innovation function
fi(·) on the interval [ti, ti+1) according to Lemma 1. Consider two problems.

Problem 1. Find a piecewise-constant control u∗(t) (u∗(t) = u∗i on [ti, ti+1), i ∈ 1 : N) that

gives the value

J∗ = min
u1∈P

max
f1(·)

. . . min
uN∈P

max
fN (·)

max
x∈XT (uN |V(tN ,y,u))

|Dx|, (2.1)

where
N∑

i=1

∫ ti+1

ti

|fi(s)|2R(s)ds ≤ 1− h(t1).

Remark 1. As equations (1.1), (1.2) are linear, we have X(t, y, u) = z(t) + X(t, ỹ, 0), where
ỹ(t) = y(t)−G(t)z(t) and

ż(t) = A(t)z(t) +B(t)u(t), z(0) = 0. (2.2)

Similarly, we have V(t, y, u) = (z(t), 0, 0)+V(t, ỹ, 0). From now on, we write the sets with ỹ(·) and
u(·) = 0 as X(t, ỹ) and V(t, ỹ), respectively. Therefore, XT (ut | V(t, y, u)) = z(T )+XT (0 | V(t, ỹ))
and value (2.1) may be rewritten as

J∗ = min
u1∈P

max
f1(·)

. . . min
uN∈P

max
fN (·)

max
x∈XT (0|V(tN ,ỹ))

|D(z(T ) + x)|. (2.3)

Remark 2. We obtain as a fact that controls ui in (2.1) and (2.3) depend on the positions
(x̂(ti), h(ti)). Problem 1 may be generalized if we seek non-constant functions ui(·) on the interval
[ti, ti+1).

Problem 2. At the any instant ti, i ∈ 1 : N , we find open loop minimax control uT∗
i (·) that

give a solution of the problem:

max
fi(·)

max
x∈XT (ui|V(ti,y,u))

|Dx| → min
ui(t)∈P

= ji(y), (2.4)

where ∫ T

ti

|fi(s)|2R(s)ds ≤ 1− h(ti),

and do one-step forecasting

Ji(y, ui) = max
fi(·)

ji+1(y), (2.5)

where ∫ ti+1

ti

|fi(s)|2R(s)ds ≤ 1− h(ti).

If Ji(y, u
T∗
i ) < ji(y) we keep the control uT∗

i on the interval [ti, ti+1]. Otherwise, we pass to the

control ui+1∗
i that minimizes value (2.5). Of course, the controls may be not unique. If so, we

choose any minimizers.
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3. Minimax solutions

For brevity we denote x̂(ti) = x̂i and h(ti) = hi. Introduce the function of next losses

Wi(x̂i, hi) = min
ui∈P

max
fi(·)

. . . min
uN∈P

max
fN (·)

max
x∈XT (utN

|V(tN ,y,u))
|Dx|,

where
N∑

j=i

∫ tj+1

tj

|fj(s)|2R(s)ds ≤ 1− hi

for Problem 1. It is easily seen that the functions Wi(x̂i, hi) satisfy the following recurrent relations

Wi(x̂i, hi) = min
ui∈P

max
fi(·)

Wi+1(x̂i+1, hi+1), (3.1)

where ∫ ti+1

ti

|fi(s)|2R(s)ds ≤ 1− hi.

Relations (3.1) have the boundary condition

WN+1(x̂(T ), h(T )) = max
|x−x̂(T )|2

P (T )
≤1−h(T )

|Dx| = max
|l|≤1

{
l′Dx̂(T ) + (1− h(T ))1/2|D′l|P−1(T )

}
.

Consider the last stage of relations (3.1) when i = N . Using boundary condition, we obtain

WN (x̂N , hN ) = max
|l|≤1

{
r(l; tN )x̂N +min

u∈P

∫ T

tN

r(l; s)B(s)dsu+
(
(1− hN )

(
λ(tN )(1 − |l|2)

+|D′l|2P (T,tN )

))1/2
}
,

where

r(l; s) = l′DX(T, s), ∂P (t, s)/∂t = A(t)P (t, s) + P (t, s)A′(t) +C(t)Q−1(t)C ′(t),

P (s, s) = P−1(s), λ(s) = max
|l|≤1

|D′l|2P (T,s).
(3.2)

Here, the term with integral must be replaced on

∫ T

tN

min
u∈P

r(l; s)B(s)uds

if the control is not piecewise-constant. Let us explain the formula for WN (x̂N , hN ). It is obtained
with the help of elementary equality

max
k∈[0,1−hN ]

{
k1/2A+ (1− hN − k)1/2B

}
= (1− hN )1/2(A2 +B2)1/2,

where A ≥ 0, B ≥ 0, and the maximum is achieved at r∗ = (1 − hN )A2(A2 + B2)−1/2. Besides,

the optimization over f(·) is fulfilled under the constraint
∫ T
tN

|f(s)|2R(s)ds = k. If λ(s) is the

maximal eigenvalue of the matrix DP (T, s)D′, we use the fact that conc|l|Q on unite ball is equal

to
(
λmax(1− |l|2) + |l|2Q

)1/2
, see [7]. Hereinafter, the symbol concϕ(l) means a minimal concave

function majorizing ϕ(l) on unite ball. At last, we apply the minimax theorem.
Continuing calculations on the subsequent stages, we come to the conclusion.
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Theorem 1 (Conditions of the optimality in Problem 1). On the stage i, we have

Wi(x̂i, hi) = max
|l|≤1

{
r(l; ti)x̂i +min

u∈P

∫ ti+1

ti

r(l; s)B(s)dsu+ ϕi(l)

}
, where

ϕi(l) = conc

{
min
u∈P

∫ ti+2

ti+1

r(l; s)B(s)u+max
fi(·)

{∫ ti+1

ti

r(l; s)P−1(s)G′(s)R(s)fi(s)ds

+ϕi+1(l)

}}
, i ∈ 1 : N − 1.

(3.3)

Here ∫ ti+1

ti

|fi(s)|2R(s)ds ≤ 1− hi.

The optimal controls necessarily satisfy the relation

∫ ti+1

ti

r(l∗; s)B(s)dsu∗i = min
u∈P

∫ ti+1

ti

r(l∗; s)B(s)dsu or

∫ ti+1

ti

r(l∗; s)B(s)u∗i (s)ds

=

∫ ti+1

ti

min
u∈P

r(l∗; s)B(s)uds if the control is not piecewise-constant,

(3.4)

where l∗ is a maximizer in problem (3.3).

P r o o f. For the first two stages, we have

ϕN (l) =
(
(1− hN )

(
λ(tN )(1 − |l|2) + |D′l|2P (T,tN )

))1/2
,

ϕN−1(l) = conc

{
min
u∈P

∫ T

tN

r(l; s)B(s)dsu+ max
fN−1(·)

{∫ tN

tN−1

r(l; s)P−1(s)G′(s)R(s)fN−1(s)ds

+ϕN (l)

}}
= conc

{
min
u∈P

∫ T

tN

r(l; s)B(s)dsu+
(
(1− hN−1)

(
λ(tN )(1− |l|2) + |D′l|2P (T,tN−1)

))1/2
}
.

For derivation of the last relation, we use the same reasoning as for WN (x̂N , hN ). The subsequent
considerations are obtained by induction with the help of the minimax theorem. �

To solve Problem 2, we need to calculate values (2.4), (2.5). Doing as above we get

ji(y) = max
|l|≤1

{
r(l; ti)x̂i +

∫ T

ti

min
u∈P

r(l; s)B(s)uds +
(
(1− hi)

(
λ(ti)(1 − |l|2)

+|D′l|2P (T,ti)

))1/2
}
,

Ji(y, ui) = max
fi(·)

ji+1(y) = max
|l|≤1

{
r(l; ti)x̂i +

∫ ti+1

ti

r(l; s)B(s)ui(s)ds

+

∫ T

ti+1

min
u∈P

r(l; s)B(s)uds +
(
(1− hi)

(
λ(ti+1)(1 − |l|2) + |D′l|2P (T,ti)

))1/2
}
.

(3.5)

Theorem 2 (Properties of controls in Problem 2). The control procedure in Problem 2 begins

from i = 1 and leads to a sequence of positions, where j1(y) ≥ j2(y) ≥ · · · ≥ jN (y).



An Application of Motion Correction 25

P r o o f. Let us compare the values ji(y) and ji+1(y). If Ji(y, u
T∗
i ) < ji(y), we get ji(y) >

ji+1(y). Otherwise, we use the control ui+1∗
i that minimizes the value Ji(y, ui). Therefore,

min
ui(·)

Ji(y, ui) = max
|l|≤1

{
r(l; ti)x̂i +

∫ ti+1

ti

min
u∈P

r(l; s)B(s)uds

+conc

{∫ T

ti+1

min
u∈P

r(l; s)B(s)uds+
(
(1− hi)

(
λ(ti+1)(1− |l|2) + |D′l|2P (T,ti)

))1/2
}}

≤ ji(y),

as λ(ti+1) ≤ λ(ti). The last inequality implies the relation

∂P (T, s)/∂s = −X(T, s)P−1(s)G′(s)R(s)G(s)P−1(s)X ′(T, s),

whence the norm of the matrix P (T, s) decreases on s. �

Remark 3. The procedure of calculation of optimal controls in Problem 1 is more difficult than
in Problem 2. But we can simplify it if by a slight increase of the function of future losses. Namely,
we have Wi(x̂i, hi) ≤ ji(y). This inequality follows by induction from relations (3.3)–(3.5). One
can find the controls in this simplified procedure by formulas (3.4).

To illustrate the different approaches to optimal control, consider a simple

Example. Given the one-dimensional system ẋ = u + v, 0 ≤ t ≤ 3, with the measurement
y(t) = x(t) + w and the constraints

x20 +

∫ 3

0
(v2(t) + w2(t))dt ≤ 1,

|u| ≤ 1/2, we suppose y(t) ≡ 1 on [0, 3]. Let t1 = 1, t2 = 2 be two correction instants. Here, we
add the limitation on initial state for simplicity.

We have P ≡ 1, x̂(t) = 1 − e−t, h(t) = (1 − e−2t)/2 on [0, 3] under u ≡ 0, as follows from
(1.7), P (T, s) = 4 − s. The unknown real movement x(t) ≡ 1 under u ≡ 0. Formula (3.3) gives
W1(x̂1, h1) = 1.0655 and optimal control on [1, 2] equals u1 = −0.5. Here, the choice of control
is not unique. At the next stage W2(x̂2, h2) = 1.0091 and the optimal control on [2, 3] equals
u2 = −x̂2 = e−2 − 1/2 = −0.3647. In Problem 2, we have j1(y) = 1.3050 and we obtain the same
sequence of optimal controls. At last, consider the partition of [1, 3] with step 0.25, N = 8, and we
use the procedure of Remark 3. This procedure leads us to the sequence of control ui = −0.5 at
each step. The final value of the functional equals 0.7577.

4. Numerical simulation of alignment process

We restrict ourself by the consideration of the simple case of system (0.8) and the procedure of
Remark 3. The qualitative sense does not change in the common case.

The following data are used: |θi| ≤ 3 grad, |εi| ≤ 0.1 grad/sec, |ui| ≤ 0.1 rad/sec, T = 100
sec. In integral constraint (0.4) the constants are γi = 0.1 m/sec2. The signal is given by w(t) =
sin(t)/

√
55. The alignment process is shown on the figures.

5. Conclusion

In this paper, we consider the application of motion correction methods to the alignment prob-
lem in inertial navigation. We use the deterministic approach with set-membership description of
uncertainty. The Theorems 1, 2 and the procedure in Remark 3 are new. The investigation of the
influence of ship movement on the accuracy of alignment was not performed. It will be done in
subsequent papers.



26 B.I. Ananyev

0 10 20 30 40 50 60 70 80 90 100

 t sec

0

0.2

0.4

0.6

0.8

1

1.2

 j i f
u

n
ct

io
n

al
, (

ra
d

)

Figure 4. Alteration of the functional in the simple model.
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SIMPLIFIED MODEL OF THE HEAT EXCHANGE PROCESS
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Abstract: A simplified mathematical model of a rotary regenerative air pre-heater (RRAP) is suggested
and studied based on the averaged dynamics of the heat exchange process between nozzles and a heat carrier
(i.e. air or gas-smoke mixture). Averaging in both spatial coordinates and time gives a linear discrete system
that allows deriving explicit formulas for determining the characteristics of the air heater and establishing some
properties such as periodicity, stability, ergodicity and others.

Key words: Heat exchange, Cyclic process, Averaging, Linear discrete system, Stability, Ergodicity, Inverse
problem.

Introduction

A rotary regenerative air pre-heater (RRAP) is a special unit, usually applied in thermal power
plants (TPP) in order to increase its efficiency by heating the air which is blowing into a boiler of the
plant by means of an exhaust of hot mixture of smoke and gas (from now on simply gas) generated
in fuel combustion. The RRAP essentially reduces the thermal pollution of atmosphere [6], [8–12].

Currently, several types of RRAPs are used in TPP. In the present paper, we consider the case
of a unit with the main part consisting of a rotating cylindrical drum with metal nozzles of high
thermal conductivity. The region of space occupied by the wheel of the RRAP is divided into two
parts BA and BG by a fixed conditional plane passing through the axis of the cylinder. During
the work of the RRAP, the atmospheric air passes through the part BA in one direction parallel
to the axis of the drum, being heated by the nozzles; as a result, the temperature of the nozzles is
reduced. Through the part BG, the gas flows in the opposite direction, being cooled by the heat
output to the nozzles. The final transfer of heat from the hot gas to the cool air occurs due to the
rotation of the drum around its axis.

Monitoring and control of the temperatures of air and gas leaving the RRAP and especially the
temperature of the nozzles is the important problem for the effective exploitation of the RRAP [3],
[15], [17–19]. The direct measurement of the temperatures of air and gas of both inlet and outlet
is easily carried out; in contrast, the observation and control of the nozzle temperature require to
use sophisticated measuring tools and represent an important problem. Therefore, the treatment
for mathematical modeling of the heat exchange process in the RRAP is reasonable.

1This work was supported by Committee for Coordination Science and Technology Development Under
Cabinet of Ministers of Uzbekistan (project no F4–FA–F014).
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In recent decades, a variety of mathematical models of the heat exchange process in RRAPs
were suggested [1–3], [5] and see also [8]. It should be noted that the thermodynamic process
in RRAP nozzles can be in principle described by the classical heat conduction equation, but,
without additional simplifying assumptions, it is difficult to write out the boundary conditions
since the nozzle system has a rather complex geometry. On the other hand, modeling of the
thermodynamic process of air heating and gas cooling passing through the drum of the RRAP is
even more challenging problem pertaining to thermos-aerodynamics [8]. Furthermore, the necessity
of considering the turbulence of flow that arises when air and gas pass through the RRAP drum
also adds complexity. Because of these and other features, all mathematical models of the RRAP
are built under essential simplifying assumptions.

In the present paper, we propose a mathematical model of the thermodynamic process in the
RRAP based on averaging the quantities associated with the heat exchange process between the
nozzles, air and gas in both spatial coordinates and time interval. As a result, we obtain rather
simple linear discrete equation. This allows us to write out explicit calculating formulas for the
current values of parameters, and find steady and periodical states, establish the ergodicity and
other properties. Then, we provide appropriate calculations for the case when averaging over the
time variable is carried out on a period of time equal to a half-cycle of rotation of the RRAP drum.
In subsequent parts of the work, models with averaging performed over a small time interval are
considered, a comparative analysis of numerical results and experimental data is fulfilled.

1. Derivation of equations

Let the RRAP drum be of the form of a cylinder x2 + y2 ≤ R2, 0 ≤ z ≤ H. Assume that the
parts BA and BG are described by conditions y ≥ 0 and y ≤ 0, respectively. Let Θ(t, x, y, z) denote
the temperature at the point (x, y, z) of the drum occupied by the nozzles at time t, t ≥ 0, and let
T (t, x, y, z) denote the temperature of heat transfer (air or gas) at the point (x, y, z) of the drum
outside the nozzles. The pair of quantities Θ(t, x, y, z) and T (t, x, y, z) completely characterizes the
heat change process in the RRAP drum. However, as mentioned above, due to the complexity of the
configuration of the nozzles, the initial-boundary problem for corresponding system of equations
of thermo-aerodynamics is too hard to be investigated by analytical methods. One of the ways
to overcome such complexity is the method of averaging [4], [7]. To this end, we consider the
corresponding average values

ΘA(t) =
1

V (B•

A)

∫

B•

A

ΘA(t, x, y, z)dv, ΘG(t) =
1

V (B•

G)

∫

B•

G

ΘG(t, x, y, z)dv,

TA(t) =
1

V (B◦

A)

∫

Bo

A

TA(t, x, y, z)dv, TG(t) =
1

V (B◦

G)

∫

Bo

G

TG(t, x, y, z)dv,

where B•

A = BA ∩ B̄, B•

G = BA ∩ B̄, B̄ is the part of the drum occupied by the nozzles, Bo
A =

BA\B
•

A, B
o
G = BG\B

•

G, dv is the volume element, V denotes the volume of the corresponding part
of the drum.

Next, we perform averaging over the time intervals I(n) = [nh, (n+ 1)h) as well, where h is
the half-turn time of the RRAP drum, n = 0, 1, 2, . . .. Denote the average temperatures obtained
in this way by

xn =
1

h

∫

I(n)
ΘA(t)dt, yn =

1

h

∫

I(n)
ΘG(t)dt,

un =
1

h

∫

I(n)
TA(t)dt, vn =

1

h

∫

I(n)
TG(t)dt.

Equations connecting these quantities are derived under the following simplifying assumptions:
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1. for nh ≤ t < (n + 1)h, the RRAP drum is motionless, the portion of air (respectively, gas)
filling the part Bo

A (respectively, Bo
G) is also motionless, the heat exchange between the heat

carrier and nozzles occurs in accordance with the linear Newton law [8];

2. at the time t = (n + 1)h, the heated portion of air with temperature un leaves the area
Bo

A, the gas portion cooled down to temperature vn leaves the region Bo
G, the drum turns to

180o with jump (i.e., the part B•

A goes to the part B•

G and vice versa); then the part Bo
A is

filled in by a new portion of air from outward (or from calorifer in case of its connection to
the RRAP, [12]) of temperature pn, and the part Bo

G is filled in by a new portion of gas of
temperature qn.

In accordance with the Newton law, we have the following relations:

xn+1 = (1− βh)yn + βhqn, yn+1 = (1− αh)xn + αhpn, (1.1)

un = pn + γh(xn − pn), vn = qn + δh(yn − qn), (1.2)

where α, β, γ, δ are parameters depending on characteristics of the heat exchange process in the
RRAP (the geometry, the heat capacity of the carcass of drum, the system of nozzles and their
structure, the humidity of air and gas and their thermodynamic characteristics, the coefficients
of heat conductivity and diffusion, parameters that characterize the heat exchange process on the
contact surface of the nozzles with air and gas and etc.).

Relations (1.1) and (1.2) have been obtained as a result of extremely simplifying assumptions
on the heat exchange process in the RRAP. Nevertheless, due to such simplification, system (1.1)
allows a fairly complete analysis; therefore, it can serve as a basic model to describe the work of
the RRAP.

2. Solution of the system

Introducing the vectors zn = (xn, yn)
T and rn = h(βqn,αpn)

T , where T is the transpose sign
to transform the row-vector to the column-vector, and the matrix

A =





0 1− βh

1− αh 0



 ,

one can rewrite system (1.1) as follows:

zn+1 = Azn + rn, n = 0, 1, 2, . . . . (2.1)

All further reasoning is conducted under the assumption 0 < αh, βh < 1, called the physical
realizability of the model. This condition implies the fact that the eigenvalues of the matrix A,
which are ±µ where µ =

√

(1− αh)(1 − βh), belong to the interval (−1, 1) and therefore all the
solutions of system (1.1) are asymptotically stable [13,14], [16].

The solution of equation (2.1) can be written by the Cauchy formula [13]

zn = Anz0 +

n−1
∑

k=0

An−1−krk. (2.2)

Since An = µnE for even numbers n, and An = µn−1A for odd numbers n, then equation (2.2) can
be transformed to the form

zn = µnz0 +A

n/2−1
∑

j=0

µn−2−2jr2j +

n/2−1
∑

j=0

µn−2−2jr2j+1,
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for even n, and to the form

zn = µn−1Az0 +A

(n−1)/2
∑

j=1

µn−1−2jr2j−1 +

(n−1)/2
∑

j=0

µn−1−2jr2j

for odd n.
Based on these relations, one can easily obtain explicit formulas for xn and yn. In practice,

however, it is more convenient to calculate them, in case of need, directly from equations (1.1) that
are accommodated to computer calculations. In the rest of the paper, some properties of solution
of systems (1.1), (1.2) are established.

3. Steady state and periodic regimes

Let us first consider the case of a steady state, which occurs under the assumption of constant
incoming flows. Such a state can be established in the periods of time measured in hours, if the
parameters of the air and the energy load at the TPP remain virtually unchanged. Since h is
measured in minutes, the work of the RRAP actually consists of long periods of steady states and
relatively short transition intervals from one steady state to another. Therefore, it is important to
determine the parameters of the RRAP under steady state conditions.

Thus, let
pn ≡ p̄, qn ≡ q̄, n = 0, 1, 2, . . . , r̄ = (βq̄, αp̄)T .

Then formula (2.2) can be simplified even more: for even n

zn = µnz0 + (1− µn)(E −A)−1r̄, (3.1)

or in the component form

xn = µnx0 +
1− µn

α+ β − αβh
[p+ q(1− βh)],

yn = µny0 +
1− µn

α+ β − αβh
[q + p(1− αh)],

and for odd n

zn = µn−1Az0 +
1

α+ β − αβh
(E − µnA)(E −A)−1r,

or

xn = µn−1(1− βh)y0 +
1

α+ β − αβh
[p(1− µn+2) + q(1− βh)(1 − µn−1)],

yn = µn−1(1− αh)x0 +
1

α+ β − αβh
[q(1− µn+2) + p(1− αh)(1 − µn−1)].

For the steady state, we obtain z̄ = (E −A)−1r̄ from the equation z̄ = Az̄ + r̄ (the invertibility of
the matrix E −A follows from the condition of physical realizability) or in the component form

x̄ =
1

α+ β − αβh
(αp+ βq(1− βh)),

ȳ =
1

α+ β − αβh
(βq + αp(1− αh)) .

(3.2)

Due to the fact noticed above, steady state (3.2) is asymptotically stable. On time intervals
measured in weeks, a periodic state for the RRAP can be formed.
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Theorem 1. Let the sequence rn be periodic with the period m, m ≥ 2, i.e. rn+m = rn, where

n = n0, n0 + 1, n0 + 2, . . . ; n0 is some fixed value of n. Then system (2.1) has a unique periodic

solution of period m, which is asymptotically stable.

P r o o f. The uniqueness and asymptotic stability follows from the condition of physical real-
izability. To establish the existence, we set

z∗n = (E −Am)−1
m−1
∑

k=0

Am−1−krk (3.3)

(it follows from the condition of physical realizability that the matrix E −Am is invertible).

Let z∗n be a trajectory with the initial point z∗0 . Rewrite relation (3.3) as follows:

z∗n = Amz∗0 +
m−1
∑

k=0

Am−1−krk = z∗m.

Then,

z∗n+m = An+mz∗0 +

m−1
∑

k=0

An+m−1−krk +

n+m−1
∑

k=m

An+m−1−krk. (3.4)

The sum of the first two summands in the right hand side of (3.4) is Anz∗m, the third one is equal
to

n−1
∑

k=0

An−1−krk+m =

n−1
∑

k=0

An−1−krk

since rk is periodic. Thus,
n−1
∑

k=0

An−1−krk = zn −Anz0.

Now, in accordance with (3.4), we obtain

z∗n+m = Anz∗m + zn −Anz∗0 = zn,

and the proof is complete. �

4. Boundedness and ergodicity of the solutions

In time intervals of longer duration, in a changeable external environment and energy load at
the TPP, the sequence rn is not periodic, a fortiori, it is not stationary. In this regard, we give
two properties of the solution for more general classes of systems (2.1), which models more or less
irregular regime of the heat exchange process.

Theorem 2. If rn is a bounded sequence, then each solution of equation (2.1) is also bounded.

This statement is also a special case of more general theorem [11].

Theorem 3. Let lim
n→∞

rn = l. Then each solution zn approaches the limit (E−A)−1l as n → ∞

independently of z0.
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P r o o f. First assume that l = 0. Let M = max
n

|rn|. Given any ε > 0, choose n0(ε) such that

|rn| <
1

2
(1− ||A||)ε at n ≥ n0(ε). Then choose N(n0(ε)) such that

µn <
1− ||A||

2M (1− ‖An0‖)
ε

for all n ≥ N(n0(ε)). Clearly, N(n0(ε)) can be chosen to satisfy N(n0(ε)) ≥ n0(ε). Then, for
n ≥ N(n0(ε)), we have

|zn| < ‖An‖ |z0|+

∣

∣

∣

∣

∣

n0−1
∑

k=0

An−1−krk

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

n−1
∑

k=n0

An−1−krk

∣

∣

∣

∣

∣

∣

.

Since 0 < αh, βh < 1, the first summand tends to zero as n → ∞. Denote two other terms by SI
n

and SII
n . Then, in view of ‖A‖ = µ ∈ (0, 1), we get

SI
n <

∥

∥An−n0

∥

∥

n0−1
∑

k=0

∥

∥

∥An0−1−k
∥

∥

∥ |rk| < M
∥

∥An−n0

∥

∥

n0−1
∑

k=0

∥

∥

∥An0−1−k
∥

∥

∥ < Mµn1− ‖An0‖

1− ‖A‖
<

ε

2
,

SII
n <

n−1
∑

k=n0

∥

∥

∥An−1−k
∥

∥

∥ |rk| <
1− ‖A‖

2
ε

∞
∑

k=0

∥

∥

∥Ak
∥

∥

∥ =
1− ‖A‖

2
ε

1

1− ‖A‖
<

ε

2
.

Hence, |zn| ≤ SI
n + SII

n < ε at n ≥ N(n0(ε)), i.e. zn → 0.

Let now rn → l as n → ∞, where l 6= 0. We make the change of variables

zn = z̄n + (E −A)−1l, r̄n = rn − l.

Then
z̄n+1 + (E −A)−1l = A

[

z̄n + (E −A)−1l
]

+ r̄n + l = Az̄n + r̄n,

where r̄n → 0. As proved, z̄n → 0. Therefore, zn → (E −A)−1l. �

In general, the change of the parameters characterizing the state of air, as well as the variation
of the load at the TPP is random with a hard-determinable distribution function.

Considering the work of the RRAP as a stochastic process, we leave it for the next part of the
paper, and we now present another property, taking into account irregular characters of values of
phase variables of system (1.1), (1.2).

A sequence an is called almost-periodic, if it can be represented in the form bn + cn, where bn
is periodic and cn → 0 as n → ∞.

Corollary 1. If rn is almost-periodic, then each solution of (2.2) is also almost-periodic.

Definition. A sequence xn is called ergodic, if the sequence of Cesaro means

σn =
x1 + x2 + · · · + xn

n

converges as n → ∞.

Theorem 4. If the sequence rn is ergodic, namely

ρn =
r0 + r1 + · · ·+ rn−1

n
→ l,

then each solution zn is also ergodic with

Sn =
z1 + z2 + · · · + zn

n
→ (E −A)−1l.



Simplified Model of the Heat Exchange Process 33

P r o o f. Express SN as the sum of two terms: SN = ΣI +ΣII , where

ΣI =
1

N

N
∑

n=1

Anz0, ΣII =
1

N

N
∑

n=1

n−1
∑

k=0

An−1−krk.

Then

ΣI =
1

N

N
∑

n=1

Anz0 =
1

N
A(E −A)−1(E −AN )z0 → 0

as n → ∞.
For ΣII , we have

ΣII =
1

N

N−1
∑

k=0

N
∑

n=k+1

An−1−krk =
1

N

N−1
∑

k=0

(

N−1−k
∑

n=0

An

)

rk

=
(E −A)−1

N

[

N−1
∑

k=0

rk −

N−1
∑

k=0

AN−1−krk

]

= (E −A)−1 ρn −
(E −A)−1

N

N−1
∑

k=0

AN−1−krk.

By hypothesis of the theorem, (E −A)−1 ρn → (E −A)−1 l as N → ∞. Assuming ρk = ξk + l,

where ξk → 0, we arrive at the equation

rk = (k + 1)ρk+1 − kρk = (k + 1)ξk+1 − kξk + l.

Thus,

(E −A)−1

N

N−1
∑

k=0

AN−1−krk =
(E −A)−1

N

[

N−1
∑

k=0

AN−1−k [(k + 1)ξk+1 − kξk]−

N−1
∑

k=0

AN−1−kl

]

.

Obviously,
N−1
∑

k=0

AN−1−kl → 0

as N → ∞. Let

S =
1

N

N−1
∑

k=0

AN−k−1kξk.

Show that S → 0 as N → ∞. Indeed,

|S| ≤
N−1
∑

k=0

µN−1−k k

N
|ξk| ≤

N−1
∑

k=0

µN−1−k |ξk| .

By Theorem 3, the right-hand side of this inequality tends to 0 as N → ∞. Thus, finally we obtain

SN =
1

N

N
∑

n=1

zn → (E −A)−1l,

which is our claim. �
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5. Finding the coefficients of the system

As mentioned above, besides the temperature and velocity of incoming air and gas, the drum
rotation speed, the heat exchange process in the RRAP depends on many parameters expressing
the thermodynamic characteristics of air and gas, the material and geometry of the nozzles of the
RRAP, thermal properties of the drum casing etc.

There are a number of works devoted to the mathematical modeling of the RRAP where for-
mulas are given to calculate the values of the parameters above on the basis of molecular physics
laws [1–3], [8], [9]. In addition, finding the numerical parameters characterizing the RRAP is only
possible with a certain accuracy. From this point of view, it is much easier to define them with a
satisfactory accuracy by solving the inverse problem for system (1.1), (1.2) on the basis of empirical
data. With regard to model (1.1), (1.2), such a problem consists in calculating the values of α, β, γ,
and δ based on the results of measurements of temperatures of outgoing air un and gas vn. Here,
there is a wide field of application of the least squares method and tools of mathematical statis-
tics. Here, we confine ourselves to the simplest case, when α, β, γ, and δ are found by measuring
u1, u2, v1, and v2 assuming that incoming streams pn = p, qn = q are stationary. We can assume
that u0 = p, v0 = q, and the values of u1, u2, v1, and v2 are found by the direct measurements.
As a result, we arrive at the problem of finding the unknowns α, β, γ, δ based on the given values
h, p, q, u1, u2, v1, v2, without measuring the values xn, yn (the nozzle temperature).

We have
x2 = (1− βh)y1 + βhq, y2 = (1− αh)x1 + αhp, (5.1)

u1 = p+ γh(x1 − p), v1 = q + δh(y1 − q), (5.2)

u2 = p+ γh(x2 − p), v2 = q + δh(y2 − q). (5.3)

Set ūk = uk − p, v̄k = vk − q, k = 1, 2, (these values have the clear physical meaning).
Substituting the values of x2 and y2 from (5.1) into (5.3), we obtain the following system

γh(x1 − p) = ū1, δh(y1 − q) = v̄1, (5.4)

γh[(1− βh)y1 + βhq − p] = ū2, δh[(1 − αh)x1 + αhp − q] = v̄2, (5.5)

with 6 unknowns α, β, γ, δ, x1, y1. It is nonlinear and, in general, cannot be solved explicitly.
Therefore, we use the fact that, for the values of α, β, γ, δ, there is a priori estimate 0.1÷ 0.6

and h < 1. This allows us to neglect the terms containing βγh2 and αδh2.
Then equations (5.5) take the form γh(y1 − p) = ū2, δh(x1 − q) = v̄2. As a result, for the

intermediate unknowns x1, y1, we obtain the linear system

x1 − p

y1 − p
=

ū1

ū2
,

y1 − q

x1 − q
=

v̄2

v̄1
, (5.6)

with the determinant equal to ū1v̄1 − ū2v̄2. We call the quantity χ = |ū1v̄1 − ū2v̄2| the divergence
coefficient of the RRAP. The deviation of χ from zero is a characteristic of the RRAP that expresses
how the rates of air heating and gas cooling differ. Further, we assume χ 6= 0. It follows from (5.6)
that

x1 =
(ū1 − ū2)v̄2p+ (v̄1 − v̄2)ū1q

ū1v̄1 − ū2v̄2
, y1 =

(ū1 − ū2)v̄1p+ (v̄1 − v̄2)ū2q

ū1v̄1 − ū2v̄2
.

Substituting the values x1, y1 into (5.4), (5.5), we obtain the final formulas

αh =
x1 − q

x1 − p
v̄1 −

y1 − q

x1 − p
v̄2, βh =

y1 − p

y1 − q
ū1 −

x1 − p

y1 − q
ū2



Simplified Model of the Heat Exchange Process 35

γh =
ū1

x1 − p
, δh =

v̄1

y1 − q
.

Table 1 shows posteriori values of parameters α, β, γ, δ calculated by these formulas under the
assumption that p = 32◦, q = 282◦, h = 0.25 [4, 5].

ū1 v̄1 ū2 v̄1 α β γ δ

3.61 −2.58 6.75 −4.82 0.048 0.068 0.041 0.029

Table 1. Posteriori values of parameters α, β, γ, δ.

6. Conclusion

In the present paper, we have proposed the mathematical model of thermodynamic process of
the RRAP, which is described by linear discrete equations. To obtain this, we have used averaging
the quantities associated with the heat exchange process between the nozzles, air and gas in both
the spatial coordinates and time interval. We have found steady and periodical states, established
the ergodicity and other properties. Next, we have studied the cases when the time averaging is
performed over the period of time equal to the half-cycle of rotation of the RRAP drum as well
as when the time averaging is performed over a small time interval. Finally, we have provided the
comparative analysis of the numerical results obtained and the experimental data.
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Abstract: We consider a family of equations with two free functional parameters containing the classical
Black–Scholes model, Schönbucher–Wilmott model, Sircar–Papanicolaou equation for option pricing as partial
cases. A five-dimensional group of equivalence transformations is calculated for that family. That group is
applied to a search for specifications’ parameters specifications corresponding to additional symmetries of the
equation. Seven pairs of specifications are found.

Key words: Nonlinear partial differential equation, Group analysis, Group of equivalency transformations,
Group classification, Nonlinear Black–Scholes equation, Pricing options, Dynamic hedging, Feedback effects of
hedging.

Introduction

In the paper a nonlinear model

ut +
w(t, x)uxx

2 (1− xv(ux)uxx)
2 + r(xux − u) = 0. (0.1)

from the theory of financial markets is considered. In the case of v ≡ 0 it is generalized Black—
Scholes equation [1], if, besides, w(t, x) = σ2x2 (0.1) is the classical Black—Scholes model [2].
For arbitrary v and w(t, x) = σ2x2 (0.1) is the Sircar—Papanicolaou nonlinear feedback pricing
equation [1]. If v is arbitrary, w(t, x) = σ2x2 and r = 0, it is the equilibrium pricing model or
Schönbucher—Wilmott nonlinear feedback pricing model [3–6]. The last two models take into
account a feedback effect of the presence of two types of traders. The programm traders are the
portfolio insurers and the reference traders are the Black—Scholes uploaders.

The aim of the paper is to obtain a group classification [7] of equation (0.1) with free parameters
v and w. The group of equivalence transformations [7,8] of equation (0.1) will be found. By means
of this group symmetries for the equation with all specifications will be calculated. Further these
results will be applied to the theory of financial markets, particularly, they will allow to calculate
various exact solutions of equation (0.1).

The groups of classical Black—Scholes model and their accordance to the groups of the heat
equation were found in [9]. Research of symmetries of Schönbucher—Wilmott model and of some
other nonlinear pricing models was made in [10–13].

1The work is partially supported by Laboratory of Quantum Topology of Chelyabinsk State University
(Russian Federation government grant 14.Z50.31.0020).
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1. Group of the equivalence transformations

Let us find the continuous group of equivalence transformations of equation (0.1) for the ap-
plying to the search of specifications of the functions v = v(ux), w = w(t, x) in the equation, that
corresponds to additional symmetries for the symmetries of the kernel of principal Lie group for
the equation. We rewrite equation (0.1) in the form

ut +
wuxx

2 (1− xvuxx)
2 + r(xux − u) = 0, (1.1)

where v, w are the additional variables, depending on t, x, u, ut and ux. Generators of a continuous
group of equivalence transformations will be searched in the form Y = τ∂t+ξ∂x+η∂u+µ∂v+ν∂w,
where the functions τ, ξ, η depend on t, x, u, and µ ν depend on t, x, u, ut, ux, v, w. For brevity
hereafter ∂

∂t ≡ ∂t and similar notations are used. We add to (1.1) the equations

vt = 0, vx = 0, vu = 0, vut = 0, (1.2)

wu = 0, wut = 0, wux = 0, (1.3)

meaning that in the statement of the problem the function v depends only on ux and the function
w depends on t, x.

We consider the system of equations (1.1)–(1.3) as a manifold N in an expanded space of
corresponding variables. Let us act on the left-hand side of system (1.1)–(1.3) by the extended
operator

Ỹ = Y + φt∂ut + φxx∂uxx + µt∂vt + µx∂vx + µu∂vu + µut∂vut + νu∂wu + νut∂wut
+ νux∂wux

,

we restrict a result of the action on N and we obtain the equations

φt +
vwu2xxξ

(1− xvuxx)
3 +

w(1 + xvuxx)φ
xx

2 (1− xvuxx)
3 +

uxxν

2 (1− xvuxx)
2 +

wxu2xxµ

(1− xvuxx)
3+

+r(uxξ + xφx − η)

∣∣∣∣
N

= 0, (1.4)

µt|N = 0, µx|N = 0, µu|N = 0, µut |N = 0, (1.5)

νu|N = 0, νut |N = 0, µux |N = 0. (1.6)

From (1.2) and (1.3) it follows that

D̃t = ∂t + wt∂w + wtt∂wt + wtx∂wx + . . . , D̃x = ∂x + wx∂w + wtx∂wt + wxx∂wx + . . . ,

D̃u = ∂u, D̃ut = ∂ut , D̃ux = ∂ux + v′(ux)∂v + v′′(ux)∂v′(ux) + . . . ,

µt = µt + wtµw − v′(ux)φ
x
t = µt + wtµw − v′(ux)(ηtx + uxηtu − utτtx − utuxτtu − uxξtx − u2xξtu),

µx = µx +wxµw − v′(ux)φ
x
x = µx +wxµw − v′(ux)(ηxx + uxηxu − utτxx − utuxτxu − uxξxx − u2xξxu),

µu = µu − v′(ux)φ
x
u = µu − v′(ux)(ηxu + uxηuu − utτxu − utuxτuu − uxξxu − u2xξuu),

µut = µut − v′(ux)φ
x
ut

= µut + v′(ux)τx + uxv
′(ux)τu,

νu = νu − wtτu − wxξu, νut = νut , νux = νux + v′(ux)νv.

Therefore, equations (1.5) and (1.6) have the form

µt + wtµw − v′(ux)(ηtx + uxηtu − utτtx − utuxτtu − uxξtx − u2xξtu)|N = 0, (1.7)
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µx + wxµw − v′(ux)(ηxx + uxηxu − utτxx − utuxτxu − uxξxx − u2xξxu)|N = 0, (1.8)

µu − v′(ux)(ηxu + uxηuu − utτxu − utuxτuu − uxξxu − u2xξuu)|N = 0, (1.9)

µut + v′(ux)τx + uxv
′(ux)τu = 0, (1.10)

νu − wtτu − wxξu = 0, νut = 0, νux + v′(ux)νv = 0. (1.11)

By equality (1.1) equations (1.7)–(1.9) can be rewritten in the form

µt + wtµw − v′(ux)
(
ηtx + uxηtu − uxξtx − u2xξtu+

+
wuxx(τtx + uxτtu)

2 (1− xvuxx)
2 + (rxux − ru)(τtx + uxτtu)

)
= 0,

(1.12)

µx + wxµw − v′(ux)
(
ηxx + uxηxu − uxξxx − u2xξxu+

+
wuxx(τxx + uxτxu)

2 (1− xvuxx)
2 + (rxux − ru)(τxx + uxτxu)

)
= 0,

(1.13)

µu − v′(ux)
(
ηxu + uxηuu − uxξxu − u2xξuu+

+
wuxx(τxu + uxτuu)

2 (1− xvuxx)
2 + (rxux − ru)(τxu + uxτuu)

)
= 0.

(1.14)

By means of the equality

φxx = ηxx + 2uxηxu + ux
2ηuu + uxxηu − utτxx − 2utuxτxu − 2utxτx − utux

2τuu−
−2uxutxτu − utuxxτu − uxξxx − 2ux

2ξxu − 2uxxξx − ux
3ξuu − 3uxuxxξu

equation (1.4) is rewritten as

ηt + utηu − utτt − u2t τu − uxξt − utuxξu +
1

2 (1− xvuxx)
3

(
2vwu2xxξ + 2xwu2xxµ +

+uxxν − xu2xxvν + w(1 + xvuxx)(ηxx + 2uxηxu + ux
2ηuu + uxxηu−

−utτxx − 2utuxτxu − 2utxτx − utux
2τuu − 2uxutxτu−

−utuxxτu − uxξxx − 2ux
2ξxu − 2uxxξx − ux

3ξuu − 3uxuxxξu)
)
+

+ruxξ + rx(ηx + uxηu − utτx − utuxτu − uxξx − u2xξu)− rη|N =

= ηt +
wuxx(τt − ηu)

2 (1− xvuxx)
2 + (rxux − ru)(τt − ηu)−

w2u2xxτu

4 (1− xvuxx)
4−

−(rxux − ru)2τu +
wuxx(rxux − ru)τu

(1− xvuxx)
2 − uxξt+

+
wuxuxxξu

2 (1− xvuxx)
2 + (rxux − ru)uxξu +

1

2 (1− xvuxx)
3

(
2vwu2xxξ + 2xwu2xxµ +

+uxxν − xu2xxvν + w(1 + xvuxx)
(
ηxx + 2uxηxu + ux

2ηuu + uxxηu+

+
wuxxτxx

2 (1− xvuxx)
2 + (rxux − ru)τxx +

wuxuxxτxu

(1− xvuxx)
2 + 2(rxux − ru)uxτxu−

−2utxτx +
wu2xuxxτuu

2 (1− xvuxx)
2 + (rxux − ru)u2xτuu − 2uxutxτu +

wu2xxτu

2 (1− xvuxx)
2+

+(rxux − ru)uxxτu − uxξxx − 2ux
2ξxu − 2uxxξx − ux

3ξuu − 3uxuxxξu)
)
+

+ruxξ + rx(ηx + uxηu − uxξx − u2xξu)− rη+

+
rxwuxx(τx + uxτu)

2 (1− xvuxx)
2 + rx(rxux − ru)(τx + uxτu) = 0.

(1.15)
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We differentiate the last equations with respect to utx and obtain w(1 + xvuxx)(τx + uxτu) = 0,
consequently, τ = τ(t), if w ̸= 0. Therefore, equations (1.11)–(1.15) have the form

µut = 0, νu − wxξu = 0, νut = 0, νux + v′(ux)νv = 0, (1.16)

µt + wtµw − v′(ux)
(
ηtx + uxηtu − uxξtx − u2xξtu

)
= 0, (1.17)

µx + wxµw − v′(ux)
(
ηxx + uxηxu − uxξxx − u2xξxu

)
= 0, (1.18)

µu − v′(ux)
(
ηxu + uxηuu − uxξxu − u2xξuu

)
= 0, (1.19)

ηt +
wuxx(τ

′(t)− ηu)

2 (1− xvuxx)
2 + (rxux − ru)(τ ′(t)− ηu)− uxξt+

+
wuxuxxξu

2 (1− xvuxx)
2 + (rxux − ru)uxξu +

1

2 (1− xvuxx)
3

(
2vwu2xxξ + 2xwu2xxµ +

+uxxν − xu2xxvν + w(1 + xvuxx)
(
ηxx + 2uxηxu + ux

2ηuu + uxxηu − uxξxx−
−2ux

2ξxu − 2uxxξx − ux
3ξuu − 3uxuxxξu)

)
+ ruxξ+

+rx(ηx + uxηu − uxξx − u2xξu)− rη = 0.

We multiply by 2(1− xvuxx)
3 the last equation, then

2(1− xvuxx)
3(ηt + (rxux − ru)(τ ′(t)− ηu + uxξu)) + (1− xvuxx)wuxx(τ

′(t)− ηu)−
−2(1− xvuxx)

3uxξt + (1− xvuxx)wuxuxxξu + 2vwu2xxξ + 2xwu2xxµ+

+uxxν − xu2xxvν + w(1 + xvuxx)
(
ηxx + 2uxηxu + ux

2ηuu + uxxηu − uxξxx−
−2ux

2ξxu − 2uxxξx − ux
3ξuu − 3uxuxxξu)+

+2(1− xvuxx)
3(ruxξ + rx(ηx + uxηu − uxξx − u2xξu)− rη) = 0.

(1.20)

Equation (1.20) for the case v ̸= 0 has at u3xx multiplier

ηt + rxuxτ
′(t)− ru(τ ′(t)− ηu + uxξu)− uxξt + ruxξ + rx(ηx − uxξx)− rη,

after its splitting with respect to ux, we obtain two equations

ηt + rxηx + ruηu − rη − ruτ ′(t) = 0, (1.21)

rxτ ′(t)− ξt − rxξx − ruξu + rξ = 0. (1.22)

After the splitting with respect to ux of the multiplier at uxx in zero degree it follows that

ξ = A(t, x)u+B(t, x),

η = Ax(t, x)u
2 + C(t, x)u+D(t, x)

and by (1.21), (1.22)

2ηt − 2ruτ ′ + 2ruηu + 2rxηx − 2rη + wηxx = wηxx = 0,

2rxτ ′ − 2ruξu − 2ξt + 2rξ − 2rxξx − 2wξxx + 4wηxu = −wξxx + 2wηxu = 0.
(1.23)

The last equality implies that

Axx = 0, A(t, x) = A1(t)x+A0(t), C(t, x) =
1

2
Bx(t, x) + E(t),

ξ = A1(t)xu+A0(t)u+B(t, x), η = A1(t)u
2 +

1

2
Bx(t, x)u+E(t)u+D(t, x).
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Then from (1.23) it follows that

Bxxx = 0, Dxx = 0, ξ = A1(t)xu+A0(t)u+B2(t)x
2 +B1(t)x+B0(t),

η = A1(t)u
2 +B2(t)xu+

1

2
B1(t)u+ E(t)u+D1(t)x+D0(t).

Now the equality (1.22) implies that A1(t) = Fe−rt, A0(t) is a constant,

B2(t) = Ge−rt, B1(t) = rτ(t) +H, B0(t) = Jert,

ξ = Fe−rtxu+A0u+Ge−rtx2 + rτ(t)x+Hx+ Jert,

η = Fe−rtu2 +Ge−rtxu+
1

2
(rτ(t) +H)u+E(t)u+D1(t)x+D0(t).

By (1.21) D1 is a constant,

D0(t) = Kert, E(t) =
1

2
rτ(t) + P,

η = Fe−rtu2 +Ge−rtxu+ rτ(t)u+ Pu+D1x+Kert.

From (1.16) it follows that ν = wx(Fe−rtx+A0)u+ S(t, x, ux, v, w).
The coefficient at uxx in equation (1.20) is equated to zero and we obtain the equation

−6xvηt − 6xv(rxuxτ
′(t)− ruτ ′(t) + ruηu − ruuxξu) + wτ ′(t)+

+6xvuxξt + wuxξu + ν − 2wξx − 3wuxξu + 2xvwuxηxu + xvwu2xηuu−
−xvwuxξxx − 2xvwu2xξxu − 6xv(ruxξ + rxηx − rxuxξx − rη) = 0.

Let us substitute in it the expressions for ξ, η, ν that were found before, and splitting with respect
to the variable u leads to the equations

−2Fe−rtw + wx(Fe−rtx+A0) = 0, (1.24)

S = 4Ge−rtxw − wτ ′ + 2rwτ + 2Hw + 2Fe−rtxuxw + 2A0uxw.

The last of them implies the equalities νv = Sv = 0, consequently, by (1.16) we obtain

νux = Sux = 2Fe−rtxw + 2A0xw = 0, A0 = F = 0.

Thus,

ξ = Ge−rtx2 + rτ(t)x+Hx+ Jert,

η = Ge−rtxu+ rτ(t)u+ Pu+D1x+Kert,

ν = 4Ge−rtxw − wτ ′ + 2rwτ + 2Hw.

Analogous calculations are made with the coefficient at u2xx in equation (1.20), we obtain the
equation

6x2v2(ηt + rxuxτ
′ − ruτ ′ + ruηu)− xvw(τ ′ − ηu)− 6x2v2uxξt + 2vwξ + 2xwµ− xvν+

+xvw(ηu − 2ξx) + 6x2v2(ruxξ + rxηx − rxuxξx − rη) = 0,

that implies the equality µ = v
(
H − P − J

xe
rt + 2Ge−rtx

)
. Therefore µu = µw = 0, and for the

case v′ ̸= 0 obtain G = 0 from equation (1.19). Then equation (1.18) implies that µx = 0, hence
J = 0. From equation (1.17) it follows that µt = 0, it corresponds to the resulting formula
µ = (H − P )v. Thus, τ(t) is an arbitrary function,

ξ = Hx+ rτ(t)x, η = Kert +D1x+ Pu+ rτ(t)u,

µ = (H − P )v, ν = 2Hw + (2rτ(t)− τ ′(t))w.

Let us formulate the result in the form of theorem.
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Theorem 1. The Lie algebra of infinitesimal generators of the equivalency transformations
groups for equation (0.1), is generated by operators

Y1 = x∂u, Y2 = ert∂u, Y3 = x∂x + u∂u + 2w∂w, Y4 = x∂x + v∂v + 2w∂w,

Y5 = τ(t)∂t + rτ(t)x∂x + rτ(t)u∂u + (2rτ(t)− τ ′(t))w∂w,

when v′, w are identically unequal to zero.

Remark 1. It is easy to check that the infinitely-dimensional part of the Lie algebra from
Theorem 1 consists of operators of the form Y5 only.

The extensions of the operators Yk, k = 1, 2, 3, 4, 5, are

Ỹ1 = x∂u + ∂ux , Ỹ2 = ert∂u, Ỹ3 = x∂x + u∂u + 2w∂w,

Ỹ4 = x∂x + v∂v + 2w∂w − ux∂ux , Ỹ5 = τ∂t + rτx∂x + rτu∂u + (2rτ − τ ′)w∂w.
(1.25)

Therefore, the kernel of the principal Lie algebras for equation (0.1) is one-dimensional with the
basis Y2, because the corresponding group only doesn’t transform the additional variables v, w and
their arguments t, x, ux.

Corollary 1. The kernel of the principal Lie algebras for equation (0.1) is spanned by the
operator X1 = ert∂u when v′, w are identically unequal to zero.

2. Group classification

Consider Lie algebra of projections of operators (1.25) on the subspace of the variables t, x, ux,
v, w, i. e. the algebra generated by

Z1 = ∂ux , Z2 = v∂v − ux∂ux ,

Z3 = x∂x + 2w∂w, Z4 = τ∂t + rτx∂x + (2rτ − τ ′)w∂w.
(2.1)

It is the direct sum of subalgebras ⟨Z1, Z2⟩ and ⟨Z3, Z4⟩ that corresponds to two different functions
v and w and their different arguments. Therefore, the subalgebras can be considered separately.

Nonzero structure constants of ⟨Z1, Z2⟩ are c112 = −1, c121 = 1. Therefore, the inner automor-
phisms are E1 : ē

1 = e1−e2a1, E2 : ē
1 = e1ea2 . Here ei, i = 1, 2 are the coefficients at Zi respectively

in the basis decomposition of Z. If e2 ̸= 0, then e1 = 0 by the acting of E1. Therefore the optimal
system of one-dimensional subalgebras consists of subalgebras with bases Z1 and Z2.

In the subalgebra ⟨Z3, Z4⟩ there are no nontrivial inner automorphisms, consequently, the op-
timal system of one-dimensional subalgebras has a form Θ1 = {⟨Z2⟩, ⟨bZ2 + Z4⟩, b ∈ R}.

For operators Z from optimal systems we calculate the expressions

Z(V (ux)− v)|v=V = 0, Z(W (t, x)− w)|w=W = 0.

Note, that if Z contains Z1 with a nonzero coefficient and doesn’t contain Z2, then v′ = 0. Such
case doesn’t correspond to the conditions of Theorem 1. If an operator Z has nonzero coefficients
at Z1 and at Z3, then by E1 the coefficient at Z1 can be equated to zero for equivalent operator
to Z. Therefore, the operator Z1 can be excluded from further considerations.

We have

Z2(V (ux)− v)|w=W = −V − uxV
′ = 0, V = β/ux
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for arbitrary β ∈ R. Further,

Z3(W (t, x)− w)|w=W = xWx − 2W = 0, W = D(t)x2

for arbitrary function D(t). Finally,

(bZ3 + Z4(W (t, x)− w)|w=W = τ(t)Wt + (rτ(t) + b)xWx − (2rτ(t)− τ ′(t) + 2b)W = 0,

W =
e
2rt+2b

∫
dt

τ(t)

τ(t)
φ(xe

−rt−b
∫

dt
τ(t) )

for arbitrary functions φ ̸= 0, τ ̸= 0.
Optimal system of two-dimensional subalgebras consists of ⟨Z2, Z3⟩, ⟨Z2, bZ3 + Z4⟩, ⟨Z3, Z4⟩.

In the first two cases we have the simultaneous specifications for v and w that are already known.
In the last one specification we have the form W = γx2/τ(t).

For the Lie algebra ⟨Z2, Z3, Z4⟩ the specifications are V = β/ux, W = γx2/τ(t).
For every basis operator from the optimal systems calculate the projection of the corresponding

generator of the group of equivalency transformations on the space of the variables t, x, u. Then
Z2 corresponds to pr(t,x,u)(Y4 − Y3) = −u∂u, for the operator Z3 it will be pr(t,x,u)Y3 = x∂x + u∂u,
and pr(t,x,u)(bY3+Y5) = τ(t)∂t+(rτ(t)+ b)x∂x+(rτ(t)u+ b)∂u corresponds to bZ3+Z4. It implies
the next theorem.

Theorem 2. Let v′, w be identically unequal to zero i. Then next assertions are true.
1. The principal Lie algebra of the equation

ut +
w(t, x)uxx

2

(
1− βx

uxx
ux

)2 + r(xux − u) = 0, β ̸= 0,

is generated by the operators X1 = ert∂u, X2 = u∂u.

2. The principal Lie algebra of the equation

ut +
T ′(t)e2rt+2bT (t)φ(xe−rt−bT (t))uxx

2 (1− xv(ux)uxx)
2 + r(xux − u) = 0, T ′(t) ̸= 0, φ(z) ̸= 0,

is generated by the operators X1 = ert∂u, X2 =
1

T ′(t)
∂t +

(
r

T ′(t)
+ b

)
x∂x +

(
r

T ′(t)
+ b

)
u∂u.

3. The principal Lie algebra of the equation

ut +
T ′(t)e2rt+2bT (t)φ(xe−rt−bT (t))uxx

2

(
1− βx

uxx
ux

)2 + r(xux − u) = 0, T ′(t) ̸= 0, φ(z) ̸= 0, β ≠ 0,

is generated by the operators

X1 = ert∂u, X2 = u∂u, X3 =
1

T ′(t)
∂t +

(
r

T ′(t)
+ b

)
x∂x +

(
r

T ′(t)
+ b

)
u∂u.

4. The principal Lie algebra of the equation

ut +
D(t)x2uxx

2 (1− xv(ux)uxx)
2 + r(xux − u) = 0, D(t) ̸= 0,
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is generated by the operators

X1 = ert∂u, X2 = x∂x + u∂u, X3 =
1

D(t)
∂t +

r

D(t)
x∂x +

r

D(t)
u∂u.

5. The principal Lie algebra of the equation

ut +
D(t)x2uxx

2

(
1− βx

uxx
ux

)2 + r(xux − u) = 0, D(t) ̸= 0,

is generated by the operators

X1 = ert∂u, X2 = x∂x, X3 = u∂u, X4 =
1

D(t)
∂t +

r

D(t)
x∂x +

r

D(t)
u∂u.

Remark 2. Theorem 1 and Theorem 2 are valid for the case r = 0.

3. Conclusion

Further Theorem 2 will be applied to the search of exact solutions of the option pricing nonlinear
models. Specification W (t, x) = σ2x2 as partial case of D(t)x2 corresponds to the Scönbucher—
Wilmott model, if r = 0, and to Circar—Papanicolaou model for r ̸= 0.
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1. Introduction

Dynamic computable general equilibrium (CGE) models are widely used for estimating the effects
of demographic and technological changes on energy use and carbon dioxide (CO2) emissions. The
equilibrium is described in the framework of the Arrow –Debreu theory, which leads to a systems
of nonlinear equations. Usually large-scale nonlinear systems are solved by one of the “general-
purpose” Krylov subspace solvers, which can deal effectively with sparse matrices (see, e.g., [1]).

In our paper [2], we presented a parallel algorithm based on an iterative method of the Gauss –
Seidel type [3]. We exploited the special block structure of the nonlinear system of equations in
dynamic CGE models. We implemented the algorithm using parallel programming environments
for the one-region version of the Population-Environmental-Technology (PET) model [4, 5]. The
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numerical results showed that the speed of our algorithm is comparable to the one of Krylov
methods solvers such as NITSOL [6].

In this paper we extend the algorithm to models with international trade and apply it to the
multiregion PET model [7]. We implement the parallel algorithm using the OpenMP interface for
systems with shared memory. To demonstrate the effectiveness of the parallel algorithm we use
the PET model calibrated to reproduce major outcomes for the socioeconomic scenarios from the
Shared Socioeconomic Pathways (SSP) database (see, e.g. [8]). The calibration of the PET model
to the SSPs is described in the supplementary material to [8].

The paper is organized as follows. In Sect. 2 we present a description of the multiregion PET
model. In particular, we explain in detail how the intermediate goods demand is calculated in the
presence of the international trade. In Sect. 3 we present the numerical method for calculating the
equilibrium and explain the parallel algorithm. In Sect. 4 we discuss the calculation results.

2. Structure of the CGE model

In this section we describe the multiregion PET model (for description of the one-region PET
model, see, e.g. [2, 4, 5]).

The PET model is a forward-looking CGE model with tree types of agents: consumers, pro-
ducers, and government. Consumers maximize their lifetime utility function taking prices as given
(Subsec. 2.1). Producers maximize profits supported by the prices as described in Subsec. 2.2. Gov-
ernment redistributes capital through taxes and transfers (for details see, e.g. [5]). International
trade is described by the Armington model as described in Subsec. 2.3. Prices are determined by the
markets clearing conditions for production factors, intermediate and final goods (Subsec. 2.4). The
first-order optimality conditions for the agents and supply-equals-demand conditions for markets
form a system of nonlinear equations. A solution to this system of equation is called the general

equilibrium.

2.1. Consumers side

In each of the NR regions the utility function of the representative household is given by the
discounted lifetime consumption

U(c) =
1

ψ

∞∑

t=0

βtnt



NC∑

j=1

(µjtcjt)
ρ




ψ
ρ

,

where t = 0, 1, 2, . . . is time, index j = 1, NC labels consumer goods, cjt is consumption, nt is the
size of population, ψ ∈ (−∞, 1)\ {0} is the intertemporal substitution parameter, β ∈ (0, 1) is the
discount rate, σ = 1/(1 − ρ) is the electivity (ρ ∈ (−∞, 1)\ {0} is the substitution parameter) and
µjt is the preference coefficient (for details of calculating µjt see, e.g., [5]).

The capital dynamics is

(1 + νt) kt+1 = (1− δ) kt + xt, (2.1)

where kt is capital (k0 > 0), xt is investment, δ ∈ (0, 1) is the capital depreciation coefficient,
1 + νt = nt+1/nt is the population growth coefficient (νt is the growth rate).

The budget constraint is

NC∑

j=1

pjtcjt + qtxt = (1− θt)ωtlt + (1− φt) rtkt + gt, (2.2)
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where pjt is the price of the jth consumer good, qt is the prices of investments, ωt is the wage rate,
rt is the rental rate of capital, gt is the government transfers, lt is the labor supply, θt and φt are
the tax rates on capital and labor incomes, respectively. Here the quantities cjt, kt, xt, lt and gt
are given in per capita terms.

Taking prices as given, the representative household maximizes the utility,

U(c) −→ max, (2.3)

subject to constraints (2.1) and (2.2). The first-order optimality condition for problem (2.1), (2.2)
and (2.3) gives the Euler equation

qt
pt
ct
ψ−1 = β

qt+1(1− δ) + (1− φt+1)rt+1

pt+1

ct+1
ψ−1,

where the consumption composite and price index are

ct =



NC∑

j=1

(µjtcjt)
ρ




1

ρ

, p̄t =



NC∑

j=1

(
pjt
µjt

) ρ
ρ−1



ρ−1

ρ

such that
NC∑

j=1

pjtcjt = p̄tct.

The transversality conditions
lim
t−→∞

λtkt = 0,

where λt is the Lagrange multiplier, guarantees that the optimal trajectory (ct, kt, xt) exists and is
unique (see, e.g., [9]).

2.2. Producers side

Firms are aggregated into sectors that produce final goods (NC consumer goods and one “invest-
ment good”) and intermediate goods (NE energy goods and the rest, which we call materials). The
total number of production sector is NX = NC + 1 +NE + 1.

Production level of the good X is defined by the constant elasticity of substitution (CES)
function

X = γX
(
αK(GKK)ρX + αL(GLL)

ρX + αĒ(GĒĒ)ρX + α
M̂
(G

M̂
M̂)ρX

) 1

ρX , (2.4)

where K is capital, L is labor, Ē is energy composite and M̂ is materials (unlike small letters that

indicate the per capita values, capital letters denote the totals). Here GI , I = K,L, Ē, M̂ , are
the productivity factors and the coefficient γX normalizes the production shares αI to unity. Both
productivity factors and production shares can be sector- and time-dependent. (Current version of
the PET model [8] also has land as a production factor but, for simplicity, we do not consider it
here.)

At each time moment, the producer of the good X maximizes profit, or equivalently, minimizes
costs

PKK + PLL+ PĒĒ + (1 + τ
M̂
)P

M̂
M̂ −→ min

K,L,Ē,M̂

, (2.5)

given the level of production (2.4). Here PI is the corresponding price and τ
M̂

is the tax on the
use of materials (for brevity, we omit the time index).
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The minimal cost for problem (2.4) and (2.5) is given by PXX, where

PX =
1

γX

(
α

1

1−ρX

K

(
PK
GK

) ρX
ρX−1

+ α
1

1−ρX

L

(
PL
GL

) ρX
ρX−1

+ α
1

1−ρX

Ē

(
PĒ
GĒ

) ρX
ρX−1

+ α
1

1−ρX

M̂

(
(1 + τ

M̂
)P

M̂

G
M̂

) ρX
ρX−1

)
.

The cost minimizing input-output ratios AIX = I/X for I = K,L, Ē are given by

AIX =

(
1

αI(γXGI)ρX
PI
PX

) 1

ρX−1

,

and for I = M̂ the ratio is given by

AM̂X =

(
1

α
M̂
(γXGM̂ )ρX

(1 + τ
M̂
)P

M̂

PX

) 1

ρX−1

.

Since the PET model is primarily intended for energy economics analysis, it is detailed in the
energy sector,

Ē = γĒ

(
NE∑

i=1

αEi(GEiEi)
ρĒ

) 1

ρ
Ē

, (2.6)

where Ei, i = 1, NE are different energy types. Solving the cost–minimization problem

NE∑

i=1

(1 + τEi)PEiEi −→ min
Ei

given the level of production (2.6), we derive the price of the energy composite,

PĒ =
1

γĒ

(
NE∑

i=1

α
1

1−ρ
Ē

Ei

(
(1 + τEi)PEi

GEi

) ρ
Ē

ρ
Ē

−1

) ρ
Ē

−1

ρ
Ē

and the input-output ratios AEi
Ē

= Ei/Ē,

AEi
Ē

=

(
1

αEi(γĒGEi)
ρĒ

(1 + τEi)PEi
PĒ

) 1

ρ
Ē

−1

,

where τEi , i = 1, . . . , NE , are the taxes on the use of energy.

2.3. Intermediate goods demand

Production has a nested structure. Therefore, calculation of the intermediate goods demand re-
quires a recursive procedure. We derive the necessary formulae first for the one–region model and
then for the multiregion case.
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X

K L M̂

K L M̂

. . . . . . . . .

Figure 1. Nested production structure with one intermediate good.

2.3.1. One-region case

To explain the main idea, we first consider the market in which intermediate goods are aggregated
into one good, which we call materials M̂ . In this case, according to the nested production structure
shown in Fig. 1, demand for materials is given by

M̂ = AM̂XX +AM̂
M̂
(AM̂XX) +

(
AM̂
M̂

)2
(AM̂XX) + . . . ,

where the first term corresponds to the portion of materials used in production of the final good
X(K,L, M̂ ), the second term corresponds to the portions of materials used in production of mate-

rials M̂(K,L, M̂ ) one level down, etc. Calculating the sum of the geometric series, we obtain

M̂ =
(
1−AM̂

M̂

)
−1

AM̂XX (2.7)

or, equivalently,

M̂ = AM̂XX +AM̂
M̂
M̂. (2.8)

The latter means that demand for materials is equal to the amount of materials needed to produce

the final good and amount needed to produce the materials themselves. Denoting Z = M̂ , A = AM̂
M̂

and Y = AM̂XX, we write (2.7) as

Z = (1−A)−1Y. (2.9)

Next, we consider the production (2.4) with two intermediate goods, energy and materials.
In this case, the aggregate demand for materials is given by

M̂ = AM̂XX +
[
AM̂
M̂
AM̂XX +AM̂

Ê
AÊXX

]

+
[
AM̂
M̂

(
AM̂
M̂
AM̂XX +AM̂

Ê
AÊXX

)
+AM̂

Ê

(
AÊ
M̂
AM̂XX +AÊ

Ê
AÊXX

) ]
+ . . .

This formula describes the sum over layer of the nested production structure (Fig. 2). Each expres-
sion in square brackets corresponds to a particular layer. Rearrangement of the terms in square
brackets gives
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X

K L Ê M̂

K L Ê M̂ K L Ê M̂

. . . . . . . . . . . . . . . . . . . . . . . .

Figure 2. Nested production structure with energy and materials.

M̂ = AM̂XX +
[
AM̂
M̂
AM̂XX +AM̂

Ê
AÊXX

]

+
[ (
AM̂
M̂
AM̂
M̂

+AM̂
Ê
AÊ
M̂

)
AM̂XX +

(
AM̂
M̂
AM̂
Ê

+AM̂
Ê
AÊ
Ê

)
AÊXX

]
+ . . .

(2.10)

Similarly, for energy we obtain

Ê = AÊXX +
[
AÊ
M̂
AM̂XX +AÊ

Ê
AÊXX

]

+
[ (
AÊ
M̂
AM̂
M̂

+AÊ
Ê
AÊ
M̂

)
AM̂XX +

(
AÊ
M̂
AM̂
Ê

+AÊ
Ê
AÊ
Ê

)
AÊXX

]
+ . . .

(2.11)

Defining y = (AM̂XX, A
Ê
XX)T and

A =

(
AM̂
M̂

AM̂
Ê

AÊ
M̂

AÊ
Ê

)
,

we write expressions (2.10) and (2.11) as a matrix series:
(
M̂

Ê

)
= (I +A+A2 +A3 + . . .)

(
AM̂XX

AÊXX

)
,

where I is the unity 2× 2-matrix. Summing the series, we have
(
M̂

Ê

)
= (I −A)−1

(
AM̂XX

AÊXX

)
. (2.12)

Equation (2.12) can be written in the form

Z = (I −A)−1 Y, (2.13)

where

Z =

(
M̂

Ê

)
, Y =

(
AM̂XX

AÊXX

)
.

Note that equation (2.13) is the same as equation (2.9) we obtained with one intermediate
good. It is the dimensionality of this equation and form of the vectors Z and Y and matrix A that
change when we change the number of intermediate goods.
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2.3.2. Multiregion case

In this subsection we obtain the intermediate goods demand in the multiregion economy with trade.
International trade is described by the Armington model (see, e.g. [10]). It is based on the

assumption that the same goods produced in different regions are not perfect substitutes but can
be aggregated according a certain rule (usually a CES function). The Armington model enables the
representation of markets in which domestically produced goods keep a share of domestic markets
even though their price is higher than the price in other regions, and in which different exporters
co-exist even if they have different prices.

X

K L M̂

M1 . . . . . . . . . MNR

K1 L1 M̂1 . . . KNR LNR M̂NR

. . . . . . . . . . . . . . . . . . . . .

Figure 3. Nested production structure with one intermediate good for the multiregion case.

Same as in the previous subsection, first we consider the market with only one intermediate
good (Fig. 3). Then M̂

(
M1, . . . ,MNR

)
aggregates materialsM1, . . . ,MNR from NR regions (Fig. 4).

M̂

M1 M2 . . . . . . MNR

Figure 4. Armington trade structure for materials.

Similarly to the problem (2.5) and (2.4), we consider

P1M1 + . . .+ PNRMNR → min,

subject to

γ
M̂

(
NR∑

i=1

αiM
ρ
M̂

i

) 1

ρ
M̂

= M̂,
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where P1, . . . , PNR are the export prices. Then the minimum of the cost function is equal to P
M̂
M̂ ,

where

P
M̂

=
1

γ
M̂

NR∑

i=1

(
α

1

1−ρ
M̂

i P

ρ
M̂

ρ
M̂

−1

i

)
.

The cost minimizing input-output ratios are given by

bMi

M̂
=
Mi

M̂
=

(
1

αIγ
ρ
M̂

Pi
P
M̂

) 1

ρ
M̂

−1

.

Similarly to relation (2.8), we have

M̂i =

NR∑

j=1

bMij

(
A
M̂j

Xj
Xj +A

M̂j

M̂j

M̂j

)
.

Denoting B =
(
bMij

)
, AX = diag

(
AM̂i

Xi

)
and A = diag

(
AM̂i

M̂i

)
, we write

Z = (I −BA)−1BY (2.14)

where we set Z = (M̂1, . . . , M̂NR)
T , X = (X1, . . . ,XNR)

T , Y = AXX and I is the unity NR ×NR-
matrix.

X

K L Ê M̂

E1 . . . . . . . . . ENR
M1 . . . . . . . . . MNR

K1 L1 Ê1 . . . KNR
LNR ÊNR

K1 L1 M̂1 . . . KNR
LNR M̂NR

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5. Nested production structure with energy and materials in the multiregion case.

In the case of production (2.4) with two intermediate goods, energy and materials (Fig. 5), the
vector Z has the form

Z = (M̂1, Ê1, . . . , M̂NR , ÊNR)
T

and the components of equation (2.14) will have the block structure

B =
(
Bi
j

)
, Bi

j =

(
bMij 0

0 bEij

)
,
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where bEij = bEi
Ê
/ b

Ej

Ê
. Matrices AX and A will consist of the input-output ratios for materials and

energy,

AX = diag
(
AXi
)
, AXi =

(
AM̂i

Xi

AÊiXi

)
;

A = diag (Ai) , Ai =


 AM̂i

M̂i

0

0 AÊi
Êi


 .

In the PET model the energy composite is the aggregate (2.6) of NE energy types. In this case,
Z will be a vector of dimensions (NE + 1)NR (NE energy types plus materials per region). Matrix

elements bEij and A
Êi

Êi
will be diagonal matrices and AXi will have NE + 1 elements.

2.4. Market equilibrium

Aggregate supply for capital KAS and labor LAS are determined by the sums over all regions of
ntkt and ntlt, respectively. Aggregate demand for capital and labor are

KAD =

NX∑

j=1

AKXjXj +AKGPGP,

LAD =

NX∑

j=1

ALXjXj +ALGPGP,

where GP is government purchases and AKGP and ALGP are the government sector input-output
ratios of capital and labor, respectively.

An equilibrium is defined by the markets clearing conditions. That means aggregate demand is
equal to aggregate supply (in each region and each time t) for the factors of production and final
goods,

KAD = KAS ,

LAD = LAS ,

XAD = XAS .

Here XAD is equal to the sums of ntct (or ntxt) over all regions, and X
AS is the production output.

For the government sector, we require that revenues are equal to expenditures,

GREV = GEXP .

The set of the optimality conditions for consumers and producers and markets clearing con-
ditions form a system of nonlinear equations that need to be solved. This system of equations
depends on consumer quantities, i.e. capital, investment, consumption and government transfers,
on the one hand and production costs (prices) and input-output ratios on the other.

3. Parallel algorithm

Since all other quantities can be obtained explicitly if we know capital K and prices P , the system
of equations describing the general equilibrium can be written as

f(K,P ) = 0.
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The block structure of the system and parallel algorithm for solving such systems were described in
detail in our paper [2]. Here we briefly recall the main ideas before describing the implementation
of the parallel algorithm.

input : K0, P 0

output : K, P

1 marker: if diff > tol and it < numIt then

2 omp parallel default(private)
3 omp shared(dyn arrays, stor arrays)
4 omp copyin(parameters)
5 omp for
6 for t← 0 to T do

7 Calculate prices P for time moment t (inner loop);
8 Update dyn arrays;
9 end

10 omp end parallel
11 Update stor arrays;
12 it← (it + 1);
13 diff ← update (K,P );
14 end

15 goto marker

Figure 6. The OpenMP implementation.

The Fair –Taylor method [3] works as follows. Let Ks be the sth iterate of capital. To obtain
the next iterate of prices P s+1 it is necessary to solve the system

f(Ks, P ) = 0 (3.1)

with respect to P . To obtain the next iterate of capital Ks+2 it is necessary to solve the system

f(K,P s+1) = 0 (3.2)

with respect to K, and so on.

The part of the algorithm that calculates the next iterate of capital (3.2) is implemented as
the outer loop. The part that calculates the next iterate of prices (3.1) is implemented as the
inner loop. Blocks of the system (3.1) that correspond to different time-periods can be calculated
in parallel. To improve the convergence, solution of each block is broken down into two nested
loops: the NewtonA-loop for factor prices (PK and PL in NR regions) and the NewtonB-loop for
all other prices (goods prices in each region and export prices). The NewtonA-loop has a smaller
dimensions, therefore we can use the classical Newton method with backtracking as a solver. For
the NewtonB-loop we use a more advanced Krylov subspace method NITSOL (see, e.g. [6, 11]),
because it has much larger dimensions and it is called more often to calculate the Jacobian for the
NewtonA-loop.

The algorithm is described in Fig. 6. The input data of the algorithm is the initial approxima-
tions of capital K0 and prices P 0 and the output is the equilibrium capital K and prices P . The
general parameters are the tolerance tol and number of iterations numIt. Parameter T is the time
horizon of the model.

There are two types of arrays for storing and processing the economic data: dyn and stor. The
first group of arrays corresponds to data at the current time and is used by the inner loop (Fig. 6,
lines 6–9), the second is used for storing data over the iterations of the algorithm (outer loop). The
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variable it is the iteration index and diff is the target error for the outer loop. The lines 8 and 11
in Fig. 6 correspond to the implementation of economic equations and line 13 computes the error
using current iterates of capital and prices.

In the OpenMP version, the time steps of the inner loop are performed in the parallel region.
All dyn and stor arrays are shared. The arrays with parameters are distributed using copyin clause
(Fig. 6, line 4).

4. Results and discussion

For calculations we use the PET model with NR = 9 regions and time horizon T = 105 years.
The total number of production sectors is NX = 10 in each region. As inputs the PET model
uses national production and household survey data at the baseyear and long-term population and
technical change projections over the whole time period. We use three sets of input data that
correspond to socioeconomic scenarios from the Shared Socioeconomic Pathways (SSP) database
(for the implementation of SSPs in the PET model, see [8]).
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Figure 7. Speedup of the model runs for different SSPs.
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Figure 8. Timing of the outer loop iterations for the SSP3 obtained at the Lomonosov supercomputer.

We use two supercomputer systems for the model runs. The first one is the Lomonosov super-
computer [12]. We use two types of nodes at the Lomonosov: regular node with 12 cores (Intel
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Figure 9. Timing of year-blocks in the inner loop for the SSP3 obtained at the Lomonosov supercomputer.

Xeon X5670 2.93 GHz, 1 Gb/core) and a node with 128 cores (16 Gb/core) with shared memory,
the Symmetric MultiProcessing (SMP) node. The second system is the Yellowstone supercom-
puter [13]. At the Yellowstone we use regular node with 16 cores (Intel Xeon E5-2670 2.6 GHz,
4 Gb/core), up to 32 cores with hyperthreading. The model is implemented using Fortran. For
the algorithm implementation we use BLAS [14], LAPACK [15] and Fortran implementation of
NITSOL [6]. For compiling the libraries and our code we use the Intel Fortran Compiler 15 with
optimization flag -O3 and standard make-file techniques for building the project.

To study strong scalability of the parallel algorithm we need to increase the computing power
while keeping the total problem size constant. This is achieved by running the model with the
same initial approximations K0 and P0 and same set of numerical parameters (for each SSP) with
increasing number of threads. The results show that the speedup of the parallel algorithm grows
almost linearly at both supercomputers as the number of threads grows from 1 to about 12–16
(Fig. 7). Overall, we obtain the speedup of about 10 times for a regular node. With further
increase of the number of nodes the speedup slows down and saturates (Table 1). Once the number
of nodes becomes greater than the time horizon of the model each thread solves one year-block of
the inner loop an no more speed up is possible with this algorithm. From Table 1 we see that the
maximum speedup is about 22 times but using 64 nodes we already get very close to it.

Fig. 8 shows that, for the number of threads from about one to ten, there is a visible monotone
decreases in timing of the outer loop as the algorithm converges (especially after the 50th iteration).
This effect can be explained if we look at the timings of different year-blocks of the inner loop
(Fig. 9). As the number of iterations increase the algorithm stops computing the Jacobian in the
NewtonA-loop using the one from the previous iteration. The number of these “fast” year-blocks
of the inner loop is increasing from iteration to iteration. For the 100th iteration of the outer loop
the calculation times of more than 60 first year-blocks are close to zero. For the 200th the “fast”
year-blocks span almost the whole time horizon T = 105.

Table 1. Speedup of the model runs for the SSP3 at the SMP node of the Lomonosov supercomputer.

Threads 1 2 4 8 16 32 64 128

Speedup 1 1.8 3.3 7.3 11 17 21.5 22

From Fig. 8 we also see that the timings of the outer loops uniformly decrease with the number
of threads increasing. But as the number of threads increases above ten, the timings of the outer
loops level out. The reason is that the timing of the inner loop in the parallel algorithm cannot get
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smaller than the timing of the slowest year-block. From Fig. 9 we see that the number of “fast”
year-blocks is increasing as the algorithm converges but there are always some “slow” year-blocks
close to the end period T .
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Abstract: The existence of a unique strong solution for the Cauchy problem to semilinear nondegenera-
te fractional differential equation and for the generalized Showalter–Sidorov problem to semilinear fractional
differential equation with degenerate operator at the Caputo derivative in Banach spaces is proved. These results
are used for search of solution existence conditions for a class of optimal control problems to a system described
by the degenerate semilinear fractional evolution equation. Abstract results are applied to the research of an
optimal control problem solvability for the equations system of Kelvin–Voigt fractional viscoelastic fluids.
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Introduction

Let X , Y be Banach spaces, L,M : X → Y be linear operators, kerL ̸= {0}, α > 0, m ∈ N,
m − 1 < α ≤ m, r ∈ {0, 1, . . . ,m − 1}, N : (t0, T ) × X r+1 → Y. Denote by Dα

t the Caputo
fractional derivative [1]. The main purpose of the paper is to study the initial value problems
unique solvability to the fractional order differential equation

LDα
t x(t) =Mx(t) +N(t, x(t), x(1)(t), . . . , x(r)(t)), t ∈ (t0, T ), (0.1)

in the sense of the strong solutions and the solvability of optimal control problems for systems with
the state that described by (0.1). Such equations are called degenerate because of degeneracy of
the operator L at the highest derivative. The equation with left-hand side in the form DαLx is
considered also. It has different properties beginning with the definition of a solution.

The theory of fractional differentiation in the last decades is actively used in the engineering and
science problems. At first in the paper the existence of a unique solution is proved for the Cauchy
problem to the nondegenerate fractional differential equation (X = Y, L = I in (0.1)). These results
are used for research of the unique solvability for the generalized Showalter–Sidorov initial value
problem to the degenerate fractional differential equations. Applying the obtained statements
solution existence conditions are found for a class of optimal control problems to a distributed
systems described by equation (0.1) with initial conditions. Abstract results are illustrated on an
optimal control problem for the equations system of Kelvin–Voigt fractional viscoelastic fluids [2].

The main condition on the operators L, M in this paper is (L, p)-boundedness of M . It was
introduced in [3] for the investigation of the first order degenerate equations. The conditions of
the unique solution existence for the semilinear first order degenerate differential equations under
this condition were studied in [4]. The solvability in the classical sense of the linear degenerate
fractional equations with (L, p)-bounded operator M was studied in the works [5, 6] and in [7] in
the case of strongly (L, p)-sectorial operator. Initial boundary value problem for the linearized

1The work is supported by Laboratory of Quantum Topology of Chelyabinsk State University (Russian
Federation government grant 14.Z50.31.0020).
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system of Kelvin–Voigt fractional fluids was investigated in [8]. The equations of form (0.1) with
(L, p)-bounded operator M and with α = m ∈ N were investigated in [9]. The solvability in the
sense of the classical solution for another class of degenerate fractional equations (0.1) in Banach
spaces with restriction on the image of N was studied in [10]. Related problems in Banach and
locally convex spaces for degenerate and nondegenerate fractional order evolution equations were
explored by M. Kostić [11] but for other classes of operators and using mild solution and similar
notions. Note papers by A.V. Glushak [12, 13] devoted to some differential equations in Banach
spaces with the Riemann–Liouville, Euler–Poisson–Darboux and other derivatives. In contrast to
the mentioned works the results of the present paper concern the existence of a unique strong
solution for semilinear degenerate evolution fractional order equations that previously were not
investigated.

In the present paper, when studying optimal control problems for equations of form (0.1), we use
the general scheme suggested in the monograph [14, p. 16]. It was earlier applied to optimal control
problems for a degenerate distributed systems of the first order in papers [15–17]. Optimal control
problems for fractional equations are poorly understood. Most of them devoted to nondegenerate
equations [18, 19], stochastic equations [20] and others. Here a research of control problems for
semilinear degenerate evolution equations that has previously not been studied is presented.

1. Nondegenerate linear equation of fractional order

Let Z be Banach space. Introduce the Lebesgue spaces Lq(0, T ;Z) and for q ∈ (1,∞), k ∈ N
Sobolev spaces

W k
q (0, T ;Z) = {f ∈ Lq(0, T ;Z) : f (k) ∈ Lq(0, T ;Z)}.

Denote gδ(t) = Γ(δ)−1tδ−1,

Jδ
t h(t) = (gδ ∗ h)(t) =

t∫
0

gδ(t− s)h(s)ds, for δ > 0, t > 0.

Let α > 0, m be the smallest positive number not exceeding α, Dm
t is a usual derivative of the

order m ∈ N, J0
t is the identical operator,

Dα
t f(t) = Dm

t J
m−α
t

(
f(t)−

m−1∑
k=0

f (k)(0)gk+1(t)
)

is the Caputo derivative [1, p. 11].
Consider the Cauchy problem

z(k)(0) = zk, k = 0, 1, . . . ,m− 1, (1.1)

for the inhomogeneous differential equation

Dα
t z(t) = Az(t) + f(t), t ∈ (0, T ), (1.2)

where A ∈ L(Z) (linear and bounded operator from Z to Z), the function f : (0, T ) → Z is given
for T > 0.

A strong solution of the problem (1.1)–(1.2) is a function z ∈ Cm−1([0, T ];Z), such that

gm−α ∗

(
z −

m−1∑
k=0

z(k)(0)gk+1

)
∈Wm

q (0, T ;Z),
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conditions (1.1) are valid and equality (1.2) holds almost everywhere on (0, T ).
For α, β > 0 denote the Mittag–Leffler function

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
.

Theorem 1. Let A ∈ L(Z), f ∈ Lq(0, T ;Z), q ∈ (max{1, 1/α},∞). Then for any zk ∈ Z,
k = 0, 1, . . . ,m− 1, there exists a unique strong solution of the problem (1.1)–(1.2), it has the form

z(t) =

m−1∑
k=0

tkEα,k+1(At
α)zk +

t∫
0

(t− s)α−1Eα,α(A(t− s)α)f(s)ds. (1.3)

P r o o f. For k = 1, 2, . . . , m− 1, l = 1, 2, . . . , k we have

dl

dtl
tkEα,k+1(At

α) =
∞∑
n=0

Antαn+k−l

Γ(αn+ k + 1− l)
= tk−lEα,k+1−l(At

α), (1.4)

and for l = k + 1, k + 2, . . . , m− 1

dl

dtl
tkEα,k+1(At

α) =
∞∑
n=1

Antαn+k−l

Γ(αn+ k + 1− l)
= tα+k−lAEα,α+k+1−l(At

α).

So for l = 1, 2, . . . , m− 1

dl

dtl

m−1∑
k=0

tkEα,k+1(At
α)zk

∣∣∣∣
t=0

= Eα,1(At
α)zl

∣∣∣∣
t=0

= zl.

Then, using formula (1.4), we get with l = 0, 1, . . . ,m− 1

dl

dtl

∣∣∣∣
t=0

t∫
0

(t− s)α−1Eα,α(A(t− s)α)f(s)ds = 0,

therefore

Dα
t

t∫
0

(t− s)α−1Eα,α(A(t− s)α)f(s)ds =

= Dm
t

t∫
0

sm−α−1

Γ(m− α)
ds

t−s∫
0

(t− s− σ)α−1Eα,α(A(t− s− σ)α)f(σ)dσ =

= Dt

t∫
0

f(σ)dσ

∞∑
n=0

t−σ∫
0

An(t− s− σ)α(n+1)−msm−α−1

Γ(m− α)Γ(α(n+ 1)−m+ 1)
ds =

= Dt

t∫
0

f(σ)dσ

∞∑
n=0

(t− σ)αnAn

1∫
0

(1− τ)α(n+1)−mτm−α−1

Γ(m− α)Γ(α(n+ 1)−m+ 1)
dτ =

= Dt

t∫
0

f(σ)Eα,1(A(t− σ)α)dσ = A

t∫
0

(t− s)α−1Eα,α(A(t− s)α)f(s)ds+ f(t)
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almost everywhere on (0, T ).
From Hölder’s inequality it follows that

T∫
0

∥∥∥∥A
t∫

0

(t− s)α−1Eα,α(A(t− s)α)f(s)ds

∥∥∥∥q
Z
dt ≤

≤
(
q − 1

αq − 1

)q−1

Tαq
(
∥A∥L(Z)Eα,α(T

α∥A∥L(Z))
)q ∥f∥qLq(0,T ;Z)

because q > 1/α. Thus, function (1.3) is a strong solution of problem (1.1), (1.2).
If there exist strong solutions y1 and y2 of the problem (1.1)–(1.2), then their difference z =

y1− y2 is the solution of the Cauchy problem (1.1) with the initial data zk = 0, k = 0, 1, . . . ,m− 1,
for a homogeneous equation Dα

t z(t) = Az(t). Act on both sides of this equation by the operator
Jα
t and obtain

z(t) =

t∫
0

(t− s)α−1

Γ(α)
Az(s)ds, (1.5)

because [1, p. 12]

Jα
t D

α
t z = z +

m−1∑
k=0

z(k)(0)gk+1.

By definition of a strong solution we have z ∈ C([0, T ];Z) even for α ∈ (0, 1). Then

max
t∈[0,tA]

∥∥∥∥
t∫

0

(t− s)α−1

Γ(α)
Az(s)ds

∥∥∥∥
Z
≤
tαA∥A∥L(Z)

Γ(α+ 1)
∥z∥C([0,tA];Z).

Therefore, the integral operator defined by the right-hand side of equality (1.5) is a contraction
operator in the space C([0, tA];Z) if

tA <
(
Γ(α+ 1)/∥A∥L(Z)

)1/α
.

Consequently, the unique fixed point of the integral operator is the solution z ≡ 0 on [0, tA]. On
the segment [tA, t2A] repeat the reasoning. After finite number of steps the uniqueness of the zero
solution will be obtained for the homogeneous Cauchy problem on the interval (0, T ). �

2. The Cauchy problem for the semilinear equation

Let A ∈ L(Z), m ∈ N, m − 1 < α ≤ m. Operator B : (t0, T ) × Zm → Z be Caratheodory
mapping, i.e. for all z0, z1, . . . , zm−1 ∈ Z it sets measurable mapping on (t0, T ) and for almost all
t ∈ (t0, T ) it is continuous with respect to z0, z1, . . . , zm−1 ∈ Z. Consider the Cauchy problem

z(k)(t0) = zk, k = 0, 1, . . . , m− 1, (2.1)

for the semilinear equation

Dα
t z(t) = Az(t) +B(t, z(t), z(1)(t), . . . , z(m−1)(t)), t ∈ (t0, T ). (2.2)

A strong solution of the problem (2.1)–(2.2) on the interval (t0, T ) is a function z ∈ Cm−1([t0, T ];Z),
such that

gm−α ∗

(
z −

m−1∑
k=0

z(k)(t0)gk+1

)
∈Wm

q (t0, T ;Z),
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conditions (2.1) hold and almost everywhere on (t0, T ) equality (2.2) is true, (here gk+1=(t− t0)
k/k!,

k = 0, 1, . . . ,m− 1).

Lemma 1. Let A ∈ L(Z), z0, z1, . . . , zm−1 ∈ Z, B : (t0, T ) × Zm → Z be Caratheodory
mapping, for all y0, y1, . . . ym−1 ∈ Z and almost all t ∈ (t0, T ) the estimate

∥B(t, y0, y1, . . . , ym−1)∥Z ≤ a(t) + c
m−1∑
k=0

∥yk∥Z , (2.3)

be satisfied, where a ∈ Lq(t0, T ;R), c > 0. Then the function z is a strong solution of the problem
(2.1)–(2.2) if and only if z ∈ Cm−1([t0, T ];Z) and on [t0, T ] we have

z(t) =
m−1∑
k=0

(t− t0)
kEα,k+1(A(t− t0)

α)zk+

+

t∫
t0

(t− s)α−1Eα,α(A(t− s)α)B(s, z(s), z(1)(s), . . . , z(m−1)(s))ds.

(2.4)

P r o o f. Let z be a solution of the problem (2.1)–(2.2), then z ∈ Cm−1([t0, T ];Z). In view of
condition (2.3) the operator B is bounded and continuous as mapping from Wm−1

q (t0, T ;Z) (and
also from Cm−1([t0, T ];Z)) to Lq(t0, T ;Z). Arguing as in the proof of Theorem 1, we find that the
solution satisfies equation (2.4).

Let z ∈ Cm−1([t0, T ];Z) on [t0, T ] satisfies equation (2.4), then the function
B(·, z(·), . . . , z(m−1)(·)) ∈ Lq(t0, T ;Z) and by analogy with Theorem 1 we can verify that z is
a strong solution of the problem (2.1)–(2.2). �

The bar over a symbol will mean an ordered set of m elements with indexes from 0 to m − 1,
for example, z = (z0, z1, . . . , zm−1). A mapping B : (t0, T )×Zm → Z is called uniformly Lipschitz
continuous in y, if there exists l > 0, such that the inequality

∥B(t, y)−B(t, z)∥Z ≤ l

m−1∑
k=0

∥yk − zk∥Z

is true for almost all t ∈ (t0, T ) and for all y, z of Zm.

Theorem 2. Let A ∈ L(Z), B : (t0, T ) × Zm → Z be Caratheodory mapping, uniformly
Lipschitz continuous in y, q ∈ (max{1, 1/α},∞), for some v ∈ Zm B(·, v) ∈ Lq(t0, T ;Z). Then
for any z0, z1, . . . , zm−1 ∈ Z the problem (2.1)–(2.2) has a unique strong solution on (t0, T ).

P r o o f. The uniformly Lipschitz continuity implies that for any y ∈ Zm for almost all
t ∈ (t0, T ) we have

∥B(t, y)∥Z ≤ ∥B(t, v)∥Z + l

m−1∑
k=0

∥vk∥Z + l

m−1∑
k=0

∥yk∥Z ,

therefore condition (2.3) is performed with

a(t) = ∥B(t, v)∥Z + l

m−1∑
k=0

∥vk∥Z , c = l.
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According to the statement of Lemma 1 it is sufficient to show that the equation (2.4) has a
unique solution z ∈ Cm−1([t0, T ];Z). In the space Cm−1([t0, T ];Z) define an operator F as

F (y)(t) =

m−1∑
k=0

(t− t0)
kEα,k+1(A(t− t0)

α)zk+

+

t∫
t0

(t− s)α−1Eα,α(A(t− s)α)B(s, y(s), y(1)(s), . . . , y(m−1)(s)) ds.

By the proof of Theorem 1 F : Cm−1([t0, T ];Z) → Cm−1([t0, T ];Z).
We denote by F r the r-th power of the operator F , r ∈ N, and in further reasoning if T − t0 < 1

we will replace T − t0 by 1. For t ∈ [t0, T ], n = 0, 1, . . . ,m− 1, r ∈ N, y, z ∈ Cm−1([t0, T ];Z) by
induction the inequality

∥[F r(y)](n)(t)− [F r(z)](n)(t)∥Z ≤
Kr(t− t0)

α−m+r∥y − z∥Cm−1([t0,T ];Z)

m(r − 1)!
(2.5)

can be proved, where

K = ml(α−m+ 1)−1(T − t0)
α max
n=0,...,m−1

Eα,α−n((T − t0)
α∥A∥L(Z)).

For r = 1, n = 0, 1, . . . ,m− 1 Hölder’s inequality implies that

∥[F (y)](n)(t)− [F (z)](n)(t)∥Z ≤ Eα,α−n((t− t0)
α∥A∥L(Z))×

×
t∫

t0

(t− s)α−1−n∥B(s, y(s), . . . , y(m−1)(s))−B(s, z(s), . . . , z(m−1)(s))∥Zds ≤

≤ l(t− t0)
α−m+1(T − t0)

m−1−n

α−m+ 1
Eα,α−n((T − t0)

α∥A∥L(Z))∥y − z∥Cm−1([t0,T ];Z).

If for r − 1 inequality (2.5) is valid, then

∥[F r(y)](n)(t)− [F r(z)](n)(t)∥Z ≤ K

m

t∫
t0

m−1∑
k=0

∥[F r−1(y)](k)(s)− [F r−1(z)](k)(s)∥Zds ≤

≤ K

t∫
t0

Kr−1(s− t0)
α−m+r−1∥y − z∥Cm−1([t0,T ];Z)

m(r − 2)!
ds ≤

≤
Kr(t− t0)

α−m+r∥y − z∥Cm−1([t0,T ];Z)

m(α−m+ r)(r − 2)!
<
Kr(t− t0)

α−m+r∥y − z∥Cm−1([t0,T ];Z)

m(r − 1)!
.

From (2.5) it follows that for r ∈ N we have

∥[F r(y)]− [F r(z)]∥Cm−1([t0,T ];Z) ≤
Kr(T − t0)

α−m+r∥y − z∥Cm−1([t0,T ];Z)

(r − 1)!
.

Therefore, if r is sufficiently large, then F r is a strict contraction in
Cm−1([t0, T ];Z), so it has in this space a unique fixed point. It is the unique solution of the
equation (2.4) in the space Cm−1([t0, T ];Z), and, therefore, a unique strong solution of the prob-
lem (2.1)–(2.2) on the interval (t0, T ). �
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We will need solutions of the problem (2.1)–(2.2) with additional smoothness. For fractional
α > 1 conditions of their existence were found in the case of incomplete equation only (without
(m− 1)-th derivative under the sign of operator B).

Theorem 3. Let α > 1, q > (α + 1−m)−1, A ∈ L(Z), n ∈ N, B ∈ Cn([t0, T ]× Zm−1;Z) be
uniformly Lipschitz continuous in z0, z1, . . . , zm−2 ∈ Z, f ∈ Wn

q (t0, T ;Z) and let for z satisfying
conditions (2.1) and the equation

Dα
t z(t) = Az(t) +B(t, z(t), z(1)(t), . . . , z(m−2)(t)) + f(t) (2.6)

the equalities

Dk
t

∣∣∣∣
t=t0

[B(t, z(t), z(1)(t), . . . , z(m−2)(t))] = −f (k)(t0), k = 0, 1, . . . , n− 1, (2.7)

hold. Then for every z0, z1, . . . , zm−1 ∈ Z there exists a unique strong solution z of the problem (2.1),
(2.6). Besides, z ∈ Cm−1+n([t0, t1];Z).

P r o o f. For α > 1 we have m ≥ 2. Using equalities (2.7) and sequentially computing the
derivatives of the right-hand side of (2.4), we obtain for k ∈ N0

Dm+k
t

t∫
t0

(t− s)α−1Eα,α(A(t− s)α)B(s, z(s), z(1)(s), . . . , z(m−2)(s))ds =

=

t∫
t0

(t− s)α−mEα,α−m+1(A(t− s)α)Dk+1
s [B(s, z(s), . . . , z(m−2)(s)) + f(s)]ds.

�

Remark 1. The form of the integral in the solution formula (2.4) implies the existence of
singularity of a solution at t = t0 in case of fractional α, if conditions (2.7) isn’t used.

3. Degenerate semilinear equation

Let an operator L ∈ L(X ;Y) (linear and continuous from a Banach space X to a Banach space
Y), M ∈ Cl(X ;Y) (linear, closed and densely defined in X with image in Y), DM is a domain
of an operator M , endowded by the graph norm ∥ · ∥DM

= ∥ · ∥X + ∥M · ∥Y . Define L-resolvent
set ρL(M) = {µ ∈ C : (µL −M)−1 ∈ L(Y;X )} of an operator M and introduce the denotations
RL

µ(M) = (µL−M)−1L, LL
µ = L(µL−M)−1.

An operator M will be called (L, σ)-bounded, if

∃a > 0 ∀µ ∈ C (|µ| > a) ⇒ (µ ∈ ρL(M)) .

Lemma 2 [3]. Let an operator M be (L, σ)-bounded, γ = {µ ∈ C : |µ| = r > a}. Then the
operators

P =
1

2πi

∫
γ

RL
µ(M) dµ ∈ L(X ), Q =

1

2πi

∫
γ

LL
µ(M) dµ ∈ L(Y)

are projections.
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Put X 0 = kerP , X 1 = imP , Y0 = kerQ, Y1 = imQ. Denote by Lk (Mk) the restriction of the
operator L (M) on X k (DMk

= DM ∩ X k), k = 0, 1.

Theorem 4 [3]. Let an operator M be (L, σ)-bounded. Then

(i) M1 ∈ L
(
X 1;Y1

)
, M0 ∈ Cl

(
X 0;Y0

)
, Lk ∈ L

(
X k;Yk

)
, k = 0, 1;

(ii) there exist operators M−1
0 ∈ L

(
Y0;X 0

)
, L−1

1 ∈ L
(
Y1;X 1

)
.

Denote N0 = {0} ∪ N, G = M−1
0 L0. For p ∈ N0 the operator M is called (L, p)-bounded, if it

is (L, σ)-bounded, Gp ̸= O, Gp+1 = O.
For m− 1 < α ≤ m, r ∈ {0, 1, . . . ,m− 1} consider the semilinear evolution equation

Dα
t Lx(t) =Mx(t) +N(t, x(t), x(1)(t), . . . , x(r)(t)) + f(t), t ∈ (t0, T ), (3.1)

with operators L ∈ L(X ;Y), kerL ̸= {0}, M ∈ Cl(X ;Y), with a nonlinear operator N : (t0, T ) ×
X r+1 → Y and a function f : (t0, T ) → Y.

A strong solution of equation (3.1) on the interval (t0, T ) is a function x ∈ W r
q (t0, T ;X ) ∩

Lq(t0, T ;DM ), q ∈ (1,∞), such that Lx ∈ Cm−1([t0, T ];Y),

gm−α ∗

(
Lx−

m−1∑
k=0

(Lx)(k)(t0)gk+1

)
∈Wm

q (t0, T ;Y),

and almost everywhere on (t0, T ) equality (3.1) is true.
Let operator M be (L, σ)-bounded. Consider the generalized Showalter—Sidorov problem

[21,22]
(Px)(k)(t0) = xk, k = 0, 1, . . . ,m− 1, (3.2)

for equation (3.1) on the interval (t0, T ).

Remark 2. We have the equalities Px = L−1
1 L1Px = L−1

1 QLx. Therefore, the smoothness of
Px is not smaller than for the function Lx.

Denote by [β] the integer part of β ∈ R.

Theorem 5. Let α > 0, q ∈ (max{1, 1/α},∞), r = [(m− 1)/2], an operator M be (L, 0)-
bounded, an operator N : [t0, T ]×X r+1 → Y be Caratheodory mapping, the equality

N(t, z0, z1, . . . , zr) = N1(t, Pz0, P z1, . . . , P zr) (3.3)

with some N1 : [t0, T ]× (X 1)r+1 → Y be valid for all z0, z1, . . . , zr ∈ X , almost all t ∈ (t0, T ). Let
QN1 be uniformly Lipschitz continuous in v = (v0, v1, . . . , vr) ∈ (X 1)r+1, for some v ∈ (X 1)r+1,
QN1(·, v0, . . . , vr) ∈ Lq(t0, T ;Y), (I − Q)N1 ∈ Cr([t0, T ] × (X 1)r+1;Y), (I − Q)f ∈ W r

q (t0, T ;Y),
Qf ∈ Lq(t0, T ;Y). Then for any x0, x1, . . . , xm−1 ∈ X 1 the problem (3.1)–(3.2) has a unique strong
solution on the interval (t0, T ).

P r o o f. Multiply (3.1) from the left by the operators L−1
1 Q or M−1

0 (I − Q) and obtain the
problem

Dα
t v(t) = S1v(t) + L−1

1 QN1(t, v(t), v
(1)(t), . . . , v(r)(t)) + L−1

1 Qf(t),

v(k)(t0) = Pxk, k = 0, 1, . . . ,m− 1,
(3.4)

0 = w(t) +M−1
0 (I −Q)N1(t, v(t), v

(1)(t), . . . , v(r)(t)) +M−1
0 (I −Q)f(t) (3.5)
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for the pair of functions v(t) ≡ Px(t), w(t) ≡ (I − P )x(t). Here the notations S1 = L−1
1 M1,

G =M−1
0 L0 are used.

By Theorem 2 the problem (3.4) has a unique strong solution, since the operator S1 is bounded
by Theorem 4. Knowing v, obtain

w(t) = −M−1
0 (I −Q)N1(t, v(t), v

(1)(t), . . . , v(r)(t))−M−1
0 (I −Q)f(t)

from equation (3.5). Here w ∈ W r
q (t0, T ;X ) ∩ Lq(0, T ;DM ), Lw ≡ 0. Thus, there exists a unique

strong solution x = v + w of the problem (3.1)–(3.2). �

A function x ∈ Cm−1([t0, T ];X ) ∩ Lq(t0, T ;DM ), q ∈ (1,∞), is a strong solution of equation

LDα
t x(t) =Mx(t) +N(t, x(t), x(1)(t), . . . , x(r)(t)) + f(t) (3.6)

on the interval (t0, T ) if

gm−α ∗
(
x−

m−1∑
k=0

x(k)(t0)gk+1

)
∈Wm

q (t0, T ;X ),

and almost everywhere on (t0, T ) the equality (3.6) is valid.

Theorem 6. Let α > 1, q > (α + 1 − m)−1, r = 0, operator M be (L, 0)-bounded, suppose
that N : [t0, T ] × X → Y for all z ∈ X , t ∈ [t0, T ] satisfies the equality N(t, z) = N1(t, Pz)
for some mapping N1 ∈ C1([t0, T ] × X 1;Y), (I − Q)N1 ∈ Cm([t0, T ] × X 1;Y), QN1 is uniformly
Lipschitz continuous in v ∈ X 1, f ∈ W 1

q (t0, T ;Y), q > (α + 1 −m)−1, (I −Q)f ∈ Cm([t0, T ];Y),
x0, x1, . . . , xm−1 ∈ X 1, the equality QN1(t0, Px0) +Qf(t0) = 0 is valid. Then there exists a unique
strong solution of the problem (3.2), (3.6).

P r o o f. Arguing as in the proof of Theorem 5, obtain the unique solution x = v+w, where v
is an unique solution of the Cauchy problem for the equation Dα

t v(t) = S1v(t)+L
−1
1 QN1(t, v(t))+

L−1
1 Qf(t) and the function w(t) = −M−1

0 (I −Q)N1(t, v(t))−M−1
0 (I −Q)f(t). By Theorem 3 we

have v ∈ Cm([t0, T ];X ), therefore w ∈ Cm([t0, T ];X ) and there exists Dα
t x ∈ Lq(t0, T ;X ). �

The proof of the next statement for the equation of an order α > 2, with r ∈ {1, 2, . . . ,m− 2}
is similar to the previous one.

Theorem 7. Let α > 2, q > (α+1−m)−1, r ∈ {1, 2, . . . ,m−2}, operatorM be (L, 0)-bounded,
suppose that N : [t0, T ] × X r+1 → Y for all z0, z1, . . . zr ∈ X , t ∈ [t0, T ] satisfies condition (3.3)
with some N1 ∈ Cr+1([t0, T ] × (X 1)r+1;Y); a mapping QN1 is uniformly Lipschitz continuous in
v ∈ X r+1, (I − Q)N1 ∈ Cm([t0, T ] × (X 1)r+1;Y), f ∈ W r+1

q (t0, T ;Y), (I − Q)f ∈ Cm([t0, T ];Y),
x0, . . . , xm−1 ∈ X 1; when k = 0, 1, . . . ,m− 1 for the solution of problem

Dα
t v(t) = S1v(t) + L−1

1 QN1(t, v(t), v
(1)(t), . . . , v(r)(t)) + L−1

1 Qf(t),

v(l)(t0) = Pxl, l = 0, 1, . . . ,m− 1,
(3.7)

conditions

Dk
t

∣∣∣∣
t=t0

Q(N1(t, v(t), v
(1)(t), . . . , v(r)(t)) + f(t)) = 0, k = 0, 1, . . . , r, (3.8)

hold. Then problem (3.2), (3.6) has a unique strong solution on the interval (t0, T ).

P r o o f. The proof is similar to the previous one. Here we have v ∈ Cm+r([t0, T ];X ) by
Theorem 3. �
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4. Optimal control problem

Now let X , Y, U be Banach spaces, L ∈ L(X ;Y), kerL ̸= {0}, B ∈ L(U ;Y), M ∈ Cl(X ;Y) is
(L, p)-bounded operator, N : [t0, T ]×X → Y. Consider the control problem

LDα
t x(t) =Mx(t) +N(t, x(t)) +Bu(t), (4.1)

(Px)(k)(t0) = xk, k = 0, 1, . . . ,m− 1, (4.2)

u ∈ U∂ , (4.3)

J(x, u) → inf, (4.4)

where U∂ is a set of admissible controls, the cost functional J will be described below.
Taking into account the form of equation (4.1), we will seek its strong solutions in the linear

space

Zα,q =

{
x ∈ Lq(t0, T ;DM ) ∩ Cm−1([t0, T ];X ) : gm−α ∗

(
x−

m−1∑
k=0

x(k)(t0)gk+1

)
∈Wm

q (t0, T ;X )

}
.

Lemma 3. For q ∈ (max{1, 1/α},∞) Zα,q is a Banach space with the norm

∥x∥Z = ∥x∥Lq(t0,T ;DM ) + ∥x∥Cm−1([t0,T ];X ) + ∥Dα
t x∥Lq(t0,T ;X ).

P r o o f. Prove the closedness of the operator Dα
t : Lq(t0, T ;DM ) ∩ Cm−1([t0, T ];Z) →

Lq(t0, T ;Z) with the domain Zα,q. By definition of the Caputo fractional derivativeDα
t = RLDα

t Sm,
where RLDα

t is the Riemann—Liouville fractional derivative [1], we have

Smz ≡ z −
m−1∑
k=0

z(k)(t0)gk+1.

It is evident that the operator Sm acts continuously from Zα,q with the norm of Cm−1([t0, T ];Z)
into the space

Rα,q,0 ≡ {z ∈ Lq(t0, T ;Z) : gm−α ∗ z ∈Wm
q,0(t0, T ;Z)},

endowed with the norm of Lq(t0, T ;Z). And the operator RLDα
t : Rα,q,0 → Lq(t0, T ;Z) is closed

by Lemma 1.8 (a) [1, p. 15]. �

Introduce the continuous operator γ0 : C([t0, T ];X ) → X , γ0x = x(t0).
The set of pairs (x, u) will be called as admissible pairs set W of the problem (4.1)–(4.4) if

u ∈ U∂ , x ∈ Zα,q is a strong solution of (4.1), (4.2), J(x, u) <∞. Problem (4.1)–(4.4) is the problem
of finding pairs (x̂, û) ∈ W, which minimize the cost functional, i. e. J(x̂, û) = inf

(x,u)∈W
J(x, u).

Theorem 8. Let α > 1, q > (α + 1 −m)−1, an operator M be (L, 0)-bounded, N : (t0, T ) ×
X → Y, for all z ∈ X , t ∈ (t0, T ) N(t, z) = N1(t, Pz) for some N1 ∈ C1([t0, T ] × X 1;Y), QN1

be uniformly Lipschitz continuous in x ∈ X 1, (I − Q)N1 ∈ Cm([t0, T ] × X 1;Y). Suppose that
U∂ is a non-empty closed convex subset of Lq(t0, T ;U), there exists u0 ∈ U∂ ∩W 1

q (t0, T ;U) such
that (I − Q)Bu0 ∈ Cm([t0, T ];U), QBu0(t0) = −QN1(t0, Px0); Zα,q is continuously embedded in
Banach space Y, Y is continuously embedded in Lq(t0, T ;X ), cost functional J is convex, lower
semicontinuous, and bounded from below on Y×Lq(t0, T ;U), and J is coercive on Zα,q×Lq(t0, T ;U),
xk ∈ X 1, k = 0, 1, . . . ,m− 1. Then there exists a solution (x̂, û) ∈ Zα,q × U∂ of the problem (4.1)–
(4.4).
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P r o o f. The operatorN and the function f = Bu0 satisfy the conditions of Theorem 6. Hence,
Theorem 6 implies the existence of a strong solution of problem (4.1), (4.2) with u = u0 ∈ U∂ . So,
the set of admissible pairs W is nonempty.

Further we will use Theorem 1.2.4 [14]. Put Y1 = Zα,q, U = Lq(t0, T ;U), V = Lq(t0, T ;Y) ×
Xm, F(x(·)) = −(N(·, x(·)), x0, x1, . . . , xm−1), L(x, u) = (LDα

t x−Mx−Bu, γ0Px, . . . , γ0Px(m−1)).
The continuity of the linear operator L : Y1 × U → V follows from the inequalities

∥(LDα
t x−Mx−Bu, γ0Px, γ0Px

(1), . . . , γ0Px
(m−1))∥Lq(t0,T ;Y)×Xm ≤

≤ C1

(
∥x∥Zα,q + ∥u∥Lq(t0,T ;U) + ∥x∥Cm−1([t0,T ];X )

)
≤ C2∥(x, u)∥Zα,q×U .

From the relation ∥xn − x∥Zα,q → 0 for n→ ∞ it follows that

∥N(·, xn(·))−N(·, x(·))∥Lq(t0,T ;Y) ≤ C1∥xn − x∥C([t0,T ];X ) → 0,

therefore the operator F is continuous.
After choosing Y−1 = Lq(t0, T ;X ), check the remaining conditions of Theorem 1.2.4 [14].

From Rellich—Kondrashov theorem it follows that Zα,q enclosed toWm−1
q (t0, T ;X ) and compactly

enclosed to Lq(t0, T ;X ). For v ∈ (Lq(t0, T ;Y))∗ the uniform Lipschitz continuity of the operator
N implies the inequality

|v(N(t, xn(t))−N(t, x(·))| ≤ C1∥v∥(Lq(t0,T ;Y))∗∥xn − x∥Lq(t0,T ;X ).

It gives the continuous extension of the functional f(·) = v(F(·)) from Zα,q to Lq(t0, T ;X ). �

In applications the condition of the uniform Lipschitz continuity of N is too strong. But the
nonemptyness of W is often evident. Consider the optimal control problem in such case.

A mapping N ∈ C([t0, T ]×X ;Y) will be called locally Lipschitz continuous in x ∈ X , uniformly
with respect to t ∈ [t0, T ], if for every x ∈ X there exists δ > 0 and l > 0 such that for every y ∈ Y
the inequality ∥y − x∥X < δ implies that ∥N(t, y)−N(t, x)∥Y ≤ l∥y − x∥X for all t ∈ [t0, T ].

Theorem 9. Let α, q > 1, an operatorM be (L, p)-bounded, the mapping N ∈ C([t0, T ]×X ;Y)
be locally Lipschitz continuous in z ∈ X , uniformly with respect to t ∈ [t0, T ]. Suppose that xk ∈ X 1,
k = 0, 1, . . . ,m− 1, U∂ is a non-empty closed convex subset of Lq(t0, T ;U), for some u0 ∈ U∂ there
exists a solution of the problem (4.1)–(4.2); Zα,q is continuously embedded in Banach space Y, Y
is continuously embedded in Lq(t0, T ;X ), cost functional J is convex, lower semicontinuous, and
bounded from below on Y×Lq(t0, T ;U), and J is coercive on Zα,q ×Lq(t0, T ;U). Then there exists
a solution (x̂, û) ∈ Zα,q × U∂ of the problem (4.1)–(4.4).

P r o o f. The set W is non-empty by the conditions of the theorem. The conditions on the
mapping N are sufficient for repeating the previous proof. �

5. Optimal control for fractional Kelvin—Voigt fluid

Consider a control problem

(1− χ∆)Dα
t v(s, t) = ν∆v(s, t)− (v · ∇)v(s, t)− r(s, t) + u(s, t), (s, t) ∈ Ω× [0, T ], (5.1)

∇ · v(s, t) = 0, (s, t) ∈ Ω× [0, T ], (5.2)

v(s, t) = 0, (s, t) ∈ ∂Ω× [0, T ], (5.3)
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∂kv

∂tk
(s, 0) = ψk(s), k = 0, 1, . . . ,m− 1, s ∈ Ω, (5.4)

∥u∥Lq(0,T ;L2) ≤ R, (5.5)

J(v, r, u) = ∥v − vd∥Cm−1([0,T ];H2
σ)

+ ∥r − rd∥Cm−1([0,T ];Hπ)+

+∥Dα
t v −Dα

t vd∥
q
Lq(0,T ;H2

σ)
+ ∥Dα

t r −Dα
t rd∥

q
Lq(0,T ;Hπ)

+ ∥u− ud∥qLq(0,T ;L2)
→ inf . (5.6)

Here, Ω ⊂ R3 is a domain with a smooth boundary ∂Ω, χ, ν ∈ R, T > 0. The vector-functions
ψk = (ψk1, ψk2, ψk3) : Ω → R3, k = 0, 1, . . . ,m− 1, are set. Vector-functions v = (v1, v2, v3) of the
velocity and r = (r1, r2, r3) = (ps1 , ps2 , ps3) of the pressure p gradient are unknown. An external
source u = (u1, u2, u3) : Ω× [0, T ] → R3 is a control function. The system models the dynamics of
a fractional viscoelastic incompressible Kelvin — Voigt fluid [2].

To reduce the optimal control problem (5.1)–(5.6) to problem (4.1)–(4.4), denote the Lebesgue
space L2 = (L2(Ω))

3, and the Sobolev spaces H1 = (W 1
2 (Ω))

3, H2 = (W 2
2 (Ω))

3 of vector-functions
w = (w1, w2, w3), defined in Ω. A closure of the lineal L = {w ∈ (C∞

0 (Ω))3 : ∇ · w = 0} by the
norm in L2 is denoted by Hσ; H1

σ is its closure by the norm in H1. Also, we use H2
σ = H1

σ ∩ H2.
An orthogonal complement to Hσ in L2 is denoted by Hπ. The corresponding orthoprojectors are
Σ : L2 → Hσ, Π = I − Σ : L2 → Hπ.

Consider an operator A = Σ∆ in L. The operator A, extended to a closed operator in Hσ, with
a domain H2

σ, is known (see [23]) to have a real, negative discrete spectrum of finite multiplicity,
condensing at −∞ only. Its eigenvalues are denoted by {λk}, numbered in non-increasing, counting
their multiplicities. The orthonormal system of corresponding eigenfunctions {φk} is known to form
a basis in Hσ.

Choose spaces and operators as

X = H2
σ ×Hπ, Y = L2 = Hσ ×Hπ, U = L2, (5.7)

L =

(
I − χA O
−χΠ∆ O

)
, M =

(
νA O
νΠ∆ −I

)
∈ L(X ;Y). (5.8)

Lemma 4. Let spaces X and Y be defined in (5.7), and operators L and M be defined in (5.8),
ν, χ ̸= 0, χ−1 ̸∈ σ(A). Then M is (L, 0)-bounded operator, and

P =

(
I O

νΠ∆(I − χA)−1 O

)
, Q =

(
I O

−χΠ∆(I − χA)−1 O

)
. (5.9)

Denote

Ψ(s, t) = ψ0(s) + ψ1(s)t+ · · ·+ ψm−1(s)
tm−1

(m− 1)!
.

Theorem 10. Let ν, χ ̸= 0, χ−1 ̸∈ σ(A), α, q > 1, ψk ∈ H2
σ, k = 0, 1, . . . ,m− 1, the inequality

∥(1− χ∆)Dα
t Ψ− ν∆Ψ+ (Ψ · ∇)Ψ∥Lq(0,T ;L2) ≤ R

is true. Then there exists a solution of the problem (5.1)–(5.6).

P r o o f. From the form of the projector P it follows that (5.4) are Showalter — Sidorov
conditions. Besides, there exists a control

u0 = (1− χ∆)Dα
t Ψ− ν∆Ψ+ (Ψ · ∇)Ψ ∈ U∂ = {u ∈ Lq(0, T ;L2) : ∥u∥Lq(0,T ;L2) ≤ R},

such that (Ψ, 0) (r = 0) is a strong solution of the problem (5.1)–(5.4) with u = u0, i. e.
(Ψ, 0, u0) ∈ W.
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Define N(v) = −(v · ∇)v, hence, by Sobolev’s embedding theorem

∥N(v)∥2L2
≤ C1∥v∥4W1

4
≤ C2∥v∥4H2 ,

where W1
4 = (W 1

4 (Ω))
3. Besides, N doesn’t depend on r and is locally Lipschitzian mapping.

Choose Y = {(v, r) ∈ Cm−1([0, T ];X ) : (Dα
t v,D

α
t r) ∈ Lq(0, T ;X )} with the norm

∥x∥Y = ∥x∥Cm−1([t0,T ];X ) + ∥Dα
t x∥Lq(t0,T ;X ), x = (v, r).

The completeness of Y can be shown as in the proof of Lemma 4. The functional J is coercive on
Zα,q because of the estimate

∥Mx∥Lq(0,T ;L2) ≤ C1∥Dα
t v∥Lq(0,T ;H2

σ)
+ ∥u∥Lq(0,T ;L2) + max

∥v∥H2
σ
≤1

∥N(v)∥L2 .

The required statement follows from Theorem 9. �
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REGULARIZATION OF PONTRYAGIN MAXIMUM
PRINCIPLE IN OPTIMAL CONTROL

OF DISTRIBUTED SYSTEMS1
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Nizhnii Novgorod State University,
Nizhnii Novgorod, Russia, m.sumin@mail.ru

Abstract: This article is devoted to studying dual regularization method applied to parametric convex
optimal control problem of controlled third boundary-value problem for parabolic equation with boundary
control and with equality and inequality pointwise state constraints. This dual regularization method yields
the corresponding necessary and sufficient conditions for minimizing sequences, namely, the stable, with respect
to perturbation of input data, sequential or, in other words, regularized Lagrange principle in nondifferential
form and Pontryagin maximum principle for the original problem. Regardless of the fact that the stability or
instability of the original optimal control problem, they stably generate a minimizing approximate solutions
in the sense of J. Warga for it. For this reason, we can interpret these regularized Lagrange principle and
Pontryagin maximum principle as tools for direct solving unstable optimal control problems and reducing to
them unstable inverse problems.

Key words: Optimal boundary control, Parabolic equation, Minimizing sequence, Dual regularization,
Stability, Lagrange principle, Pontryagin maximum principle

Introduction

Pontryagin maximum principle is the central result of all optimal control theory, including
optimal control for differential equations with partial derivatives. Its statement and proof assume,
first of all, that the optimal control problem is considered in an ideal situation, when its input
data are known exactly. However, in the vast number of important practical problems of optimal
control, as well as numerous problems reducing to optimal control problems, the requirement of
exact defining input data is very unnatural, and in many undoubtedly interest cases is simply
impracticable. In similar problems, we can not, strictly speaking, take as an approximation to the
solution of the initial (unperturbed) problem with the exact input data, a control formally satisfying
the maximum principle in the perturbed problem. The reason of such situation lies in the natural
instability of optimization problems with respect to perturbation of its input data. As a typical
property of optimization problems in general, including constrained ones, instability fully manifests
itself in optimal control problems (see., e.g., [10]). As a consequence, the above mentioned instability
implies “instability” of the classical optimality conditions, including the conditions in the form of
Pontryagin maximum principle. This instability manifests itself in selecting arbitrarily distant
“perturbed” optimal elements from their unperturbed counterparts in the case of an arbitrarily
small perturbations of the input data. The above applies, in full measure, both to discussed below
optimal control problem with pointwise state constraints for linear parabolic equation in divergent
form, and to the classical optimality conditions in the form of the Lagrange principle and the
Pontryagin maximum principle for this problem.

1This work was supported by the Russian Foundation for Basic Research (project no. 15–47–02294–
r−povolzh’e− − a), by the Ministry of Education and Science of the Russian Federation within the framework
of project part of state tasks in 2014–2016 (code no. 1727) and by the grant within the agreement of August
27, 2013 No. 02.B.49.21.0003 between the Ministry of Education and Science of the Russian Federation and
Lobachevskii State University of Nizhnii Novgorod.
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In this paper we discuss how to overcome the problem of instability of the classical optimality
conditions in optimal control problems applying dual regularization method (see., e.g., [11–13]) and
simultaneous transition to the concept of minimizing sequence of admissible elements as the main
concept of optimization theory. The latter role acts the concept of the minimizing approximate
solution in the sense of J. Warga [23]. The main attention in the paper is given to the discus-
sion of the so–called regularized or, in other words, stable, with respect to perturbation of input
data, sequential Lagrange principle in the nondifferential form and Pontryagin maximum princi-
ple. Regardless of the stability or instability of the original optimal control problem, they stably
generate minimizing approximate solutions for it. For this reason, we can interpret the regularized
Lagrange principle and Pontryagin maximum principle that are obtained in the article as tools
for direct solving unstable optimal control problems and reducing to them unstable inverse prob-
lems [10,14–16]. Thus, they contribute to a significant expansion of the range of applicability of the
theory of optimal control in which a central role belongs to classic constructions of the Lagrange
and Hamilton–Pontryagin functions. Finally, we note that discussed in this paper regularized La-
grange principle in the nondifferential form and Pontryagin maximum principle may have another
kind, more convenient for applications [4,9,15]. Justification of these alternative forms of the regu-
larized Lagrange principle and Pontryagin maximum principle is based on the so-called method of
iterative dual regularization [11,12]. In this case, they take the form of iterative processes with the
corresponding stopping rules when the error of input data is fixed and finite. Here these alternative
forms are not considered.

1. Statement of optimal control problem

We consider the fixed-time parametric optimal control problem

gδ0(π) → min, π ≡ (u,w) ∈ D ⊂ L2(QT )× L2(ST ), (P δ
p,r)

gδ1(π)(x, t) ≡ φδ
1(x, t)z

δ[π](x, t) = hδ(x, t) + p(x, t) for a.e. (x, t) ∈ Q,

gδ2(π)(x, t) ≡ φδ
2(x, t, z

δ[π](x, t)) ≤ r(x, t) for a.e. (x, t) ∈ Q

with equality and inequality pointwise state constraints understood as ones in the Hilbert space
H ≡ L2(Q);

D ≡ {u∈L2(QT ) : u(x, t)∈U for a.e. (x, t)∈QT }×{w∈L2(ST ) : w(x, t)∈W for a.e. (x, t)∈ST };

U, W ⊂ R1 are convex compact sets. In this problem, p ∈ H and r ∈ H are parameters; gδ0 :
L2(QT ) × L2(ST ) is a continuous convex functional, Q ⊂ Qι,T is a compact set without isolated

points with a nonempty interior, ι ∈ (0, T ), Q = cl intQ; and zδ[π] ∈ V 1,0
2 (QT ) ∩ C(QT ) is a weak

solution [6] to the third boundary-value problem2

zt −
∂

∂xi
(ai,j(x, t)zxj ) + aδ(x, t)z + u(x, t) = 0, (1.1)

z(x, 0) = v0(x), x ∈ Ω,
∂z

∂N
+ σδ(x, t)z = w(x, t), (x, t) ∈ ST .

The superscript δ in the input data of Problem (P δ
p,r) indicates that these data are exact (δ = 0) or

perturbed (δ > 0), i.e., they are specified with an error, δ ∈ [0, δ0], where δ0 > 0 is a fixed number.

2Here and below, we use the notations for the sets QT , ST , Qi,T and also for functional spaces and norms
of their elements adopted in monograph [6].
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For definiteness, as a target functional we take the terminal one

gδ0(π) ≡
∫
Ω
Gδ(x, zδ[π](x, T ))dx.

The input data for Problem (P 0
p,r) are assumed to meet the following conditions:

a) It is true that ai,j ∈ L∞(QT ), i, j = 1, . . . , n, aδ ∈ L∞(QT ), σ
δ ∈ L∞(ST ), v

δ
0 ∈ C(Ω),

ν|ξ|2 ≤ ai,j(x, t)ξiξj ≤ µ|ξ|2 ∀(x, t) ∈ QT , ν, µ > 0,

aδ(x, t) ≥ C0 for a.e. (x, t) ∈ QT , σδ(x, t) ≥ C0 for a.e. (x, t) ∈ ST ;

b) It is true that ϕδ1, h
δ ∈ L∞(Q); ϕδ2 : Q × R1 → R1 is Lebesgue measurable function that

is continuous and convex with respect to z for a.e. (x, t) ∈ Q, φδ
2(·, ·, z(·, ·)) ∈ L∞(Q)

∀z ∈ C(Q); Gδ : Ω × R1 → R1 is Lebesgue measurable function that is continuous and
convex with respect to z for a.e. x ∈ Ω, Gδ(·, z(·, T )) ∈ L∞(Ω) ∀z(·, T ) ∈ C(Q);

c) Ω ⊂ Rn be a bounded domain with piece–wise smooth boundary S.

Assume that the following estimates hold:

|Gδ(x, z)−G0(x, z)| ≤ CMδ ∀ (x, z) ∈ Ω× S1
M ,

∥φδ
1 − φ0

1∥∞,Q ≤ Cδ, ∥hδ − h0∥∞,Q ≤ Cδ,

|φδ
2(x, t, z)− φ0

2(x, t, z)| ≤ CMδ ∀ (x, t, z) ∈ Q× S1
M ,

∥aδ − a0∥∞,QT
≤ Cδ, |vδ0 − v00|

(0)

Ω
≤ Cδ, ∥σδ − σ0∥∞,ST

≤ Cδ,

(1.2)

where C, CM > 0 are independent of δ; Sn
M ≡ {x ∈ Rn : |x| < M}. Let’s note, that the conditions

on the input data of Problem (P δ
p,r), and also the estimates of deviations of the perturbed input

data from the exact ones can be weakened.

2. Basic concepts and auxiliary propositions

In this paper we use for discussing the main results, related to the stable sequential Lagrange
principle and Pontryagin maximum principle in Problem (P 0

p,r), a scheme of studying the similar
optimization problems in the papers [17,19] for a system of controlled ordinary differential equations
(see also [20,21] for the case of distributed systems). In these works, both spaces of admissible con-
trols and spaces, containing lie images of the operators that define the pointwise state constraints,
were presented as Hilbert spaces of square-integrable functions. For this reason, we put the set D
of admissible controls π into a Hilbert space also, i.e., assume that

D ⊂ Z ≡ L2(QT )× L2(ST ), ∥π∥ ≡ (∥u∥22,QT
+ ∥w∥22,ST

)1/2.

At the same time, we note that the conditions on the input data of Problem (P δ
p,r) allow formally

to consider that the operators gδ1, g
δ
2, specifying the state constraints of the problem, act into space

Lp(Q) with any index p ∈ [1,+∞]. However, in this paper, taking into account the above remark,
we will put images of these functional operators in the Hilbert space L2(Q) ≡ H. We note here that
the imbedding the images of the operators gδ1, g

δ
2, specifying the state constraints, into reflexive

space Lp(Q) with 1 < p < 2, in general, permits significantly to weaken the conditions on the input
data and to get, strictly speaking, a stronger result in Problem (P 0

p,r).
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If Problem (P 0
p,r ) is solvable (it has a unique solution if g00 is strictly (strongly) convex), then

its solutions are denoted by π0p,r ≡ (u0p,r, w
0
p,r), and the set of all such solutions is designated as U0

p,r.
Define the Lagrange functional, a set of its minimizers and the concave dual problem

Lδ
p,r(π, λ, µ) ≡ gδ0(π) + ⟨λ, gδ1(π)− hδ − p⟩+ ⟨µ, gδ2(π)− r⟩, π ∈ D,

U δ[λ, µ] ≡ Argmin {Lδ
p,r(π, λ, µ) : π ∈ D} ∀(λ, µ) ∈ H ×H+,

H+ ≡ {z ∈ H : z(x, t) ≥ 0 for a.e. (x, t) ∈ Q},

V δ
p,r(λ, µ) → sup, (λ, µ) ∈ H ×H+, V δ

p,r(λ, µ) ≡ inf
π∈D

Lδ
p,r(π, λ, µ).

Since the Lagrange functional is continuous and convex for any pair (λ, µ) ∈ H ×H+, and the set
D is bounded, the dual functional V δ

p,r, is obviously defined and finite for any (λ, µ) ∈ H ×H+.
The concept of a minimizing approximate solution in the sense of J. Warga [23] is of great

importance for the design of a dual regularizing algorithm for Problem (P 0
p,r). Recall that a mini-

mizing approximate solution is a sequence πi ≡ (ui, wi), i = 1, 2, . . . such that g00(π
i) ≤ β(p, r)+δi,

πi ∈ D0,ϵi
p,r for some nonnegative number sequences δi and ϵi, i = 1, 2, . . . , that converge to zero.

Here, β(p, r) is the generalized infimum, i.e., S-function:

β(p, r) ≡ lim
ϵ→+0

βϵ(p, r), βϵ(p, r) ≡ inf
π∈D0,ϵ

p,r

g00(π), βϵ(p, r) ≡ +∞ if D0,ϵ
p,r = ∅,

Dδ,ϵ
p,r ≡ {π ∈ D : ∥gδ1(π)− hδ − p∥2,Q ≤ ϵ, min

z∈H−
∥gδ2(π)− r − z∥2,Q ≤ ϵ}, ϵ ≥ 0,

D00
p,r ≡ D0

p,r, H− ≡ {z ∈ H : z(x, t) ≤ 0 for a.e. (x, t) ∈ Q}, H+ ≡ −H−.

Obviously, in the general situation, β(p, r) ≤ β0(p, r), where β0(p, r) is the classical value of the
problem. However, in the case of Problem (P 0

p,r), we have β(p, r) = β0(p, r). Simultaneously, we
may asset that β : H × H → R1 ∪ {+∞} is a convex and lower semicontinuous function. Note
here that the existence of a minimizing approximate solution in Problem (P 0

p,r) obviously implies
its solvability.

From the conditions a) – c) and from the theorem on the existence of a weak solution of the third
boundary-value problem for a linear parabolic equation of the divergent type [6, ch. III, section 5]
(see also [5, 7]), it follows that the direct boundary-value problem (1.1) and the corresponding
adjoint problem are uniquely solvable in V 1,0

2 (QT ).

Proposition 1. For any pair (u,w) ∈ L2(QT )×L2(ST ) and for any T > 0 the direct boundary-
value problem (1.1) is uniquely solvable in V 1,0

2 (QT ) and we have the estimate

|zδ[π]|QT
+ ∥zδ[π]∥2,ST

≤ CT (∥u∥2,QT
+ ∥v0∥2,Ω + ∥w∥2,ST

)

where the constant CT is independent of δ ≥ 0 and pair π ≡ (u,w) ∈ L2(QT ) × L2(ST ). Also the
adjoint problem

−ηt −
∂

∂xj
ai,j(x, t)ηxi + aδ(x, t)η = χ(x, t),

η(x, T ) = ψ(x), x ∈ Ω,
∂η

∂N
+ σδ(x, t)η = ω(x, t), (x, t) ∈ ST

is uniquely solvable in V 1,0
2 (QT ) for any χ ∈ L2(QT ), ψ ∈ L2(Ω), ω ∈ L2(ST ) and any T > 0. Its

solution is denoted as η[χ, ψ, ω]. Simultaneously, the estimate

|ηδ[χ, ψ, ω]|QT
+ ∥ηδ[χ, ψ, ω]∥2,ST

≤ C1
T (∥χ∥2,QT

+ ∥ψ∥2,Ω + ∥ω∥2,ST
),

is true where the constant C1
T is independent of δ ≥ 0 and a triple (χ, ψ, ω).
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Simultaneously, from conditions a) – c) and the theorems on the existence of a weak (general-
ized) solution of the third boundary-value problem for a linear parabolic equation of the divergent
type (see, e.g., [3, 8]), it follows that the direct boundary-value problem is uniquely solvable in
V 1,0
2 (QT ) ∩ C(QT ).

Proposition 2. Let us l > n + 1. For any pair (u,w) ∈ Ll(QT ) × Ll(ST ) and any T > 0,
δ ∈ [0, δ0] the direct boundary-value problem (1.1) is uniquely solvable in V 1,0

2 (QT ) ∩ C(QT ) and
the estimate

|zδ[π]|(0)
QT

≤ CT (∥u∥l,QT
+ |v0|(0)Ω

+ ∥w∥l,ST
),

is true where the constant CT is independent of pair π ≡ (u,w) and δ.

Further, the minimization problem for Lagrange functional

Lδ
p,r(π, λ, µ) → min, π ∈ D, when (λ, µ) ∈ H ×H+ (2.1)

plays the central role in all subsequent constructions. It is usual problem without equality and
inequality constraints. It is solvable as a minimization problem for weakly semicontinuous func-
tional on the weak compact set D ⊂ L2(QT ) × L2(ST ). Here, the weak semicontinuity is a conse-
quence of the convexity and continuity with respect to π of the Lagrange functional. Minimizers
πδ[λ, µ] ∈ U δ[λ, µ] for this optimal control problem satisfy the Pontryagin maximum principle un-
der supplementary assumption of the existence of Lebesgue measurable with respect to (x, t) ∈ Q
for all z ∈ R1 and continuous with respect to z for a.e. x, t gradients ∇zφ

δ
2(x, t, z), ∇zG

δ(x, z) with
the estimates

|∇zφ
δ
2(x, t, z)| ≤ CM , |∇zG

δ(x, z)| ≤ CM , ∀z ∈ S1
M ,

where CM > 0 is independent of δ. The following lemma is true due to the estimates of the
propositions 1, 2 and to the so called two-parameter variation [22] of the pair πδ[λ, µ] that is
needle-shaped with respect to control u and classical with respect to control w.

Lemma 1. Let H(y, η) ≡ −ηy and the additional condition that specified above is fulfilled.
Any pair πδ[λ, µ] = (uδ[λ, µ], wδ[λ, µ]) ∈ U δ[λ, µ], (λ, µ) ∈ H×H+ satisfies the (usual) Pontryagin
maximum principle in the problem (2.1): for π = πδ[λ, µ] the following maximum relations

H(u(x, t), ηδ(x, t)) = max
u∈U

H(u, ηδ(x, t)) for a.e. QT , (2.2)

H(w(s, t), ηδ(s, t)) = max
w∈W

H(w, ηδ(s, t)) for a.e. ST

hold, where ηδ(x, t), (x, t) ∈ QT is a solution for π = πδ[λ, µ] of the adjoint problem

−ηt −
∂

∂xj
(ai,j(x, t)ηxi) + aδ(x, t)η = φδ

1(x, t)λ(x, t) +∇zφ
δ
2(x, t, z

δ[π](x, t))µ(x, t), (x, t) ∈ QT ,

η(x, T ) = ∇zG
δ(x, zδ[π](x, T )), x ∈ Ω,

∂η(x, t)

∂N
+ σδ(x, t)η = 0, (x, t) ∈ ST .

Remark 1. Note that here and below, if the functions φδ
1, ∇zφ

δ
2(·, ·, z(·, ·)), λ, µ ∈ H are

considered on the entire cylinder QT , we set that the equalities φδ
1(x, t) =∇zφ

δ
2(x, t, z(x, t)) =

λ(x, t) = µ(x, t) = 0 take place for (x, t) ∈ QT \Q; the same notation is preserved if these functions
are taken on the entire cylinder.

An important result for the subsequent presentation is the following lemma, which is a conse-
quence of the classical asymmetric minimax theorem [2, Chapter 6, Section 2, Theorem 7].
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Lemma 2. The minimax equality

inf
π∈D

sup
(λ,µ)∈H×H+

L0
p,r(π, λ, µ) = sup

(λ,µ)∈H×H+

inf
π∈D

L0
p,r(π, λ, µ),

is true. It can be rewritten as the duality relation

g00(π
0
p,r) = sup

(λ,µ)∈H×H+

V 0
p,r(λ, µ). (2.3)

In the next section we construct minimizing approximate solutions for Problem (P 0
p,r) from the

elements πδ[λ, µ], (λ, µ) ∈ H)×H+. As consequence, this construction leads us to various versions
of the stable sequential Lagrange principle and Pontragin maximum principle. In the case of strong
convexity and subdifferentiability of the target functional g00, these versions are statements about
stable approximations of the solutions of Problem (P 0

p,r) in the metric of Z ≡ L2(QT )×L2(ST ) by

the points πδ[λ, µ]. Due to the estimates (1.2) and the propositions 1, 2 we may assert that the
estimates

|gδ0(π)− g00(π)| ≤ C1δ ∀π ∈ D, ∥gδ1(π)− g01(π)∥2,Q ≤ C2δ(1 + ∥π∥) ∀π ∈ Z, (2.4)

∥hδ − h0∥2,Q ≤ Cδ, ∥gδ2(π)− g02(π)∥2,Q ≤ C3δ ∀π ∈ D,

hold, in which the constants C1, C2, C3 > 0 are independent of δ ∈ (0, δ0], π.
Since the set D is bounded, the dual functional is obviously defined and finite for any element

(λ, µ) ∈ H×H. Moreover, it is also obvious that the value V δ
p,r(λ, µ) is reached at elements πδ[λ, µ]

of the set U δ[λ, µ] ≡ Argmin {Lδ
p,r(π, λ, µ), π ∈ D} for (λ, µ) ∈ H ×H+,

H+ ≡ {z ∈ H : z(x, t) ≥ 0 for a.e. (x, t) ∈ Q}.

Note also that, by virtue of estimates (2.4) and since D is bounded, we have the estimate

|V δ
p,r(λ, µ)− V 0

p,r(λ, µ)| ≤ Cδ(1 + ∥λ∥+ ∥µ∥), (2.5)

where C > 0 is a constant independent of λ, µ, δ.

3. Stable sequential Pontryagin maximum principle

In this section we discuss the so-called regularized or, in other words, stable, with respect to
errors of input data, sequential Pontryagin maximum principle for Problem (P 0

p,r) as necessary and
sufficient condition for elements of minimizing approximate solutions. Simultaneously, we may treat
this condition as one for existence of a minimizing approximate solutions in Problem (P 0

p,r) with
perturbed input data or as condition of stable construction of a minimizing sequence in this problem.
The proof of the necessity of this condition is based on the dual regularization method [11–13] that
is a stable algorithm of constructing a minimizing approximate solutions in Problem (P 0

p,r).

3.1. Dual regularization for optimal control problem with pointwise state
constraints

The estimates (2.4) give a possibility to organize the procedure of the dual regularization in
accordance with a scheme of the paper [19] for constructing a minimizing approximate solution
in Problem (P 0

p,r). In accordance with this scheme the dual regularization consists in the direct
solving dual of Problem (P 0

p,r) and Tikhonov stabilized problem

Rδ,α(δ)
p,r (λ, µ) ≡ V δ

p,r(λ, µ)− α(δ)∥(λ, µ)∥2 → max, (λ, µ) ∈ H ×H+
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under consistency condition
δ

α(δ)
→ 0, α(δ) → 0, δ → 0. (3.1)

Let us denote (λδ,αp,r , µ
δ,α
p,r ) ≡ argmax{Rδ,α

p,r (λ, µ) : (λ, µ) ∈ H × H+}. The above dual regulariza-
tion leads to constructing minimizing approximate solution in Problem (P 0

p,r) from the elements

πδ[λ
δ,α(δ)
p,r , µ

δ,α(δ)
p,r ] ∈ Argmin {Lδ

p,r(π, λ, µ) : π ∈ D}, when δ → 0.
In this section, we extend the algorithm of the dual regularization [12, 18] to the case of Prob-

lem (P 0
p,r) in which the objective functional is only convex. Below we prove convergence theorem

for dual regularization method in exact accordance with a scheme of proving the similar theo-
rem in [19]. We note only that, as in [19], this proving uses a weak continuity of the operators
gδ1, g

δ
2 that is consequence of the conditions on the input data of Problem (P 0

p,r) and a regularity
of the bounded solutions of the boundary-value problem (1.1) (see Proposition 2) inside of the
cylinder QT [6, ch.III, theorem 10.1].

Let Problem (P 0
p,r) be solvable. To prove the convergence theorem for dual regularization

method, first of all, we give a formula for the superdifferential (in the sense of a convex analysis)
of the concave value functional V δ

p,r. The proof of this formula can be found in [12].

Lemma 3. The superdifferential of the concave value functional V δ
p,r(λ, µ) at the point (λ, µ) ∈

H ×H is equal

∂V δ
p,r(λ, µ) = ∂CV

δ
p,r(λ, µ) = cl conv{w − lim

i→∞
(gδ1(u

i)− hδ − p, gδ2(u
i)− r) : πi ∈ D,

Lδ
p,r(π

i, λ, µ) → inf
π∈D

Lδ
p,r(π, λ, µ), i→ ∞},

where ∂CV
δ
p,r(λ, µ) is Clarke’s generalized gradient of the functional V δ

p,r(λ, µ) at the point (λ, µ)
and the limit w − lim is understood in the sense of weak convergence in the space H×H.

Further, to substantiate the dual regularization method in the case under consideration, we
write the inequality ∀ (λ′, µ′) ∈ H ×H+

⟨(I1, I2)− 2α(δ)(λδ,α(δ)p,r , µδ,α(δ)p,r ), (λ′, µ′)− (λδ,α(δ)p,r , µδ,α(δ)p,r )⟩ ≤ 0

for some element (I1, I2) ∈ ∂V δ
p,r(λ

δ,α(δ)
p,r , µ

δ,α(δ)
p,r ).

By Lemma 3 and the classical properties of closed convex hulls (see [1, p. 210, 217]), we obtain

⟨ lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(w − lim
j→∞

(gδ1(π
j
s,i)− hδ − p, gδ2(π

j
s,i))− r)− 2α(δ)(λδ,α(δ)p,r , µδ,α(δ)p,r ), (3.2)

(λ′, µ′)− (λδ,α(δ)p,r , µδ,α(δ)p,r )⟩ ≤ 0 ∀ (λ′, µ′) ∈ H ×H+,

where
l(s,δ)∑
i=1

γi(s, δ) = 1, γi(s, δ) ≥ 0, i = 1, . . . , l(s, δ), and πjs,i ∈ D, j = 1, 2, . . . is a sequence such

that
Lδ
p,r(π

j
s,i, λ

δ,α(δ)
p,r , µδ,α(δ)p,r ) → min

π∈D
Lδ
p,r(π, λ

δ,α(δ)
p,r , µδ,α(δ)p,r ), j → ∞.

Assume without loss of generality that the sequence πjs,i ∈ D, j = 1, 2, . . . , converges weakly as

j → ∞ to an element πs,i ∈ D, which obviously belongs to the set U δ[λ
δ,α(δ)
p,r , µ

δ,α(δ)
p,r ]. Due to weak

continuity of the operators gδi , i = 1, 2, and boundedness of D, from (3.2) the inequality follows

⟨ lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(g
δ
1(πs,i)− hδ − p, gδ2(πs,i)− r)− 2α(δ)(λδ,α(δ)p,r , µδ,α(δ)p,r ),
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(λ′, µ′)− (λδ,α(δ)p,r , µδ,α(δ)p,r )⟩ ≤ 0 ∀ (λ′, µ′) ∈ H ×H+.

The above inequality implies the limit relations

lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(g
δ
1(πs,i)− hδ − p) = 2α(δ)λδ,α(δ)p,r , (3.3)

lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(g
δ
2(πs,i)(x, t)− r(x, t)) = 2α(δ)µδ,α(δ)p,r (x, t) (3.4)

for a.e. (x, t) ∈ {(x, t) ∈ Q : µδ,α(δ)p,r (x, t) > 0},

lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(g
δ
2(πs,i)(x, t)− r(x, t)) ≤ 0 for a.e. (x, t) ∈ {(x, t) ∈ Q : µδ,α(δ)p,r (x, t) = 0}. (3.5)

In turn, the limit relations (3.3)–(3.5) imply the limit equalities

lim
s→∞

⟨
l(s,δ)∑
i=1

γi(s, δ)(g
δ
1(πs,i)− hδ − p), λδ,α(δ)p,r ⟩ = 2α(δ)∥λδ,α(δ)p,r ∥2 ≥ 0, (3.6)

lim
s→∞

⟨
l(s,δ)∑
i=1

γi(s, δ)g
δ
2(πs,i)− r, µδ,α(δ)p,r ⟩ = 2α(δ)∥µδ,α(δ)p,r ∥2 ≥ 0.

From (3.4) we obtain also: if µ
δ,α(δ)
p,r (x, t) > 0 for some (x, t) belonging to a set of full measure

in {(x, t) ∈ Q : µ
δ,α(δ)
p,r (x, t) > 0}, then

lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(g
δ
2(πs,i)(x, t)− r(x, t))− 2α(δ)µδ,α(δ)p,r (x, t) = 0, (3.7)

lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(g
δ
2(πs,i)(x, t)− r(x, t))µδ,α(δ)p,r (t) > 0.

This implies that for a.e. (x, t) ∈ Q such that lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(g
δ
2(πs,i)(x, t) − r(x, t)) < 0, the

equality µ
δ,α(δ)
p,r (x, t) = 0 holds. From (3.4) and (3.7) we obtain simultaneously that

µδ,α(δ)p,r (x, t) lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(g
δ
2(πs,i)(x, t)− r(x, t)) ≥ 0 for a.e. (x, t) ∈ Q.

Besides, from (3.6) we get the inequality

lim
s→∞

⟨
l(s,δ)∑
i=1

γi(s, δ)(g
δ
1(πs,i)− hδ − p, gδ2(πs,i)− r), (λδ,α(δ)p,r , µδ,α(δ)p,r )⟩ =

2α(δ)(∥λδ,α(δ)p,r ∥2 + ∥µδ,α(δ)p,r ∥2) ≥ 0.

(3.8)

Further, since for any π0p,r ∈ U0
p,r

Lδ
p,r(πs,i, λ

δ,α(δ)
p,r , µδ,α(δ)p,r ) ≡ gδ0(πs,i) + ⟨λδ,α(δ)p,r , gδ1(πs,i)− hδ − p⟩+ ⟨µδ,α(δ)p,r , gδ2(πs,i)− r⟩ ≤
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Lδ
p,r(π

0
p,r, λ

δ,α(δ)
p,r , µδ,α(δ)p,r ) ≡ gδ0(π

0
p,r) + ⟨λδ,α(δ)p,r , gδ1(π

0
p,r)− hδ − p⟩+ ⟨µδ,α(δ)p,r , gδ2(π

0
p,r)− r⟩ ≤

g00(π
0
p,r) + [gδ0(π

0
p,r)− g00(π

0
p,r)] + ∥λδ,α(δ)p,r ∥∥gδ1(π0p,r)− hδ − p∥+ ∥µδ,α(δ)p,r ∥∥gδ2(π0p,r)− g02(π

0
p,r)∥,

due to the estimates (2.4) and the limit equality (3.8) and doing some elementary transformation,
we obtain the estimate

2α(δ)(∥λδ,α(δ)p,r ∥2 + ∥µδ,α(δ)p,r ∥2) ≤

C1δ∥λδ,α(δ)p,r ∥+ C1δ∥µδ,α(δ)p,r ∥+ g00(π
0
p,r) + C1δ −min

π∈D
gδ0(π) ≤

√
2C1δ

√
∥λδ,α(δ)p,r ∥2 + ∥µδ,α(δ)p,r ∥2 + g00(π

0
p,r) + C1δ −min

π∈D
gδ0(π)

or

α(δ)(∥λδ,α(δ)p,r ∥2 + ∥µδ,α(δ)p,r ∥2)− C2δ

√
∥λδ,α(δ)p,r ∥2 + ∥µδ,α(δ)p,r ∥2 − g00(π

0
p,r)− C1δ +min

π∈D
gδ0(π) ≤ 0,

where C1, C2 > 0 are independent of constant δ. From here, the estimate follows√
∥λδ,α(δ)p,r ∥2 + ∥µδ,α(δ)p,r ∥2 ≤

C2δ +
√
(C2δ)2 − 4α(δ)K(δ)

2α(δ)
,

where K(δ) ≡ min
π∈D

gδ0(π)− g00(π
0
p,r)− Cδ. In turn, this estimate implies the limit realtions

α(δ)∥λδ,α(δ)p,r ∥ → 0, α(δ)∥µδ,α(δ)p,r ∥ → 0, δ → 0. (3.9)

Further, the limit relations (3.3)–(3.5), (3.9) imply

lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(g
δ
1(πs,i)− hδ − p) → 0, δ → 0,

lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(g
δ
2(πs,i)− r) ≤ ϕ(δ), ∥ϕ(δ)∥ → 0, δ → 0,

where the inequality lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(g
δ
2(πs,i)− r) ≤ ϕ(δ) is understood in the sense of ordering on

the cone of nonpositive functions H−.

Denoting by πδ ∈ U δ[λ
δ,α(δ)
p,r , µ

δ,α(δ)
p,r ] any weak limit point of the sequence

l(s,δ)∑
i=1

γi(s, δ)πs,i,

s = 1, 2, . . . and taking into account the inequality

gδ2(

l(s,δ)∑
i=1

γi(s, δ)πs,i) ≤
l(s,δ)∑
i=1

γi(s, δ)g
δ
2(πs,i),

which is understood also in the sense of ordering on the cone of nonpositive functions, we obtain
the limit relations

gδ1(πδ)− hδ − p→ 0, gδ2(πδ)− r ≤ lim
s→∞

l(s,δ)∑
i=1

γi(s, δ)(g
δ
2(πs,i)− r) ≤ ϕ(δ), δ → 0,

and, as a consequence, due to the boundedness of D, the limit relations

g01(πδ)− h0 − p→ 0, g02(πδ)− r ≤ ϕ̄(δ), ∥ϕ̄(δ)∥ → 0, δ → 0. (3.10)
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Simultaneously, due to the inclusion πs,i ∈ U δ[λ
δ,α(δ)
p,r , µ

δ,α(δ)
p,r ] we have the inequality

gδ0(πs,i) + ⟨λδ,α(δ)p,r , gδ1(πs,i)− hδ − p⟩+ ⟨µδ,α(δ)p,r , gδ2(πs,i)− r⟩ ≤

gδ0(π) + ⟨λδ,α(δ)p,r , gδ1(π)− hδ − p⟩+ ⟨µδ,α(δ)p,r , gδ2(π)− r⟩ ∀π ∈ D.

Hence, due to the limit relation (3.8), we can write for any u0p,r ∈ U0
p,r

lim inf
s→∞

l(s,δ)∑
i=1

γi(s, δ)g
δ
0(πs,i) ≤ gδ0(π

0
p,r) + ⟨λδ,α(δ)p,r , gδ1(π

0
p,r)− hδ − p⟩+ ⟨µδ,α(δ)p,r , gδ2(π

0
p,r)− r⟩.

In turn, from here, due to the consistency condition (3.1), the estimates (1.2) and the boundedness
of D we derive

lim inf
s→∞

l(s,δ)∑
i=1

γi(s, δ)g
0
0(πs,i) ≤ g00(π

0
p,r) + ϕ̃(δ), ϕ̃(δ) → 0, δ → 0

or

g00(πδ) ≤ lim inf
s→∞

g00(

l(s,δ)∑
i=1

γi(s, δ)πs,i) ≤ lim inf
s→∞

l(s,δ)∑
i=1

γi(s, δ)g
0
0(πs,i) ≤

g00(π
0
p,r) + ϕ̃(δ), ϕ̃(δ) → 0, δ → 0.

Thus, by virtue of the boundedness of D, weak lower semicontinuity of g00 and weak continuity

of g0i , i = 1, 2, we constructed the family of elements πδ ∈ U δ[λ
δ,α(δ)
p,r , µ

δ,α(δ)
p,r ], depending on δ, such

that the limit relations (3.10) hold and simultaneously

g00(πδ) → min
π∈D0

p,r

g00(π), δ → 0.

Moreover, weak limit point π̄ of any weakly converging sequence πδk , k = 1, 2, . . . , δk → 0, k → ∞,
is obviously a solution of Problem (P 0

p,r).

We can assert that simultaneously the family of elements (λ
δ,α(δ)
p,r , µ

δ,α(δ)
p,r ), in view of the esti-

mates (1.2), (2.5) and the consistency condition (3.1), satisfies the limit relation (see [12,13,15,18])

lim
δ→+0

V 0
p,r(λ

δ,α(δ)
p,r , µδ,α(δ)p,r ) = sup

(λ,µ)∈H×H+

V 0
p,r(λ, µ), (3.11)

which, combined with the estimate (2.5), the consistency condition (3.1), and the duality relation
(2.3) yields the limit relation (see [12, 13,15,18])⟨

(λδ,α(δ)p,r , µδ,α(δ)p,r ), (gδ1(πδ)− hδ − p, gδ2(πδ))− r
⟩
→ 0, δ → 0.

Let us prove the limit relation (3.11). Since

V δ
p,r(λ

δ,α(δ)
p,r , µδ,α(δ)p,r )− α(δ)∥λδ,α(δ)p,r ∥2 − α(δ)∥µδ,α(δ)p,r ∥2 ≥

V δ
p,r(λ, µ)− α(δ)∥λ∥2 − α(δ)∥µ∥2 ∀ (λ, µ) ∈ H ×H+,

we can write, thanks to (2.5), the estimates

V δ
p,r(λ

δ,α(δ)
p,r , µδ,α(δ)p,r ) ≥ V 0

p,r(λ, µ) + α(δ)∥λδ,α(δ)p,r ∥2 + α(δ)∥µδ,α(δ)p,r ∥2−

Cδ(1 + ∥λ∥+ ∥µ∥)− α(δ)∥λ∥2 − α(δ)∥µ∥2,
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V 0
p,r(λ

δ,α(δ)
p,r , µδ,α(δ)p,r ) = V δ

p,r(λ
δ,α(δ)
p,r , µδ,α(δ)p,r ) + [V 0

p,r(λ
δ,α(δ)
p,r , µδ,α(δ)p,r )− V δ

p,r(λ
δ,α(δ)
p,r , µδ,α(δ)p,r )] ≥

V δ
p,r(λ

δ,α(δ)
p,r , µδ,α(δ)p,r )− Cδ(1 + ∥λδ,α(δ)p,r ∥+ ∥µδ,α(δ)p,r ∥),

whence we obtain

V 0
p,r(λ

δ,α(δ)
p,r , µδ,α(δ)p,r ) ≥ V 0

p,r(λ, µ) + α(δ)∥λδ,α(δ)p,r ∥2 + α(δ)|µδ,α(δ)p,r |2 − Cδ(1 + ∥λδ,α(δ)p,r ∥+ ∥µδ,α(δ)p,r ∥)−

Cδ(1 + ∥λ∥+ ∥µ∥) ∀ (λ, µ) ∈ H ×H+.

From here, we deduce, due to the consistency condition (3.1) and limit relations (3.9), that for any
fixed M > 0 and for any fixed ϵ > 0 there exists such δ(ϵ) > 0 for which the estimate

V 0
p,r(λ

δ,α(δ)
p,r , µδ,α(δ)p,r ) ≥ sup

(λ,µ)∈H×H+: ∥λ∥≤M, ∥µ∥≤M
V 0
p,r(λ, µ)− ϵ (3.12)

∀ δ ≤ δ(ϵ) ∀ (λ, µ) ∈ {(λ, µ) ∈ H ×H+ : ∥λ∥ ≤M, ∥µ∥ ≤M}

holds.
Suppose now that the limit relation (3.11) is not true. Then there exists such a sequence

δs, s = 1, 2, . . . convergent to zero that the inequality

V 0
p,r(λ

δs,α(δs)
p,r , µδs,α(δs)p,r ) ≤ sup

(λ,µ)∈H×H+

V 0
p,r(λ, µ)− l, s = 1, 2, . . .

is fulfilled for some l > 0.
Since

sup
(λ,µ)∈H×H+

V 0
p,r(λ, µ)− sup

(λ,µ)∈H×H+: ∥λ∥≤M, ∥µ∥≤M
V 0
p,r(λ, µ) → 0,

for M → +∞, we deduce from the last estimate that for all sufficiently large positive M the
inequality

V 0
p,r(λ

δs,α(δs)
p,r , µδs,α(δs)p,r ) ≤ sup

(λ,µ)∈H×H+: ∥λ∥≤M, ∥µ∥≤M
V 0
p,r(λ, µ)− l/2

is true. This estimate contradicts to the estimate obtained above (3.12). The last contradiction
proves correctness of the limit relation (3.11).

Summarizing the above arguments, we assert that the following “convergence” theorem for the
dual regularization method in Problem (P 0

p,r) is valid.

Theorem 1. Let Problem (P 0
p,r) be solvable. Regardless of the properties of the solvability of the

dual problem to Problem (P 0
p,r) or, in other words, regardless of the properties of the subdifferential

∂β(p, r) (it is empty or not empty), it is true that exist elements πδ ∈ U δ[λ
δ,α(δ)
p,r , µ

δ,α(δ)
p,r ] such that

the relations

g00(π
δ) → g00(π

0
p,r), g01(π

δ)− h0 − p→ 0, g02(π
δ)− r ≤ κ(δ), ∥κ(δ)∥ → 0, δ → 0, (3.13)⟨

(λδ,α(δ)p,r , µδ,α(δ)p,r ), (gδ1(π
δ)− hδ − p, gδ2(π

δ)− r)
⟩
→ 0, δ → 0

hold, in which the inequality g02(π
δ)− r ≤ κ(δ) is understood in the sense of ordering on a cone of

nonpositive functions in H. Simultaneously, the equality

lim
δ→+0

V 0
p,r(λ

δ,α(δ)
p,r , µδ,α(δ)p,r ) = sup

(λ,µ)∈H×H+

V 0
p,r(λ, µ)

is valid. In addition, the duality relation (2.3) holds. If the dual of Problem (P 0
p,r) is solvable, then

the limit relation (λ
δ,α(δ)
p,r , µ

δ,α(δ)
p,r ) → (λ0p,r, µ

0
p,r), δ → 0 is valid also, where (λ0p,r, µ

0
p,r) denotes the

minimum-norm solution of the dual problem.
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3.2. Stable sequential Lagrange principle for optimal control problem with
pointwise state constraints

We formulate in this subsection the necessary and sufficient condition for existence of a min-
imizing approximate solution in Problem (P 0

p,r). Also, for this problem it can be called by stable
sequential Lagrange principle in nondifferential form. Simultaneously, as we deal only with regular
Lagrange function, the formulated theorem may be called by Kuhn–Tucker theorem in nondiffer-
ential form. Note that the necessity of the conditions of the theorem formulated below follows
from the theorem 1. At the same time, their sufficiency is a simple consequence of the convexity of
Problem (P 0

p,r) and the conditions on its input data. A verification of these propositions for similar
situation of the convex programming problem in a Hilbert space may be found in [10,15,16].

Theorem 2. Regardless of the properties of the subdifferential ∂β(p, r) (it is empty or not
empty) or, in other words, regardless of the properties of the solvability of the dual problem to
Problem (P 0

p,r), necessary and sufficient conditions for Problem (P 0
p,r) to have a minimizing ap-

proximate solution is that there is a sequence of dual variables (λk, µk) ∈ H × H+, k = 1, 2, . . . ,
such that δk∥(λk, µk)∥ → 0, k → ∞, and relations

πδ
k
[λk, µk] ∈ Dδk,ϵk

p,r , ϵk → 0, k → ∞, (3.14)⟨
(λk, µk), (gδ

k

1 (πδ
k
[λk, µk])− hδ

k − p, gδ
k

2 (πδ
k
[λk, µk])− r)

⟩
→ 0, k → ∞ (3.15)

hold for some elements πδ
k
[λk, µk] ∈ U δk [λk, µk]. The sequence πδ

k
[λk, µk], k = 1, 2, . . . , is

the desired minimizing approximate solution and each of its weak limit points is a solution of
Problem (P 0

p,r). As (λk, µk) ∈ H × H+, k = 1, 2, . . . , we can use the sequence of the points

(λ
δk,α(δk)
p,r , µ

δk,α(δk)
p,r ), k = 1, 2, . . . , generated by the dual regularization method of the theorem 1. If

the dual of Problem (P 0
p,r) is solvable, the sequence (λk, µk) ∈ H × H+, k = 1, 2, . . . , should be

assumed to be bounded. The limit relation

V 0
p,r(λ

k, µk) → sup
(λ,µ)∈H×H+

V 0
p,r(λ, µ) (3.16)

holds as a consequence of the relations (3.14), (3.15). Furthermore, each weak limit point (if such
points exist) of the sequence (λk, µk) ∈ H × H+, k = 1, 2, . . . is a solution of the dual problem
V 0
p,r(λ, µ) → max, (λ, µ) ∈ H ×H+.

P r o o f. To prove the necessity, we first note that problem (P 0
p,r) is solvable (i.e., U0

p,r ̸=
∅) due to the conditions on the initial data and to the existence of a minimizing approximate
solution. Now the existence of the indicated sequence (λk, µk) ∈ H×H+, k = 1, 2, . . . and the limit

relations (3.14) and (3.15) follow from Theorem 1 if the points (λk, µk) and πδ
k
[λk, µk] are defined

as (λ
δk,α(δk)
p,r , µ

δk,α(δk)
p,r ), and πδk , k = 1, 2, . . . , respectively. These limit relations imply that (3.16)

holds as well. Really, combining estimates (2.4) with the limit relation δk∥(λk, µk)∥ → 0, k → ∞,

we conclude (see the estimate (2.5)) that V δk
p,r(λ

k, µk) − V 0
p,r(λ

k, µk) → 0, k → ∞. Then, in view

of (2.3), (3.15), and the limit relation f0(zδ
k
[λk, µk]) → f0(z0p,r), k → ∞ (see (3.13)), we have

V δk

p,r(λ
k, µk) = f δ

k
(zδ

k
[λk, µk])+

⟨
(λk, µk), (Aδkzδ

k
[λk, µk]−hδk−p, gδk(zδk [λk, µk])−r)

⟩
→ f0(z0p,r),

therefore, the limit relation (3.16) holds true.

To prove the sufficiency, we first note also that the set U0
p,r ⊂ D0ϵk

p,r is not empty. This follows

from the inclusion πδ
k
[λk, µk] ∈ Dδk,ϵk

p,r , from the fact that the sequence πδ
k
[λk, µk], k = 1, 2, . . .
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is bounded, and from the conditions on the initial data in Problem (P 0
p,r). Furthermore, since the

point πδ
k
[λk, µk] minimizes on D the functional Lδk

p,r(·, λk, µk), we have

gδ
k

0 (πδ
k
[λk, µk]) +

⟨
(λk, µk), (gδ

k

1 (πδ
k
[λk, µk])− hδ

k − p, gδ
k

2 (πδ
k
[λk, µk])− r)

⟩
≤

gδ
k

0 (π) +
⟨
(λk, µk), (gδ

k

1 (π)− hδ
k − p, gδ

k

2 (z)− r)
⟩

∀π ∈ D.

By the assumptions of the theorem, it follows that

gδ
k

0 (πδ
k
[λk, µk]) ≤ gδ

k

0 (π)+
⟨
(λk, µk), (gδ

k

1 (π)−hδk −p, gδk2 (π)−r)
⟩
+ψk ∀π∈D, ψk→0, k→∞.

Setting π = π0p,r ∈ U0
p,r and using the consistency condition δk∥(λk, µk)∥ → 0, k → ∞, we

obtain g00(π
δk [λk, µk]) ≤ g00(π

0
p,r) + ψ̃k, ψ̃k → 0, k → ∞. Since we also have the inclusion

πδ
k
[λk, µk] ∈ Dδk,ϵk

p,r , using the classical weak compactness properties of a bounded convex closed
set and the weak lower semicontinuity of a continuous convex functional in a Hilbert space, we
easily derive g00(π

δk [λk, µk]) → g00(π
0
p,r), k → ∞; i.e., the sequence πδ

k
[λk, µk], k = 1, 2, . . . is

a minimizing approximate solution in Problem (P 0
p,r). In view of (3.15) and the obtained limit

relation g00(π
δk [λk, µk]) → g00(π

0
p,r), k → ∞, we can write

V δk

p,r(λ
k, µk) = gδ

k

0 (πδ
k
[λk, µk])+

⟨
(λk, µk), (gδ

k

1 (πδ
k
[λk, µk])−hδk−p, gδk2 (πδ

k
[λk, µk])−r)

⟩
→ g00(π

0
p,r),

therefore, limit relation (3.16) holds by virtue of estimate (2.5), equality (2.3), and the limit relation
δk∥(λk, µk)∥ → 0, k → ∞. To conclude, we note that, it is easy to show that each weak limit point
of the sequence (λk, µk) ∈ H × H+, k = 1, 2, . . . (if such points exist) is a solution of the dual
problem V 0

p,r(λ, µ) → max, (λ, µ) ∈ H ×H+.

Remark 1. If the functional g00 is strongly convex and subdifferentiable on D then from the

weak convergence of the unique in this case elements πδ
k
[λk, µk] to unique element π0p,r as k →

∞, and numerical convergence g00(π
δk [λk, µk]) → g00(π

0
p,r), k → ∞ follows the strong convergence

πδ
k
[λk, µk] → π0p,r, k → ∞. Problem (P 0

p,r) with the strongly convex g00 for linear system of ordinary
differential equations but with exact input data is studied in [17].

3.3. Stable sequential Pontryagin maximum principle for optimal control
problem with pointwise state constraints

Denote by U δ
max[λ, µ] a set of elements πδmax[λ, µ] ∈ D that satisfy all relations of the maximum

principle (2.2) of the lemma 1. Under the supplementary condition of existence of continuous with
respect to z gradients ∇zφ

δ
2(x, t, z), ∇zG

δ(x, z) with corresponding estimates, it follows that the
proposition of the Theorem 2 may be rewritten in the form of the stable sequential Pontryagin
maximum principle. It is obviously that the equality U δ

max[λ, µ] = U δ[λ, µ] takes place under
mentioned supplementary condition.

Theorem 3. Regardless of the properties of the subdifferential ∂β(p, r) (it is empty or not
empty) or, in other words, regardless of the properties of the solvability of the dual problem to
Problem (P 0

p,r), necessary and sufficient conditions for Problem (P 0
p,r) to have a minimizing approx-

imate solution is that there is a sequence of dual variables (λk, µk) ∈ H × H+, k = 1, 2, . . . , such

that δk∥(λk, µk)∥ → 0, k → ∞, and relations (3.14), (3.15) hold for some elements πδ
k
[λk, µk] ∈

U δk
max[λ

k, µk]. Moreover, the sequence πδ
k
[λk, µk], k = 1, 2, . . . , is the desired minimizing approxi-

mate solution and each of its weak limit points is a solution of Problem (P 0
p,r). As (λ

k, µk) ∈ H×H+,
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k = 1, 2, . . . , we can use the sequence of the points (λ
δk,α(δk)
p,r , µ

δk,α(δk)
p,r ), k = 1, 2, . . . , generated by

the dual regularization method of the theorem 1. If the dual of Problem (P 0
p,r) is solvable, the se-

quence (λk, µk) ∈ H×H+, k = 1, 2, . . . , should be assumed to be bounded. The limit relation (3.16)
holds as a consequence of the relations (3.14), (3.15).

Remark 2. When the inequality constraint in Problem (P 0
p,r) is absent, i.e., (P

0
p,r) = (P 0

p ), and
ϕ1(x, t) ≡ 1, the target functional g00 is taken, for example, in the form g00(π) ≡ ∥π∥2 ≡ ∥u∥2+∥w∥2
then Problem (P 0

p ) acquires the typical form of unstable inverse problem. In this case the stable
sequential Pontryagin maximum principle of the Theorem 3 becomes a tool for the direct solving
such unstable inverse problem.

Remark 3. In important partial case of Problem (P 0
p,r) = (P 0

r ), when it has only the inequality

constraint (φδ
1(x, t) = hδ(x, t) = p(x, t) = 0, (x, t) ∈ Q), “weak” passage to the limit in the relations

of the Theorem 3 leads to usual for similar optimal control problems Pontryagin maximum principle
(see, e.g., [3, 8]) with nonnegative Radon measures in the input data of the adjoint equation.
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Abstract: We provide a technique for constructing optimal multiattribute screening contracts in a general
setting with one-dimensional types based on necessary optimality conditions. Our approach allows for type-
dependent participation constraints and arbitrary risk profiles. As an example we discuss optimal insurance
contracts.
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1. Introduction

Starting with the seminal contribution by Mirrlees [1], optimal screening contracts have found
many applications in economics, including taxation, nonlinear pricing, and the regulation of mo-
nopolies [1–4]. The underlying game of asymmetric information contains two periods. In the first
period, the principal announces a menu of attribute bundles to an agent who possesses private infor-
mation about his utility function, and who can select an attribute bundle by sending a message to
the principal. In the second period, allocations are made according to a publicly known enforceable
mapping from the message space to both attribute bundles and monetary transfers from agent to
principal. Subject to the agent’s participation constraint (individual rationality) and the agent’s
self-interested choice behavior (incentive compatibility), an optimal screening menu maximizes the
principal’s expected payoff. In this paper, which is related to [5, 6], we provide an explicit method
to construct optimal screening contracts with continuously distributed, one-dimensional “types”
representing the agents’ private information and multiple instruments (or attributes), based on
necessary optimality conditions. The problem of finding optimal screening contracts can be for-
mulated as an optimal control problem, for which we derive necessary optimality conditions using
the maximum principle by Pontryagin et al. [7] and the technique of successive approximation [8].
In this vein, the method approximates an optimal schedule by directly computable solutions to a
sequence of relaxed screening problems. We allow for type-dependent participation constraints and
payoff functions that are nonlinear in each contract instrument. This is useful when considering
the effects of variable outside options and/or risk-aversion on the optimal contracts. The set of
participating types is also subject to optimization.

The paper is organized as follows. In Section 2, we introduce a general model for multiattribute
screening and formulate the principal’s optimization problem in an optimal-control setting. In
Section 3, we provide a full set of necessary optimality conditions that can be used to construct
a solution to the screening problem, including an iterative approximation method. In Section 4,
we discuss the design of a menu of optimal insurance contracts for an agent with unknown risk
aversion as a practical example. Section 5 concludes.

1This paper was presented as a plenary lecture in October 2016 in Ekaterinburg, at the International
Conference on “Systems Analysis: Modeling and Control” in memory of Academician Arkady Kryazhimskiy.
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2. Model

2.1. Screening Problem

We consider a standard screening setup with a principal (“she”) and an agent (“he”). The
agent’s possible type θ, known only to him, lies in the type space Θ = [0, 1].2 The type θ summarizes
all the private information the agent has. From the principal’s viewpoint it is distributed with the
continuous probability density f = Ḟ on the support Θ.3 The principal designs a schedule of
instruments (or attributes) x = (x0, x1, . . . , xn) : Θ → Rn+1

+ so as to maximize her expected payoff,

V̄ (x; θ0) =

∫ 1

θ0

V (x(θ), θ)f(θ) dθ, (2.1)

where n ≥ 1 is a given integer which denotes the number of attributes characterizing the bundle,
and Θ0 = [θ0, 1] ⊆ Θ is the set of participating types, with the marginal type θ0 ∈ Θ subject to
optimization.4 In order to ensure implementability of a favored attribute schedule, the principal’s
optimization problem is subject to the agent’s self-interested behavior, which manifests itself in
the form of two constraints. First, given that an agent of type θ has net utility U(ξ, θ) for a
bundle ξ ∈ Rn+1

+ , the optimal type announcement ϑ satisfies the incentive-compatibility constraint

U(x(ϑ), θ) ≥ U(x(θ̂), θ), ∀ϑ, θ̂ ∈ Θ0. (2.2)

Second, since the agent is free to walk away from the principal’s proposed menu of contracts
(attribute schedule), the participation set Θ0 is defined by the agent’s participation constraint

ϑ, θ ∈ Θ0 ⇔ U(x(ϑ), θ) ≥ U(0, θ). (2.3)

That is, an agent of type θ participates if by pretending to be any other participating agent
type ϑ (including himself) he achieves a utility that is at least equal to the utility derived from a
zero bundle (corresponding to nonparticipation). The principal’s screening problem is to find an
(absolutely continuous) attribute schedule x(·) which maximizes the objective in (2.1) subject to
the implementability constraints (2.2) and (2.3).

2.2. Key Assumptions

The attribute x0 corresponds to a numéraire good such as a monetary transfer from the agent
to the principal.5 The principal’s payoff function V : Rn+1 ×Θ → R is continuously differentiable
in the attribute vector x and continuous in the type θ. In addition, we make the following two
assumptions on V .

P1. Vx0 > 0 > Vxi for all i ∈ {1, . . . , n} (P-Monotonicity).6

P2. V (0, θ) ≥ 0 for all θ ∈ Θ (Possibility of Inaction).

2Using a simple affine transformation this does in fact allow for any compact interval on the real line.
3Throughout we use the dot-notation for total derivatives with respect to θ, e.g., Ḟ = dF

dθ .
4The problem of maximizing the principal’s expected utility can be viewed as a “dynamic optimization

problem” if V̄ (x; θ0) represents an average payoff generated by a trajectory x(θ) on the time interval [θ0, 1],
where the starting time θ0 is subject to optimization. The methods presented in this paper extend to intervals
of the form [θ0, θ1] where both boundaries are subject to optimization (cf. footnote 23).

5We sometimes use x to denote bundles (i.e., points) in the attribute space Rn+1
+ = {x̂ ∈ Rn+1 : x̂ ≥ 0}

rather than full schedules (i.e., functions); the same ‘notational flexibility’ is used for components xi of x.
6Throughout the text, we denote partial derivatives using subscripts, e.g., Vx0 = ∂V/∂x0.
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Agent type θ’s net utility from the bundle x is U(x, θ), where U : Rn+2 → R is a twice
continuously differentiable function. His outside option (which is realized after not agreeing to any
of the principals’ proposed contracts) yields the reservation utility r(θ) = U(0, θ), where r : R → R
is a continuously differentiable function. We make the following three assumptions on U .

A1. For all (x, θ) ∈ Rn+1
+ × Θ: (i) Uθ(0, x1, . . . , xn, θ) ≥ ṙ(θ), and (ii) Uxi(x, θ) > 0 > Ux0(x, θ)

for all i ∈ {1, . . . , n} (A-Monotonicity).

A2. For all (x1, . . . , xn, θ) ∈ Rn+ × Θ: (i) U(0, x1, . . . , xn, θ) ≥ r(θ) (Attribute Desirability),
and (ii) r(θ) > limx0→∞ U(x0, x1, . . . , xn, θ) (Transfer Sensitivity).

A3. For all (x, θ) ∈ Rn+1
++ ×Θ: |Uxi′θ(x, θ)| > 0 for some i′ ∈ {1, . . . , n} (Incentive Regularity).7

Finally, to exclude unbounded screening contracts, the gains from trade between the principal
and the agent need to be bounded. To formalize this notion, we first introduce the principal’s
equivalent variation E(x1, . . . , xn, θ), which corresponds to the minimum payment in terms of the
numéraire good x0 she would be willing to accept to provide the attribute bundle (x1, . . . , xn) to
the agent, i.e.,

E(x1, . . . , xn, θ) = inf{x0 ∈ R+ : V (x0, x1, . . . , xn, θ) ≥ 0}, (2.4)

where we adopt the convention that inf ∅ = ∞. On the other hand, agent type θ’s compensating
variation C(x1, . . . , xn, θ) is his maximum willingness to pay (in terms of x0) for the attribute
bundle (x1, . . . , xn) provided by the principal, i.e.,

C(x1, . . . , xn, θ) = sup {x0 ∈ R+ : U(x0, x1, . . . , xn, θ) ≥ r(θ)} , (2.5)

where we adopt the convention that sup ∅ = −∞. The following assumption guarantees that
gains from trade between principal and agent exist and the contracts between the two involve only
bounded attribute bundles. Let

X = {(x0, x1, . . . , xn) ∈ Rn+1
+ : C(x1, . . . , xn, θ) ≥ x0 ≥ E(x1, . . . , xn, θ) and θ ∈ Θ}

be the (feasible) contract space.8

T1. X is bounded (Bounded Contract Space).

We now comment on the six assumptions P1, P2, A1–A3, and T1. Assumption P2 bounds
the principal’s value of the screening problem from below by zero, since the zero schedule x = 0
is always feasible. Assumption P1 means that the principal’s preferences are nonsatiated in the
numéraire good. The monotonicity of the principal’s payoff with respect to the non-numéraire
attributes (x1, . . . , xn) is unimportant and can be relaxed in situations which involve cooperation
between the principal and the agent. Correspondingly, we assume in A1(ii) that the agent dislikes
paying the numéraire to the principal, but finds all other attributes desirable. The first inequality
in P1 and A1(ii) can be always satisfied by relabelling and simple sign-transformations, as long
as there is one attribute that both the principal and the agent like, so it is possible for the agent
to compensate the principal for her actions regarding the other attributes. Assumption A1(i)
guarantees that the set of participating types is convex (of the form Θ0 = [θ0, 1] for some θ0 ∈

7Without any loss of generality, we assume in what follows that i′ = 1; furthermore, Rn+1
++ = int(Rn+1

+ ).
8The equivalent and compensating variations are classical welfare measures [9]. A normative relationship

between them, in particular a lack of exchange due to the endowment effect (when E > C) for identical
individuals, is discussed by [10]. Here, assumptions A1 and P1 imply that the contracting parties’ preferences
differ, and assumptions A2 and P2 that gains from trade exist.
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[0, 1]) and includes the highest type θ = 1,9 as long as it is nonempty. The latter is guaranteed
by P2, since the principal can always provide the zero-attribute bundle at no disbenefit. The first
inequality in A2 means that any agent always accepts the bundle (0, x1, . . . , xn) ∈ Rn+1

+ when he
obtains the non-numéraire attributes for free. The second inequality means that for any attribute
vector (x1, . . . , xn) ∈ Rn+ there is a price (in terms of x0) that is too high. The incentive-regularity
condition A3 requires that the agent perceives increasing (or decreasing) differences with respect to
one non-numéraire attribute and his type. This condition is needed only in a neighborhood of points
where the agents’ incentive compatibility becomes a binding constraint. Finally, the assumption T1
stipulating that the gains from trade be bounded is naturally satisfied in any practical situation,
e.g., when both U and V are bounded and there exists an ε such that Ux0 < −ε < 0 < ε < Vx0 .
Intuitively it is enough when the principal’s marginal costs −Vxi of providing a bundle (to a given
agent type) increase fast enough in the attributes, and at the same time the agent’s marginal
utilities Uxi for these attributes decrease. Assumption T1 guarantees that the solution to the
principal’s screening problem behaves as if it were constrained to attribute schedules with values in
the set X without the need for an explicit consideration of this constraint. Note that assumptions P2
and A2 imply that the contract space is nonempty, as it must contain the zero bundle, i.e., 0 ∈ X .

3. Optimal Screening Contracts

We treat the screening problem in an optimal-control framework. Accordingly, the admissible
schedules x : Θ → Rn+1

+ are in the Sobolev space W1,∞ of absolutely continuous functions with
essentially bounded derivatives, and the corresponding class of admissible controls u : Θ → Rn is the
Lebesgue space L∞ of all essentially bounded functions. An admissible marginal type is any θ0 ∈ Θ.
Correspondingly, let D = L∞(Θ,Rn+1

+ ) × W1,∞(Θ,Rn) × Θ be the domain of admissibility for
solutions (x∗, u∗, θ∗0) to the screening problem.10

Theorem 1. Under assumptions P1 and A1–A2, the principal’s screening problem can be writ-
ten in the form:

sup
(x,u,θ0)∈D

V̄ (x; θ0), (P)

subject to
ẋ = Φ(x, θ)u, U(x(θ0), θ0) = r(θ0), (3.1)

and
min
θ̂∈Θ0

{
(θ̂ − θ)

(
Uθ(x(θ̂), θ)− Uθ(x(θ), θ)

)}
≥ 0, (3.2)

for all θ ∈ Θ0 = [θ0, 1], where
11

Φ(x, θ) =

[
φ(x, θ)
In

]
∈ R(n+1)×n, φ(x, θ) = −(Ux1(x, θ), . . . , Uxn(x, θ))

Ux0(x, θ)
≥ 0, (3.3)

and In denotes an (n× n)-identity matrix.

P r o o f. Given an admissible schedule x : Θ → Rn+1, we conclude from A1 that U(x(θ̂), θ1)−
r(θ1) ≥ U(x(θ̂), θ0) − r(θ0) for any θ̂, θ1, θ0 ∈ Θ with θ1 ≥ θ0. Thus, type θ0’s participation

9Convexity of Θ0 can be achieved also when U − r is only quasiconcave in θ [11], in which case the upper
marginal type becomes subject to optimization also.

10At an optimal solution (x∗, u∗, θ∗0), the schedule x∗ and control u∗ need only be defined on the optimal
participation set Θ∗

0 = [θ∗0 , 1] ⊆ Θ.
11A vector y = (y1, . . . , yn) ∈ Rn satisfies y ≥ 0 if and only if yi ≥ 0 for all i ∈ {1, . . . , n}.
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implies participation for all types θ ∈ Θ0 = [θ0, 1]. Since by P1 and A1 it is Vx0 > 0 > Ux0 , the
lowest participating type θ0 cannot get any surplus, so necessarily U(x(θ0), θ0) = r(θ0). The lowest
type θ0 is itself subject to optimization. Equation (3.1) states that d(x1, . . . , xn)/dθ = u, where u
is subject to optimization. When searching for schedules x : Θ → Rn+1 that maximize expected
profits V̄ (x; θ0), by the revelation principle [12,13] the principal can restrict attention to schedules
under which all types report truthfully,12 so

U(x(θ), θ) ≥ U(x(θ̂), θ) (3.4)

for all θ, θ̂ ∈ Θ. The incentive-compatibility condition (3.4) is equivalent to (3.1)–(3.3). To prove
this, we first show that (3.4) implies (3.1)–(3.3). Indeed, by subtracting U(x(θ̂), θ̂) from (3.4) and
switching the labels for θ and θ̂ we obtain that

U(x(θ), θ)− U(x(θ̂), θ̂) ≥ U(x(θ̂), θ)− U(x(θ̂), θ̂)

and
U(x(θ̂), θ̂)− U(x(θ), θ) ≥ U(x(θ), θ̂)− U(x(θ), θ).

Combining the last two inequalities yields

U(x(θ), θ)− U(x(θ), θ̂) ≥ U(x(θ), θ)− U(x(θ̂), θ̂) ≥ U(x(θ̂), θ)− U(x(θ̂), θ̂) (3.5)

for all θ, θ̂ ∈ Θ. Selecting any θ̂, θ ∈ intΘ and taking the limit for θ̂ → θ+ and θ → θ− we get

dU(x(θ), θ)

dθ
= Uθ(x(θ), θ)

almost everywhere (a.e.) on Θ, which is equivalent to

Ux(x(θ), θ) ẋ(θ) = 0. (3.6)

The last equation defines the system dynamics ẋ(θ) = Φ(x(θ), θ)u(θ) on Θ0, as specified in (3.1)
and (3.3). Note that ẋ0(θ) = φ(x(θ), θ) by solving (3.6) for ẋ0. The fact that

φ(x, θ) = (φ1(x, θ), . . . , φn(x, θ)) ≥ 0

(componentwise) follows directly from A1. Since by admissibility of the menu x and smoothness
of U , the function U(x(θ), θ) is absolutely continuous in θ, by the fundamental theorem of calculus
[14, p. 134] it is

U(x(θ̂), θ̂)− U(x(θ), θ) =

∫ θ̂

θ
Uθ(x(ϑ), ϑ) dϑ. (3.7)

The fundamental theorem of calculus also implies that

U(x(θ̂), θ̂)− U(x(θ̂), θ) =

∫ θ̂

θ
Uθ(x(θ̂), ϑ) dϑ, (3.8)

so by subtracting (3.7) from (3.8) one can rewrite the first inequality in (3.5) in the form∫ θ̂

θ

[
Uθ(x(θ̂), ϑ)− Uθ(x(ϑ), ϑ)

]
dϑ ≥ 0

12The revelation principle describes the (almost trivial) fact that when the principal is able to commit to
a mechanism (i.e., an allocation function x̂ : Θ → X ) by solving the agent’s problem (2.2) of announcing a
type ϑ = ϑ∗(θ) ∈ Θ0 that maximizes his expected utility, she can simply choose x, with x(θ) 7→ x̂(ϑ∗(θ)),
instead of x̂ to obtain a mechanism that reveals the agent’s type truthfully.
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for all θ, θ̂ ∈ Θ. This last inequality holds for all θ, θ̂ ∈ Θ if and only if{
Uθ(x(θ̂), θ) ≥ Uθ(x(θ), θ), if θ̂ > θ,

Uθ(x(θ̂), θ) ≤ Uθ(x(θ), θ), if θ̂ < θ,

i.e., if and only if the single-crossing condition (3.2) is satisfied for all θ ∈ Θ0. Hence, condition (3.4)
is necessary for conditions (3.1)–(3.3) in Theorem 1. In order to show that conditions (3.1)–(3.3) are
also sufficient for the incentive compatibility constraint (3.4), consider any θ̂, θ ∈ Θ and rewrite (3.4)
using the integral representation (3.7) and the fundamental theorem of calculus as

U(x(θ), θ)− U(x(θ̂), θ̂) =

∫ θ

θ̂
Uθ(x(ϑ), ϑ) dϑ ≥

∫ θ

θ̂
Uθ(x(θ̂), ϑ) dϑ = U(x(θ̂), θ)− U(x(θ̂), θ̂),

or in the more compact form ∫ θ̂

θ

[
Uθ(x(θ̂), ϑ)− Uθ(x(ϑ), ϑ)

]
dϑ ≥ 0.

This last inequality holds for all θ̂, θ ∈ Θ if and only if Uθ(x, θ) exhibits the single-crossing prop-
erty (3.2) for all θ ∈ Θ, which yields the desired sufficiency of (3.1)–(3.3) for (3.4). As alluded to
earlier, the initial condition in (3.1) is due to the agent’s participation constraint, U(x(θ), θ) ≥ r(θ)
for all θ ∈ Θ0. By A2, the set of participating types Θ0 is nonempty (given that X ̸= ∅). �

The intuition for the system dynamics in (3.1) is that, except for the component x0 (which
contains the agent’s payment in the numéraire good), the rate of change of the principal’s schedule x
as a function of the type θ is governed by the control variable u. The dynamics of the system are
constrained by the fact that a participating agent θ ∈ [θ0, 1] needs to find it optimal to report his
type truthfully, such that U(x(θ), θ) ≥ U(x(θ̂), θ). In other words, by consuming a bundle x(θ̂)
possibly different from the bundle x(θ) designed for him, agent θ cannot be better off. This incentive
compatibility (or “implementability”) is responsible for the dynamics of x0 and the constraint (3.2).
The latter constraint renders problem (P) a nonstandard optimal control problem,13 for it involves
the schedule x generically at different points of the type space. Hence, the corresponding necessary
optimality conditions, summarized by the following result, differ from standard versions of the
maximum principle. The existence of a solution to (P) is implied by [11, Thm. 2]. We now provide
a set of necessary optimality conditions.

Theorem 2. Given that assumption T1 is satisfied, let (x∗, u∗, θ∗0) be an optimal solution to
the screening problem (P) and let Θ∗

0 = [θ∗0, 1] be the corresponding set of participating types. Then
there exists a function ψ = (ψ0, . . . , ψn) : Θ

∗
0 → Rn+1 of bounded variation, a constant λ0 ≥ 0, and

a nonnegative Borel measure ν, such that the following optimality conditions are satisfied.

C1. Adjoint Equation: ψ(θ) ∈ Rn+1 satisfies

ψ(θ) =

∫ 1

θ
(λ0Vx(x

∗, ϑ)f(ϑ) + ψ0φx(x
∗, ϑ)u∗) dϑ−

∫ 1

θ
(ρ(x∗, ϑ)− ϑ)Uxθ(x

∗, ϑ) dν,

for all θ ∈ Θ∗
0, where the measurable selection ρ satisfies 14

ρ(x̄, θ) ∈ arg min
θ̂∈Θ∗

0

{
(θ̂ − θ)

(
Uθ(x

∗(θ̂), θ)− Uθ(x̄, θ)
)}

,

13In the remainder of the text, references to problem (P) (or to its relaxation (P’) introduced below)
include the complete problem setting with assumptions and relevant constraints.

14A set-valued minimizer of a continuous function over a compact set is nonempty, compact-valued, and
upper semi-continuous in θ. It therefore has a measurable selection [15, p. 44].
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for any (x̄, θ) ∈ Rn+1 ×Θ∗
0.

C2. Maximality:
u∗i (θ) ̸= 0 ⇒ ψ0(θ)φi(x

∗(θ), θ) + ψi(θ) = 0,

a.e. on Θ∗
0, for all i ∈ {1, . . . , n}.

C3. Transversality:

(i) θ∗0 = 0 ⇒ ∃λ1 ∈ R : ψ∗(0) + λ1Ux(x
∗(0), 0) = 0;

(ii) θ∗0 > 0 ⇒ ψ(θ∗0) (Uθ(x
∗(θ∗0), θ

∗
0)− ṙ(θ∗0)) + λ0V (x∗(θ∗0), θ

∗
0)Ux(x

∗(θ∗0), θ
∗
0) = 0.

C4. Complementary Slackness:

supp(ν) ⊆

{
θ ∈ Θ : min

θ̂∈Θ∗
0

{
(θ̂ − θ)

(
Uθ(x

∗(θ̂), θ)− Uθ(x
∗(θ), θ)

)}
= 0

}
.

C5. Nontriviality: λ0 + supθ∈Θ∗
0
∥ψ(θ)∥ > 0.

P r o o f. See appendix. �

The adjoint variable ψ(θ) corresponds to the shadow value of the optimal attribute schedule at
type θ, given that the evolution of the optimal schedule satisfies the ordinary differential equation
(ODE) in (3.1) as well as the incentive-compatibility constraint (3.2). The adjoint equation C1
describes the evolution of ψ on the set of participating types. In particular, the shadow value of the
attribute schedule vanishes for the highest type, θ = 1. The maximality condition C2 requires that
the optimal control u∗ can be essentially bounded only if, while maximizing the principal’s expected
payoff, the gradient of Φu with respect to u (corresponding to the right-hand side of (3.1)) vanishes.
The transversality condition C3 is implied by the optimality of the marginal agent of type θ∗0, who
is indifferent between participating or not. If θ∗0 is not a boundary solution (i.e., when θ∗0 > 0),
condition C3 (ii) means that the total change in value, as measured by the agent’s marginal surplus
through the change in his type movement (evaluated at the shadow value ψ(θ∗0)) plus his marginal
utility for the attribute bundle (evaluated at the principal’s net payoff V (x∗(θ∗0), θ

∗
0)) must vanish

for the indifferent type θ∗0. If it is optimal to serve all agents (i.e., when θ∗0 = 0), one obtains a
distortion of the shadow values described by the transversality condition C3 (i). The complementary
slackness condition C4 shows that the support of the measure ν must be inside the set of types
for which the incentive-compatibility constraint (3.2) is binding. Thus, if (3.2) is never binding,
then ν vanishes. Condition C5 ensures that the necessary optimality conditions are nontrivial in the
sense that λ0 and ν cannot vanish together. This can imply an important simplification: if ν = 0,
then necessarily λ0 > 0, so that, without any loss in generality, we can set λ0 = 1, since all other
optimality conditions are positively homogeneous in λ0.

It is generally difficult to construct a measure ν without the precise knowledge of x∗, since ρ
is defined using x∗ and θ∗0. When taking the limit θ̂ → θ in the maximand of the left-hand side
in (3.2), the following constraint is implied:

γ · u ≥ 0, (3.2’)

where γ = (1, γ2, . . . , γn) and γj = Uxjθ/Ux1θ corresponds to the agent’s marginal rate of substitu-
tion (with respect to Uθ) between x1 and xj for j ∈ {2, . . . , n}. We refer to (P) with constraint (3.2)
replaced by (3.2’) therefore as the relaxed screening problem (P’). Contrary to the screening prob-
lem (P), the relaxed screening problem (P’) can be solved explicitly.
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Theorem 3. Under assumptions P1, P2, and A1–A3, if (x∗, u∗, θ∗0) is an optimal solution to
the relaxed screening problem (P’), then there exists an absolutely continuous function ψ : Θ → Rn+1

such that the transversality condition C3 is satisfied, and 15

−ψ̇ = Vx(x
∗, θ)f(θ) + (ψ0φx(x

∗, θ) + µγx(x
∗, θ))u∗, ψ(1) = 0, (3.9)

and
[ψ0φx + µγx,Φ]u

∗ = ψ0φθ + µγθ − fVxΦ, (3.10)

where µ = ψ0φ1(x
∗, θ) + ψ1, and µγ · u∗ = 0.

P r o o f. Apply the optimality conditions in Theorem 2 to the optimal control problem (P’).
For this, consider the Hamiltonian H = λ0V f + ψ · Φu, and first examine the case where the
constraint (3.2’) is not binding, i.e., where γ · u∗ > 0. If the optimal control u∗ is “proper,” i.e.,
independent of ū, then the maximality condition with respect to the relaxed screening problem (P’)
implies that Hu = ψΦ = 0 on an optimal state-control trajectory. Differentiating both sides with
respect to θ, taking into account the adjoint equation, yields

−ψ̇i = − (Vx0f + ψ0φx0 · u∗)φi + ψ0φi,xΦu
∗ + ψ0φi,θ = Vxif + ψ0φxi · u∗ (3.11)

for any i ∈ {1, . . . , n}. These n equations can be rewritten more compactly in the form

[ψ0φx,Φ]u
∗ = ψ0φθ − fVxΦ. (3.12)

In the case where γ ·u∗ = 0, maximization of the Hamiltonian subject to (3.2’) yields the optimality
condition ψΦ = µγ, where µ ≥ 0 is the corresponding Lagrange multiplier. The first component of
this condition yields that µ = ψ0φ1(x

∗, θ) + ψ1 as claimed. �

The Lagrange multiplier µ is associated with the relaxed incentive-compatibility constraint (3.2’).
By eliminating u∗ from the above relations and from (3.1), a solution to the relaxed screening prob-
lem can therefore be obtained by solving a system of n+ 3 ODEs.

Corollary 1. Let assumptions P1, P2, and A1–A3 be satisfied, and let (x∗, u∗, θ∗0) be an opti-
mal solution to the relaxed screening problem (P’). (i) If the matrix R = [φx,Φ] is nonsingular at
the optimal solution, then there exist absolutely continuous functions ψ0, ψ1 : Θ

∗
0 → R such that{

ẋ∗ = ΦR−1
(
φθ − fVxΦ

ψ0

)
,

−ψ̇0 = Vx0f + φx0R
−1 (ψ0φθ − fVxΦ) ,

(3.13)

provided that γ·R−1
(
φθ − fVxΦ

ψ0

)
> 0. (ii) Otherwise, setting γ̂ = (γ2, . . . , γn) and û = (u2, . . . , un)),

there exist absolutely continuous functions ψ0, ψ1 : Θ
∗
0 → R such that ẋ∗ = Φ̂

[
ψ0φ̂x + ψ1γ̂x, Φ̂

]−1 (
ψ0φ̂θ + ψ1γ̂θ − fVxΦ̂

)
,

−ψ̇i = Vxif + (ψ0φ̂xi + ψ1γ̂xi)
[
ψ0φ̂x + ψ1γ̂x, Φ̂

]−1 (
ψ0φ̂θ + ψ1γ̂θ − fVxΦ̂

)
,

(3.14)

for i ∈ {0, 1}. (iii) The boundary conditions for both (3.13) and (3.14) are U(x∗(θ∗0), θ
∗
0) = r(θ∗0)

and ψ(1) = 0.

15Given two matrices A ∈ Rm×l and B ∈ Rl×m, where m, l are positive integers, the Lie bracket of A
and B is given by [A,B] = AB − (AB)T = AB −BTAT ∈ Rm×m, where (·)T denotes the transpose of (·).
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To obtain the n + 2 initial values x(θ∗0) and θ∗0 for the system (3.13), one can use the n + 1
transversality conditions C3 in conjunction with the initial condition in (3.1).

Remark 1. In the case where all payoff functions are quasilinear in the numéraire, it is φx0 = 0
and Vx0 = 1, which implies that ψ0(θ) = 1− F (θ) by virtue of (3.13), provided that(

1,
Ux2θ
Ux1θ

, . . . ,
Uxnθ
Ux1θ

)
· [φx,Φ]−1

(
φθ −

f

1− F
VxΦ

)
≥ 0. (3.15)

The last inequality can be checked ex ante. It generalizes the standard Spence—Mirrlees sort-
ing condition [16, Eq. (7), p. 155]. Note that the last inequality (3.15) features all primitives of
the problem, and it is satisfied if the relaxed incentive-compatibility constraint (3.2’) is not binding.

Remark 2. In the case where R = 0, as in the optimal insurance example discussed in Section 4,
relation (3.10) immediately implies that

ψ0φθ + µγθ = fVxΦ. (3.16)

Solving this n-dimensional optimality condition, one can determine real-valued functions qi, such
that

xi = qi(x0, θ, ψ0), i ∈ {1, . . . , n}, (3.17)

which then allows for the solution of the Hamiltonian system consisting of the state equation in (3.1)
and the adjoint equation (3.9).

If the solution to the relaxed screening problem (P’) is feasible in the screening problem (P),
then it is also a solution to the principal’s screening problem. Failing that, we can approximate
an optimal solution to (P) by solutions to appropriate relaxed problems. For this we introduce a
sequence of relaxed screening problems {(P ′

kl)}k,l≥1. For any k, l ≥ 1, problem (P ′
kl) is identical to

problem (P’) with V replaced by

V kl(x, θ) = V (x, θ)− k
(
g−(x, θ;x

k−1,l−1)
)2

− l
∥∥∥x− xk−1,l−1

∥∥∥2 ,
and

g−(x̄, θ;x
k−1,l−1) = min

θ̂∈[θk0 ,1]

{
0, (θ̂ − θ)

(
Uθ(x

k−1,l−1(θ̂), θ)− Uθ(x̄, θ)
)}

for any (x̄, θ) ∈ Rn+1 × Θ. We denote a solution to problem (P ′
kl) by (xkl, ukl, θkl0 ). To initialize

the sequence of relaxed screening problem, we set V 00 = V , thus adding a problem (P ′
00) which is

identical to problem (P’); its solution (x00, u00, θ000 ) is therefore described by our earlier results.

Theorem 4. (i) For any given k ≥ 1, the sequence
{
(xkl, ukl, θkl0 )

}
l≥1

of solutions to (P ′
kl)

converges to (xk, uk, θk0) ∈ W1,∞ × L∞ × Θ. (ii) The sequence
{
(xk, uk, θk0)

}
k≥1

converges to a

solution (x∗, u∗, θ∗0) of (P).

P r o o f. (i) Fix any k ≥ 1. The sequence {xkl}l≥1 is by construction a Cauchy sequence
in the Banach space L2(Θ), and therefore converges strongly. This implies weak convergence of
the sequence {ukl}l≥1. Lastly, by the Bolzano—Weierstrass theorem the sequence {θkl0 }l≥1 ⊂ Θ

contains a convergent subsequence with limit in Θ. Consider the limits θk0 ≤ θ̂k0 of any two such
convergent subsequences. Then U(xk(θk0), θ

k
0) = r(θk0) and U(xk(θ̂k0), θ̂

k
0) = r(θ̂k0). On the other

hand, as already noted in the proof of Theorem 1, by A1 for any θ ∈ [θk0 , 1] it is U(x(θ), θk0)−r(θk0) ≤
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U(x(θ), θ̂k0)−r(θ̂k0), so necessarily U(x(θ), θ)−r(θ) = 0 for all θ ∈ [θk0 , θ̂
k
0 ]. Without loss of generality,

we can therefore take θk0 = lim inf l→∞ θkl0 . The limit (xk, uk, θk0) solves the relaxed screening

problem (P’) with V replaced by V k(x, θ) = V (x, θ)−k
(
g−(x, θ;x

k)
)2
. (ii) The convergence of the

sequence {θk0}k≥1 ⊂ Θ to θ∗0 ∈ Θ obtains as in part (i). Furthermore, any limit (x∗, u∗, θ∗0) of the
sequence

{
(xk, uk, θk0)

}
k≥1

satisfies g−(x
∗(θ), θ;x∗) = 0 a.e. on Θ∗

0, and is thus a feasible solution

to the screening problem (P), provided that (x∗, u∗) ∈ W1,∞ × L∞. The latter follows from the
existence of a solution to (P). �

4. Application: Optimal Insurance

Consider the problem of designing a nonlinear insurance contract with multiple contingencies,
which dates back at least to Stiglitz [17]. An agent has constant absolute risk aversion θ ∈ Θ =
[0, 1].16 The type parameter θ belongs to the agent’s private information, and—from the principal’s
point of view—it is distributed with the differentiable probability density f > 0 on the type
space Θ.17 The agent’s utility for any real-valued monetary payoff ξ is

v(ξ, θ) = − exp (−θξ) ,

and his current wealth is zero. The agent faces n possible, mutually exclusive loss events L1, . . . , Ln,
which are ordered by magnitude such that 0 < L1 < · · · < Ln <∞. The probability of loss event Li
is pi > 0, so p0 = 1 − (p1 + · · · + pn) ∈ (0, 1) is the probability that no loss event occurs.18 An
insurance contract subsidizes the agent by an amount xi when loss event Li occurs, and asks the
agent for a net payment of x0 in the absence of a loss. Given an insurance contract x = (x0, . . . , xn),
the agent’s expected utility is

U(x, θ) = p0v(−x0, θ) +
n∑
i=1

piv(xi − Li, θ).

The agent’s reservation utility without contract is therefore

r(θ) = U(0, θ) = −p0 +
n∑
i=1

piv(−Li, θ).

On the other hand, the principal’s expected payoff is

V (x, θ) = p0x0 −
n∑
i=1

pixi,

independent of θ. It is straightforward to verify that both the agent and the principal have utility
functions which satisfy assumptions A1–A3 and P1–P2, respectively. The principal’s equivalent
variation in (2.4) is

E(x1, . . . , xn, θ) =
n∑
i=1

(
pi
p0

)
xi,

while the agent’s compensating variation in (2.5) takes the form

C(x1, . . . , xn, θ) =

(
1

θ

)
ln

[
1 +

n∑
i=1

(
pi
p0

)
eθLi

(
1− e−θxi

)]
.

16By a change of units (i.e., renormalization) this is without loss of generality; cf. also footnote 2.
17To satisfy assumption T1, the agent’s risk aversion needs to be strictly positive. By considering θ/θ̄

instead of θ, the analysis generalizes to positive risk aversions in [0, θ̄], for any θ̄ > 0.
18The vector (p0, . . . , pn) lies in the interior of the n-simplex ∆n = {(p̂0, . . . , p̂n) ∈ Rn+1

++ : p̂0+· · ·+p̂n = 1}.
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Thus, assumption T1 is satisfied as long as f(θ) = 0 on [0, ε] for some minimum risk-aversion ε ∈
(0, 1). When the agent is risk-neutral, then the principal would be willing to offer an actuarially
fair contract to the agent. By continuous completion for ε → 0+ (or, alternately, by imposing a
very small capital cost on the principal), we can include risk-neutral agents who are then offered a
zero contract. Using the optimality conditions in Theorem 2 and Corollary 1, we find that the Lie
product R = [φx,Φ] vanishes identically, so by Remark 3:

(x0 − yi)ψ0 =
f(p0φi − pi)− µγiθ

−φi
=

(
1− e−θ(x0−yi)

)
p0f + (p0/pi)µγiθ

e−θ(x0−yi)
, i ∈ {1, . . . , n}, (4.18)

where φi = −(pi/p0) v(x0 − yi, θ) and γiθ = −(pi/p1)(yi/y1)(y1 − yi)v(y1 − yi, θ) using the abbre-
viation yi ≡ Li − xi ≥ 0.

Full Coverage. One immediate solution of (4.18) is yi = Li − xi = x0, for all i ∈ {1, . . . , n},
which yields full coverage for the participating agent types.19 The lowest participating type θ0
in the full-coverage scenario is determined by setting that agent’s insurance premium equal to
his “certainty equivalent.” The latter corresponds to the agent’s compensating variation for the
insurance contract, so necessarily x0 = C(L1 − x0, . . . , Ln − x0, θ0), which in turn implies that

x0 = g(θ0) ≡

{
ln(−r(θ0))/θ0, if θ0 ∈ (0, 1],

L̄, if θ0 = 0,

where L̄ =
∑n

i=1 piLi denotes the agent’s expected loss.20 The principal’s expected payoff under
full coverage is V̄ (x; θ0) = (x0− L̄)(1−F (θ0)), so that the optimal participation threshold becomes
the global solution of a scalar maximization problem on an interval (for details, see [18]):

θ∗0 ∈ arg max
θ0∈[0,1]

{
(g(θ0)− L̄)(1− F (θ0))

}
.

As a result, the optimal (constant) schedule is x∗ = (x∗0, L1 − x∗1, . . . , Ln − x∗n), where x
∗
0 = g(θ∗0)

and x∗i = Li−x∗0 for i ∈ {1, . . . , n}. The full-coverage solution leads to no information revelation at
all, as all the agent types are offered the same contract. This is also referred to as “bunching” [4].

Partial Coverage. Based on the available optimality conditions it may be possible to construct
another solution to the optimal insurance problem, which involves at least partial information
revelation. Indeed, for a given θ ∈ (0, 1], provided that µ = 0 and ϕ(θ) ≡ p0f(θ)/ψ0(θ) > 1/θ,
there is a negative solution to (4.18), i.e., there exists a ζ = ζ(θ) < 0 such that

ζ =
(
eθζ − 1

)
ϕ. (4.19)

In this case, the solution ζ = x0 − yi = x0 + xi − Li < 0 is independent of i ∈ {1, . . . , n}.
For ϕ(θ) ∈ [0, 1/θ], the only solution to (4.19) is ζ = 0, reverting back to the full-insurance regime
(for that agent type θ). Because by the transversality condition (C1) it is ψ0(1) = 0 , this implies
that for large enough agent types θ the principal may find it optimal to use partial coverage.

We now continue to follow the solution algorithm outlined in Remark 3, via (3.1) and (3.9).
Indeed, the law of motion in (3.1), together with ẋi = ζ̇ − ẋ0 for all i ∈ {1, . . . , n}, implies that

ẋ0 = φ(x, θ) · (ẋ1, . . . , ẋn) =
(
ζ̇ − ẋ0

) n∑
i=1

φi(x, θ) = −
1−p0
p0

v(ζ, θ) ζ̇

1− 1−p0
p0

v(ζ, θ)
=

1−p0
p0

ζ̇

eθζ + 1−p0
p0

. (4.20)

19By the adjoint equation (C1), it is ψ0 = (1− F )p0 and ψi = −(1− F )pi on [θ∗0 , 1] for all i ∈ {1, . . . , n}.
(Thus, nontriviality (C5) holds.) Theorem 3 yields µ(θ) = ψ0(θ)φ1(x

∗(θ), θ) + ψ1(θ) = 0 for all θ ∈ [θ∗0 , 1].
20By l’Hôpital’s rule and the definition of r, it is limθ0→0+ ln(−r(θ0))/θ0 = r′(0)/r(0) = L̄.
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Using again the law of motion, the first component of the adjoint equation (3.9) becomes

− ψ̇0

ψ0
=
p0f

ψ0
+ (φx(x, θ)u)0 = ϕ+

θv(ζ, θ)

p0

n∑
i=1

piui = ϕ− θẋ0. (4.21)

Since on the one hand ψ̇0/ψ0 = (ḟ/f)− (ϕ̇/ϕ), by the definition of ϕ, and since on the other hand

ϕ̇

ϕ
=
(
1− θϕeθζ

) ζ̇
ζ
+

ζeθζ

1− eθζ
,

by virtue of (4.19), one obtains—taking account of (4.20)—that relation (4.21) is equivalent to

− ḟ
f
= − ϕ̇

ϕ
+ ϕ− θẋ0 = −

(
1 +

θζ eθζ

1− eθζ

)
ζ̇

ζ
− ζ

1− eθζ
− θζ̇

1 + p0
1−p0 e

θζ
.

But the last equation implies an initial-value problem,

ζ̇ =

[
1

ζ
+

θeθζ

1− eθζ
+

(1− p0)θ

(1− p0) + p0eθζ

]−1
(
ḟ

f
− ζ

1− eθζ

)
, ζ(θ0) = ζ0, (4.22)

where the initial value is equal to the certainty equivalent of the marginal agent’s exposure condi-
tional on a loss,21

ζ0 = −
ln
(∑n

i=1
pie

θLi

1−p0

)
θ

< 0,

thus rendering the contract worthless for the type θ0, and consequently: x0(θ0) = 0.

5. Conclusion

The solution to multiattribute screening problems with one-dimensional types and type-dependent
participation constraints can be obtained using optimality conditions derived from a nonstandard
version of Pontryagin’s maximum principle.22 Contrary to the extant literature on screening, we
do not assume representations of preferences that are quasilinear in the numéraire attribute, thus
allowing for arbitrary risk profiles. We also do not require payoff functions to be supermodular in
all nonmonetary attributes but impose incentive compatibility as a nonlocal constraint. We have
shown that a solution to the multiattribute screening problem, in the case where the incentive-
compatibility constraint is binding, can be obtained by solving a sequence of relaxed screening
problems, in which constraint violations are increasingly penalized. The results depend in essence
only on the convexity of the participation set23 and on (local) incentive regularity (where needed).
Thus, even if A1–A2 and P1–P2 are not satisfied everywhere, one may use our results to construct
solutions and then verify the assumptions in a neighborhood of the obtained solutions ex post. We
further show that the dimensionality of the 2(n + 1)-dimensional Hamiltonian system can often
be reduced significantly in concrete problems (e.g., to a 1-dimensional differential equation in our
optimal-insurance application in Section 4).

21The agent’s expected utility is U(x, θ) = p0v(−x0, θ)+(1−p0)v(ζ−x0, θ) =
(
p0 + (1− p0)e

−ρζ) v(−x0, θ).
22Type-dependent participation constraints arise when agents have heterogeneous outside options, as il-

lustrated in Section 4.
23If U − r is quasiconcave in θ (instead of nondecreasing) the participation set is of the form [θ0, θ1] and θ1

becomes subject to optimization, leading to an additional transversality condition analogous to C3.
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Appendix: Proof of Theorem 2

P r o o f. The argument proceeds in six steps (cf. [7, 8, 19,20]). For any (x̄, θ) ∈ Rn+1 ×Θ, let

g(x̄, θ) = min
θ̂∈Θ∗

0

{
(θ̂ − θ)

(
Uθ(x

∗(θ̂), θ)− Uθ(x̄, θ)
)}

.

Step 1: Approximate the problem (P) by a sequence of relaxed problems
{
(P̄k)

}
k≥1

.

We approximate the principal’s screening problem (P) by a sequence of problems (P̄k), k =
1, 2, . . ., in each of which the constraints are relaxed. The sequence of relaxed problems approxi-
mates the original problem, since deviations from the constraints and the optimal control u∗ are
penalized using successively increasing weights. We first fix the positive numbers ε, δ, and

ū ≥ 2 + ess sup
θ∈Θ∗

0

∥u∗(θ)∥,

relative to which the sequence {(P̄k)}∞k=1 of relaxed problems will be defined. For any k ≥ 1, let

V k(x, u, θ) = V (x, θ)− δ∥u(θ)− u∗(θ)∥2 − kg−(x, θ)
2, (5.1)

where g− = min{g, 0} takes on nonzero (negative) values whenever the relevant constraint (3.2) of
the original problem (P) is violated. Similarly, for any θ0 ∈ Θ and x

¯
∈ Rn+1

+ we set

K(x
¯
, θ0) = (min{θ0, 0})2 + (U(x

¯
, θ0)− r(θ0))

2
(5.2)

to penalize deviations from the endpoint constraints (including θ0 ≥ 0) imposed in the original
problem. We are now ready to formulate the relaxed problem (P̄k) for any k ≥ 1, given an optimal
solution (x∗, u∗, θ∗0) ∈ D to the original problem (P):

sup(x,u,θ0,x
¯
)∈D̂

{∫ 1
θ0
V k(x(θ), u(θ), θ) dF (θ)− (x

¯
− x

¯
∗)2 − (θ0 − θ∗0)

2 − kK(x
¯
, θ0)

}
s.t.
ẋ = Φu, x(θ0) = x

¯
,

ε ≥ ∥x− x∗∥∞ + (x
¯
− x

¯
∗)2 + (θ0 − θ∗0)

2,
u ∈ U ,


(P̄k)

where D̂ = D×Rn+1
+ is an augmented domain of admissibility, U = {û ∈ Rn : ∥û∥ ≤ ū} is a control-

constraint set, and x
¯
∗ = x∗(θ∗0) is the bundle offered to the optimal marginal agent type. We denote

a solution to the relaxed problem (P̄k) by (xk, uk, θk0 , x¯
k). By setting uk to zero for all θ /∈ [θk0 , 1]

we extend any such solution to all types in Θ (containing the optimal interval [θk0 , 1]), so the state
trajectory xk is constant on [0, θk0 ].
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Step 2: Show that each problem (P̄k) has a solution.
For any k ≥ 1, there exists a solution (xk, uk, θk0 , x¯

k) to the relaxed problem (P̄k). Let

{(xk,j, uk,j, θk,j0 , x
¯
k,j)}∞j=1

be an admissible maximizing sequence [21, p. 193] for the problem (P̄k). Since uk,j takes values
in the closed ball of Rn at 0 of radius ū, and a forteriori the contract space (which contains all
bundles that can actually be transacted between principal and agent) is bounded by T1,24 this
maximizing sequence is uniformly bounded, which allows the following three conclusions for an
appropriate subsequence (and for simplicity we identify our original maximizing sequence with this
subsequence by relabelling indices if necessary). First, from the definition of an admissible sequence
{xk,j}∞j=1 ⊂ W1,∞ and the uniform boundedness of {ẋk,j}∞j=1 this sequence of state trajectories is

equicontinuous, so by the Arzelà—Ascoli theorem [22, Part I, p. 54] it converges uniformly to x̂k.

Second, we obtain pointwise convergence of (x
¯
k,j , θk,j0 ) to (x̂

¯
k, θ̂k0) as j → ∞. Third, since the space

of admissible controls L∞ is a subset of the Hilbert space L2 (which can be identified with its dual),
uk,j converges weakly to ûk as j → ∞.25

We now show that in fact the above limits coincide with the solution to (P̄k), i.e.,

(xk, uk, θk0 , x¯
k) = (x̂k, ûk, θ̂k0 , x̂¯

k). (5.3)

For any θ ∈ [θk0 , 1] it is

xk,j(θ) = xk,j(θk,j0 ) +

∫ θ

θk,j
0

Φ(xk,j(ϑ), ϑ)uk,j(ϑ) dϑ,

so by taking the limit for j → ∞:

x̂k(θ) = x̂k(θ̂k0) +

∫ θ

θ̂k0

Φ(x̂k(ϑ), ϑ)ûk(ϑ) dϑ.

Hence, the limiting tuple (x̂k, ûk, θ̂k0 , x̂¯
k) is consistent with the Cauchy problem for the state evolu-

tion, i.e., it satisfies
˙̂xk = Φûk, x̂k(θ̂k0) = x̂

¯
k.

The state constraint ε ≥ ∥x̂k − x∗∥∞ +
∥∥∥x̂
¯
k − x

¯
∗
∥∥∥2 +

(
θ̂k0 − θ∗0

)2
is satisfied by uniform con-

vergence of the maximizing sequence. Lastly, the control constraint ûk ∈ U is satisfied, since
each uk,j, j = 1, 2, . . ., is feasible (ū has been chosen appropriately large). The weak convergence

uk,j
w→ ûk as j → ∞ implies, by Mazur’s compactness theorem [23, p. 254], that there exists a

sequence {vk,j}∞j=1 with elements in the convex hull co {uk,j}∞j=1 which converges strongly to ûk

in Ln2 (Θ). We therefore obtain that equation (5.3) holds, i.e., the limit point (x̂k, ûk, θ̂k0 , x̂¯
k) of the

maximizing sequence describes an admissible solution to the relaxed problem (P̄k).

Step 3: Show that the solutions of (P̄k)k≥1 converge to the solution of (P).

As before, there exists an admissible tuple (x̂, û, θ̂0) ∈ D such that xk ⇒ x̂k, uk
w→ û, and θk0 → θ̂k0 .

We now show that
(x̂, û, θ̂0) = (x∗, u∗, θ∗0), (5.4)

i.e., in particular that xk ⇒ x∗, uk
w→ u∗, and θk0 → θ∗0.

24The assumption T1 is used here to guarantee the boundedness of the first (numéraire) component of the
attribute schedule, as its dynamics in (3.1) are not directly governed by the control variable.

25By the Banach—Alaoglu theorem the unit ball in L2 is weakly∗ (and therefore weakly) compact, so by
the Eberlein—Šmulian theorem it is also weakly sequentially compact [23, p. 229/248]. This property of
reflexive Banach spaces can also be deduced from the uniform boundedness principle [24, Ch. 2].
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Let πk(x, u, θ0, x
¯
) =

∫ 1

θ0
V k(x(θ), u(θ), θ) dF (θ)−∥x

¯
−x
¯
∗∥2− (θ0− θ∗0)2−kK(x

¯
, θ0). As a conse-

quence of the uniform boundedness of the state-control trajectories, there exists a constant M > 0
such that M ≥ πk(xk, uk, θk0 , x¯

k) for all k. Since πk(xk, uk, θk0 , x¯
k)− πk(x∗, u∗, θ∗0 , x¯

∗) ≥ 0, it is

M

k
≥
∫ 1

θk0

((
δ

k

)
∥uk − u∗∥2 + g2−

)
dF (θ) +

(
1

k

)[
∥x
¯
k − x

¯
∗∥2 + (θk0 − θ∗0)

2
]
+K(x

¯
k, θk0) ≥ 0.

Taking the limit for k → ∞, by continuity of K it is K(x̂
¯
, θ̂0) = 0, i.e., (x̂

¯
, θ̂0) satisfies the endpoint

constraints U(x̂
¯
, θ̂0) = r(θ̂0) and θ̂0 ≥ 0. Moreover,

lim
k→∞

∫ 1

θk0

(
g−(x

k, θ)
)2
dF (θ) = 0.

Since the type distribution F has full support Θ (no type can be excluded for sure), it is

g−(x
k, θ) = 0.

Hence, g(xk, θ) = 0, which is equivalent to{
θ̂ > θ ⇒ Uθ(x

∗(θ̂), θ) ≥ Uθ(x
k(θ), θ),

θ̂ ≤ θ ⇒ Uθ(x
∗(θ̂), θ) ≤ Uθ(x

k(θ), θ),

for all θ, θ̂ ∈ Θ. Because U is by assumption twice differentiable, and Uθ(x, θ) is Lipschitz-continuous
in x, there exists a constant L > 0 such that |Uθ(x̄, θ) − Uθ(ȳ, θ)| ≤ L∥x̄ − ȳ∥ for all x̄, ȳ in the

relevant (by assumption T1 bounded) contract space X and all θ ∈ Θ. For θ̂ > θ this means that

Uθ(x
k(θ̂), θ) + L∥x∗ − xk∥ ≥ Uθ(x

k(θ̂), θ) +
(
Uθ(x

∗(θ̂), θ)− Uθ(x
k(θ̂), θ)

)
≥ Uθ(x

k(θ), θ),

and, for θ̂ < θ, that

Uθ(x
k(θ̂), θ)− L∥x∗ − xk∥ ≥ Uθ(x

k(θ̂), θ) +
(
Uθ(x

∗(θ̂), θ)− Uθ(x
k(θ̂), θ)

)
≤ Uθ(x

k(θ), θ).

Hence, it is

min
θ̂∈Θ∗

0

{
(θ̂ − θ)

(
Uθ(x

∗(θ̂), θ)− Uθ(x
∗(θ), θ)

)}
≥ −Lε,

and for ε→ 0+ the limit (x̂, û, θ̂0, x̂
¯
) becomes admissible in problem (P). This implies

π(x∗, u∗, θ∗0, x¯
∗) ≥ π(x̂, û, θ̂0, x̂

¯
). (5.5)

On the other hand, πk(xk, uk, θk0 , x¯
k) ≥ πk(x∗, u∗, θ∗0 , x¯

∗) =: π(x∗, u∗, θ∗0, x¯
∗) = V̄ (x∗; θ∗0), whence

π(xk, uk, θk0 , x¯
k)− ∥x

¯
k − x

¯
∗∥2 − (θk0 − θ∗0)

2 − δ

∫ 1

θk0

∥uk − u∗∥2 dF (θ) ≥ π(x∗, u∗, θ∗0, x¯
∗)

for all k ≥ 1. Hence, taking the limit for k → ∞ yields

π(x̂, û, x̂
¯
, θ̂0)−

(
θ̂0 − θ∗0

)2
− δ lim

k→∞

∫
Θ0

∥uk − u∗∥2 dF (θ) ≥ π(x∗, u∗, θ∗0, x¯
∗),

which together with (5.5) implies that θ̂0 = θ∗0, û = u∗, and

lim
k→∞

∫
Θ

∥uk − u∗∥2 dF (θ) = 0,
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so the sequence {uk}∞k=1 converges to u∗ a.e. on Θ.

Step 4: Show that the problem (P̄k) becomes a standard OCP (P̄
′
k) for large k.

Because of the uniform convergence of the optimal state-trajectories xk and the pointwise con-
vergence of the boundary points θk0 (as k → ∞) to the corresponding optimal state trajectory x∗

and optimal boundary point θ∗0 of the original problem (P), the state constraint in the relaxed
problem (P̄k) is strictly not binding for large enough k, i.e.,

ε > ∥xk − x∗∥∞ +
(
θk0 − θ∗0

)2
,

as long as k is sufficiently large. Hence, for fixed constants ε, δ, and ū there exists a k0 = k0(ε, δ, ū) ≥
1 such that for all k ≥ k0 the problem (P̄k) can be rewritten equivalently in the form

sup(x,u,θ0,x
¯
)∈D̂

{∫ 1
θ0
V k(x(θ), u(θ), θ) dF (θ)− ∥x

¯
− x

¯
∗∥2 − (θ0 − θ∗0)

2 − kK(x
¯
, θ0)

}
s.t.
ẋ = Φu, x(θ0) = x

¯
.

 (P̄
′
k)

Necessary optimality conditions based on the maximum principle [7] for problem (P̄
′
k) are readily

available.

Step 5: Obtain necessary optimality conditions for (P̄
′
k).

We provide here a version of the maximum principle by Milyutin and Osmolovskii [25, P. 24–25].26

Let
Hk(x, u, θ, λk0 , ψ

k) = λk0V
kf + ψk · Φu

be the Hamiltonian function associated with problem (P̄
′
k), where λ

k
0 ∈ R is a constant multiplier,

ψk ∈ Rn+1 is an adjoint variable, and x is the state of the system. The Hamiltonian corresponds
to the instantaneous payoff to the principal including the current benefit of state velocities. The
shadow prices of these are measured by the adjoint variables λk0 and ψk respectively.

Maximum Principle for Problem (P̄
′
k). If (xk, uk, θk0 , x¯

k) is an optimal solution for the

problem (P̄
′
k), then there exists an absolutely continuous function ψk : [θk0 , 1] → Rn+1, and a con-

stant λk0 > 0, such that the following relations hold.

1. Adjoint Equation:
−ψ̇k(θ) = Hk

x(x
k(θ), uk(θ), θ, λk0 , ψ

k(θ)) (5.6)

2. State Transversality:

ψk(θk0) = 2k
(
U(x

¯
k, θk0)− r(θk0)

)
Ux(x

¯
k, θk0) + 2

(
x
¯
k − x

¯
∗) (5.7)

ψk(1) = 0 (5.8)

3. Maximality:
uk(θ) ∈ argmax

u∈U
Hk(xk(θ), u, θ, λk0 , ψ

k(θ)) a.e. on [θk0 , 1] (5.9)

One can extend the standard maximum principle comprised by the above conditions, and obtain
the following type-transversality condition.

4. Type Transversality:{
2
(
kmin{θk0 , 0}+ k

(
U(x

¯
k, θk0)− r(θk0)

) (
Uθ(x

¯
k, θk0)− ṙ(θk0)

)
+ (θk0 − θ∗0)

)
+ supu∈U H

k(x
¯
k, u, θk0 , λ

k
0, ψ

k(θk0)) = 0.

}
(5.10)

26They consider a slightly more general Mayer problem. Problem (P̄
′
k) is a Bolza problem on a variable

interval, which can be reduced to a Mayer problem (in which the objective function depends only on the
endpoints of the state trajectory) by introducing an additional real-valued state variable.
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The type-transversality condition is crucial for determining the missing multiplier associated with
the optimization of the participation set in the principal’s screening problem. To prove type
transversality, consider some real τ (with |τ | sufficiently small), and let

ω̂k0 (τ) = (xk(θk0 + τ), θk0 + τ),

and

Π̂k(τ) =

∫ 1

θk0+τ

λk0V
k(xk(θ), uk(θ), θ) dF (θ)− ∥ω̂k0 (τ)− (x

¯
∗, θ∗0)∥2 − kK(ω̂k0 (τ)),

where if necessary we extend the state-control trajectory beyond the lowest participating type.
Then by optimality of θk0 ,

0 ≤ Π̂k2(0)− Π̂k2(τ)

=

∫ θk0+τ

θk0

λk0V
k(xk, uk, θ) dF (θ) +

(
∥ω̂k0 (τ)− (x

¯
∗, θ∗0)∥2 − ∥(x

¯
k − x

¯
∗, θk0 − θ∗0)∥2

)
+k
(
K(ω̂k0 (τ))−K(x

¯
k, θk0 )

)
=

∫ θk0+τ

θk0

(
λk0V

kf +
(
2
(
xk(θ)− x

¯
∗)+ kKx

¯
(xk(θ), θ)

)
· ẋk(θ) + 2(θ − θ∗0) + kKθ0(x

k(θ), θ)
)
dθ

=

∫ θk0+τ

θk0

(
Hk(xk, uk, θ, λk0 , ψ

k)
∣∣
ψk=2(xk(θ)−x

¯
∗)+kKx

¯
(xk(θ),θ)

+ kKθ0(x
k(θ), θ)

)
dθ + 2(θk0 − θ∗0)τ + τ2

≤
∫ θk0+τ

θk0

(
sup
u∈U

Hk(xk, u, θ, λk0 , 2
(
xk − x

¯
∗)+ kKx

¯
(xk, θ)) + kKθ0(x

k(θ), θ)

)
dθ + 2(θk0 − θ∗0)τ + τ2.

By the first mean-value theorem for the integral [26, p. 352], the last integral can be written in the
form (

sup
u∈U

Hk
(
x(θ̌k0 ), u, θ̌

k
0 , λ

k
0 , 2

(
xk(θ̌k0 )− x

¯
∗)+ kKx

¯
(xk(θ̌k0 ), θ̌

k
0 )
)
+ kKθ0(x

k(θ̌k0 ), θ̌
k
0 )

)
τ

for some appropriate θ̌k0 ∈ [θk0 , θ
k
0 + τ ]. Hence, dividing the previous inequality by τ > 0 and

subsequently taking the limit for τ → 0+ yields

0 ≤ sup
u∈U

Hk(xk, u, θ, λk0, 2
(
x
¯
k − x

¯
∗
)
+ kKx

¯
(x
¯
k, θk0)) + kKθ0(x¯

k, θk0) + 2(θk0 − θ∗0). (5.11)

Consider now the case where we extend the type interval by an increment τ̂ > 0 to the left beyond
the optimal lowest type θk0 , which corresponds to τ < 0 in the above relations. If we set τ̂ = −τ > 0,
then it is (using our earlier computations)

0 ≤ −
∫ θk0

θk0−τ̂

(
Hk(xk, uk, θ, λk0, ψ

k)
∣∣∣
ψk=2(xk(θ)−x

¯
∗)+kKx

¯
(xk(θ),θ)

+ kKθ0(x
k(θ), θ)

)
dθ−2(θk0−θ∗0)τ̂+τ̂2,

where we can extend uk(θ), for all θ ∈ [θk0 − τ̂ , θk0 ] to the left. In particular, the latter extension
can be performed such that

ρ ≥
[
sup
u∈U

Hk
(
xk, u, θ, λk0 , kKx

¯
(xk(θ), θ)

)
−Hk

(
xk, uk, θ, λk0 , kKx

¯
(xk(θ), θ)

)]
on the interval [θk0 − τ̂ , θk0 ] for some arbitrary ρ > 0. Hence,

0 ≤ −
(
sup
u∈U

Hk(xk(θ̌k0 ), u, θ̌
k
0 , λ

k
0 , 2

(
xk(θ̌k0 )− x

¯
∗)+ kKx

¯
(xk(θ̌k0 ), θ̌

k
0 ))− ρ+ kKθ0(x

k(θ̌k0 ), θ̌
k
0 ) + 2(θk0 − θ∗0)

)
τ̂+τ̂2,
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for some θ̌k0 ∈ [θk0−τ̂ , θk0 ], so by dividing through τ̂ > 0 and taking the limits for τ̂ → 0+ and ρ→ 0+,
we get

0 ≥ sup
u∈U

Hk(x
¯
k, u, θk0 , λ

k
0, 2
(
x
¯
k − x

¯
∗
)
+ kKx

¯
(x
¯
k, θk0)) + kKθ0(x¯

k, θk0) + 2(θk0 − θ∗0). (5.12)

Relations (5.11) and (5.12), together with (5.7), are equivalent to (5.10).

Using the above extended maximum principle (5.6)–(5.10) for the relaxed problem (P̄
′
k), one

obtains the adjoint equation

−ψ̇k = λk0Vxf + νkgx + ψk ·
(
Φxu

k
)
= λk0Vxf + νkgx + ψk0φxu

k (5.13)

on Θ, where

νk(θ) =

{
−2kλk0g−(x

k, θ), θ ∈ [θk0 , 1],
0, otherwise.

(5.14)

The maximality condition (5.9) constitutes a constrained optimization problem, for which there
exists a Lagrange multiplier ςk = ςk(θ) such that

ψ0φi + ψi − 2λk0δ(u
k
i − u∗

i ) + 2ςkuki = 0

for all i ∈ {1, . . . , n}, with complementary slackness ςk
(
∥uk∥ − ū

)
= 0. By Step 3 we know

that uk → u∗ a.e. on Θ. Hence, by Egorov’s theorem [27, p. 24] for any δ̄ > 0 there is a subset Θδ̄

of Θ, such that
∫
Θ\Θδ̄

dθ < δ̄ and uk ⇒ u∗ uniformly on Θδ̄. Since u∗ is feasible, this uniform

convergence implies that uk /∈ ∂U on Θδ̄ for k large enough. By virtue of complementary slackness,
the corresponding Lagrange multipliers ςk and ρk therefore vanish on Θδ̄, as long as k is large
enough. In other words,

ψ0φi + ψi − 2λk0δ(u
k − u∗) = 0 (5.15)

a.e. on Θ for all i ∈ {1, . . . , n}, as long as k is large enough.

Step 6: Derive necessary optimality conditions for (P).
The sequence {λk0}∞k=1 is uniformly bounded and {ψk}∞k=1 is also equicontinuous. Hence we conclude,
as before (in Step 2), that there exist ψε,ū and λδ,ū, such that

ψk ⇒ ψδ,ū, λk0 → λδ,ū.

As already indicated through the notation, the limits ψδ,ū and λδ,ū generically depend on the
constants δ and ū. More specifically, these limits correspond to the optimal solution to the screening
problem (P) if we replace V by V − δ∥u− u∗∥2 and introduce the additional constraint ∥u∥ ≤ ū.

Adjoint Equation. Since by the maximum principle for problem (P̄
′
k) (cf. Step 5) it is λk0 >

0, relations (5.6)–(5.8) are positively homogeneous of degree one in ψk/λk0 , and relation (5.9) is
positively homogeneous of degree zero, it is possible to multiply equations (5.6)–(5.8) with positive
numbers (and relabel the variables λk0 and ψk back), such that

0 < λk0 + max
θ∈[θk0 ,1]

∥ψk(θ)∥2 +
∫ 1

θk1

(
νk(θ)

)2
dθ ≤ 1. (5.16)

Integrating the components of the adjoint equation (5.13) yields (using the state-transversality
condition (5.8))

ψk(θ) =

∫ 1

θ

(
λk0Vxf + ψk0φxu

k
)
dθ +

∫ 1

θ

νkgxdθ (5.17)

for all θ ∈ Θ (using the standard extension from [θk0 , 1] to Θ explained in Step 1).
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Consider now a Borel measure with density given νk by (5.14).27 By abuse of notation we denote
this measure also by νk. The Borel measure νk is nonnegative by construction and bounded as a
consequence of (5.16). Thus, there exists a Borel measure ν, such that (passing to a subsequence

if necessary) νk
w→ ν as k → ∞.

Since the total variation of ψk on Θ is uniformly bounded for all k by (5.16) (for every ab-
solutely continuous function is of bounded variation on a compact interval [28, p. 412]), and the
sequence {ψk} is also uniformly bounded as a consequence of (5.17), by Helly’s selection princi-

ple [28, p. 398] there exists a function ψ̂, so (a subsequence of) the sequence {ψk} converges to ψ̂.
By taking the limit in (5.17) for k → ∞ we thus obtain

ψ̂x(θ) =

∫ 1

θ

(
λ0Vxf + ψ̂ · Φx

)
dθ +

∫ 1

θ

gxdν, (5.18)

for almost all θ ∈ Θ∗
0, where ψ̂ = ψδ,ū. The adjoint equation C1 then follows by noting that (using

the envelope theorem) gx(x
∗(θ), θ) = − (ρ(x∗(θ), θ)− θ)Uxθ(x

∗(θ), θ).

Maximality. Consider the maximality condition (5.15) for Problem (P̄k), which holds for k
large enough. Since xk ⇒ x∗ and uk → u∗ (a.e. on Θ) for k → ∞, we obtain the maximality
condition C2.

Transversality. Since θk0 → θ∗0 as k tends to infinity (cf. Step 3), by setting

λ1 = − lim
k→∞

2k
(
U(x

¯
k, θk0)− r(θk0)

)
and λ2 = − lim

k→∞
2kmin{θk0 , 0}

we obtain from the state-transversality condition (5.7) for k → ∞ (taking into account the maxi-
mality condition C2) that

ψ(θ∗0) = −λ1Ux(x
¯
∗, θ∗0), (5.19)

and from the type transversality condition (5.10) that

−λ1 (Uθ(x
¯
∗, θ∗0)− ṙ(θ∗0))− λ2 + λ0V (x

¯
∗, θ∗0) = 0. (5.20)

If θ∗0 > 0, then by the definition of λ2 it is λ2 = 0. Combining relations (5.19) and (5.20) for λ2 = 0
yields the transversality condition C3 (ii). If on the other hand θ∗0 = 0, then we obtain the
transversality condition C3 (i) from relation (5.19) directly.

27Recall [29, Ch. 1] that all Borel measures ν on Θ form a linear normed space with norm

∥ν∥ = sup
h∈C[0,1]:∥h∥∞=1

∫ 1

0

h(ϑ) dν(ϑ).

Interpreting the above Stieltjes integral as a scalar product, we can think of any Borel measure ν as an
element of the dual space (C[0, 1])∗. A sequence of Borel measures ν1, ν2, . . . weak∗-converges to ν if for
all h ∈ C[0, 1], ∫ 1

0

h(ϑ) dνk(ϑ) →
∫ 1

0

h(ϑ) dν(ϑ),

as k → ∞. Since C[0, 1] is separable, by the theorem of choice every (bounded) sequence of measures has a

weak∗-convergent subsequence [30, p. 64; 31, p. 189]. Since for any h ∈ C[0, 1] the function
∫ θ
0
h(ϑ) dν(ϑ) is

continuous a.e. on Θ, for any sequence of points {θk}∞k=1 with limit θ, for almost every such θ ∈ Θ it is:

lim
k→∞

∫ θk

0

h(ϑ) dν(ϑ) =

∫ θ

0

h(ϑ) dν(ϑ).

Moreover, if in addition the sequence {νk}∞k=0 of Borel measures has the Borel measure ν as its limit, then

lim
k→∞

∫ θk

0

h(ϑ) dνk(ϑ) =

∫ θ

0

h(ϑ) dν(ϑ)

for almost every θ ∈ Θ.



Optimal Multiattribute Screening 107

Complementary Slackness. The definition (5.14) of the measure νk, and the fact that νk
w→ ν

as k → ∞ (cf. also footnote 27) yields the complementary slackness condition C4.

Nontriviality. If λ0 and ψ are trivial, then (λ0, ψ) must vanish identically on Θ∗
0. From the

adjoint equation C1 it follows that ∫ 1

θ

gx(x
∗(ϑ), ϑ) dν(ϑ) = 0

for all θ ∈ Θ∗
0. By the complementary slackness condition C4, whenever ν(θ) ̸= 0 it is also

g(x∗(θ), θ) = 0. This implies that ∫ 1

θ∗0

dν = 0.

On the other hand, it is possible to renormalize the middle term in (5.16) in the solution of the
approximate problem (P̄k) such that

λk0 + max
θ∈[θk0 ,1]

∥ψk(θ)∥2 +
∫ 1

θk0

+
(
νk(θ)

)2
dθ = 1

for any k ≥ 1. By taking the limit for k → ∞,∫ 1

θ∗0

(ν(θ))
2
dθ = 1.

By the nonnegativity of the measure ν, this yields a contradiction. Hence, the incentive regularity
condition A3 ensures that (λ0, ψ) does not vanish identically on the optimal participation set Θ∗

0,
which implies the nontriviality condition C5. �
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Abstract: The paper is devoted to the optimal control problem for a linear system with integrally constrained
control function. We study the problem of minimization of a linear terminal cost with terminal constraints given
by a set of linear inequalities. For the solution of this problem we propose two-stage numerical algorithm, which
is based on construction of the reachable set of the system. At the first stage we find a solution to finite-
dimensional optimization problem with a linear objective function and linear and quadratic constraints. At the
second stage we solve a standard linear-quadratic control problem, which admits a simple and effective solution.

Key words: Optimal control, Reachable set, Integral constraints, Convex programming, Semi-infinite linear
programming.

Introduction

The optimal control problems under integrally constrained controls were studied in many papers
(see, for example, [1, 5, 7–9,12,13]). In [2, 3] the authors considered the linear control system with
integrally constrained control. They studied the problem of minimization of a linear terminal cost
under linear terminal constraints and proposed a saddle-point method to solve it.

We propose here a two-stage numerical algorithm for the solution of above optimal control
problem. It is based on constructing the reachable set of the control system, and we use here
the well-known result that this set for a linear control system with integral quadratic constraints
on controls is an ellipsoid in the state space. Then, at the first stage, we find a minimum of a
linear function on the intersection of the polyhedron and ellipsoid. This problem may be solved
numerically in different ways. At the second stage, we solve the standard linear-quadratic control
problem with fixed endpoints of the trajectory, this problem has a simple and effective solution in
the linear case. The typical unpleasant feature of the optimal control problem with terminal cost
is a nonuniqueness of solutions, which always takes place if the endpoint of the optimal trajectory
belongs to the interior of the reachable set. This leads to additional difficulties in the construction
and implementation of numerical algorithms. The method proposed here avoids these problems.

1The research is supported by Russian Science Foundation, project no. 16–11–10146.
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1. Notation and problem statement

We use the following notations. By A⊤ we denote the transpose of a real matrix A, 0 stands for
a zero vector of appropriate dimension, I is an identity matrix. For x, y ∈ R

n let (x, y) = x⊤y be

the inner product, x⊤ = (x1, . . . , xn), ‖x‖ = (x, x)
1

2 be the Euclidean norm, and Br(x̄): Br(x̄) =
{x ∈ R

n : ‖x − x̄‖ ≤ r} be a ball of radius r > 0 centered at x̄. For a set S ⊂ R
n let ∂S, intS,

clS, coS be a boundary, an interior, a closure, and a convex hull of S respectively; ∇g(x) is the
gradient of a function g(x) at the point x, ∂f

∂x
(x) is the Jacobi matrix of a vector-valued function

f(x). For a real k ×m matrix A a matrix norm is denoted as ‖A‖k×m. The symbols L1, L2 and
C stand for the spaces of summable, square summable and continuous functions respectively. The
norms in these spaces are denoted as ‖ · ‖L1

, ‖ · ‖
L2
, ‖ · ‖

C
.

We consider a linear control system with integral constraints on a controls

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ [t0, t1], x(t0) = x0, (1.1)

where x ∈ Rn, u(t) ∈ Rr, A(t), B(t) are integrable on [t0, t1] matrix functions. Let the control
constraints are defined by the integral quadratic inequality

u(·) ∈ U =

{

u(·) ∈ L2 : J(u(·)) = ‖u(·)‖2L2
=

∫ t1

t0

u⊤(t)u(t)dt ≤ µ2
}

, (1.2)

where µ > 0 is a given number. For any u(·) ∈ L2 there exists a unique absolutely continuous
solution x(t) of system (1.1), which is defined on interval [t0, t1].

Assume that m × n–matrix D, vectors d ∈ R
m and c ∈ R

n are given. We consider here the
following optimal control problem for system (1.1):

I(u(·)) = c⊤x(t1) → min, (1.3)

under constraints
u(·) ∈ U, Dx(t1) ≤ d. (1.4)

Definition 1. The reachable set G(t1) of system (1.1) at time instant t1 is a set of all states

x(t1) that can be reached by the trajectories of (1.1) corresponding to controls u(·) ∈ U :

G(t1) = {x ∈ R
n : ∃u(·) ∈ U, x = x(t1)},

where x(t) is a solution of (1.1).

The considered optimization problem may be split into two following subproblems.

Problem 1 (the first stage): to find x∗ ∈ R
n that solves the finite-dimensional optimization

problem
c⊤x→ min,

under constraints

x ∈ G(t1), Dx ≤ d.

Here the reachable set G(t1) is an ellipsoid in R
n those parameters are calculated effectively. Thus,

the optimization Problem 1 may be solved by employing the methods of linear or convex program-
ming.

Problem 2 (the second stage): to find a control u(·) ∈ U that steers the trajectory x(t) of (1.1)
to point x(t1) = x∗ and minimizes functional J(u(·)).
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2. Description of reachable sets

Let X(t, τ) = Φ(t)Φ−1(τ), where Φ(t) is a Cauchy matrix, satisfying the equation

Φ̇(t) = A(t)Φ(t), Φ(t0) = I.

A solution of (1.1) at time instant t1 has the form

x(t1) = x̂+

∫ t1

t0

X(t1, τ)B(τ)u(τ)dτ, (2.1)

where x̂ = X(t1, t0)x
0. Take an arbitrary vector l ∈ R

n, l 6= 0 and calculate the maximum of inner
product (l, x(t1)) over all x(t1) ∈ G(t1):

max
x(t1)∈G(t1)

(l, x(t1)) = l⊤x̂+ max
u(·)∈U

∫ t1

t0

l⊤X(t1, τ)B(τ)u(τ)dτ = l⊤x̂+ max
〈u(·),u(·)〉≤µ2

〈v(·), u(·)〉 =

= l⊤x̂+ µ‖v(·)‖
L2

= µ
√

l⊤W (t1)l + l⊤x̂.

Here v(t) = B⊤(t)X⊤(t1, t)l,

〈v(·), u(·)〉 =

∫ t1

t0

v⊤(t)u(t)dt

is an inner product of functions v(·), u(·) in the Hilbert space L2, and symmetric matrix W (t) is
defined by the equality

W (t) =

∫ t

t0

X(t, τ)B(τ)B⊤(τ)X⊤(t, τ)dτ.

Differentiating the last equality in t we get the following matrix differential equation for W :

Ẇ (t) = A(t)W (t) +W (t)A⊤(t) +B(t)B⊤(t), W (t0) = 0. (2.2)

It is known (see, for example, [10]), that system (1.1) is completely controllable on [t0, t1], if and
only if W (t1) is positive definite. In this case G(t1) is a nondegenerate ellipsoid

G(t1) = {(x− x̂)⊤W−1(t1)(x− x̂) ≤ µ2}.

If the system is not completely controllable, the reachable set is a degenerate ellipsoid (ellipsoid,
lying in a subspace of dimension less than n). It is obvious, that x ∈ ∂G(t1) if and only if there
exists a vector l 6= 0 such that (l, x) = maxy∈G(t1)(l, y), and hence, a control u(·) steering the
system trajectory to point x satisfies the relation

∫ t1

t0

l⊤X(t, τ)B(τ)u(τ)dτ = max
〈u(·),u(·)〉≤µ2

〈v(·), u(·)〉, (2.3)

where v(t) is defined above. If the system is completely controllable, v(·) 6= 0 and the equality (2.3)
uniquely determines u(t) = αv(t), where α = µ/‖v(·)‖L2

. Denote p(t) = αX⊤(t1, t)l, assuming that
p(t) is a nontrivial solution of the adjoint differential equation ṗ(t) = −A⊤(t)p(t) and the relations

u(t) = B⊤(t)p(t), J(u(·)) = µ2

hold. Define a Hamiltonian H(p, t, x, u) by the expression

H(p, t, x, u) = −
1

2
u⊤u+ p⊤(A(t)x+B(t)u).
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Equating to zero the gradient of H(p(t), t, x(t), u) in u, from the concavity of the Hamiltonian in u
we get that control u(t) = B⊤(t)p(t) satisfies the maximum principle

H(p(t), t, x(t), u(t)) = max
v∈Rr

H(p(t), t, x(t), v),

where p(t) is a nontrivial solution of the adjoint differential equation

ṗ(t) = −
∂H

∂x
(p(t), t, x(t), u(t)).

This form of the maximum principle corresponds to the problem of minimization of a convex
functional J(u(·)) on solutions of linear system (1.1)

J(u(·)) → min, x(t0) = x0, x(t1) = x. (2.4)

Since for a linear-convex optimal control problem the maximum principle provides necessary and
sufficient optimality conditions, a control u(t) = B⊤(t)p(t), found from the maximum principle,
solves problem (2.4). Inversely, let u(·) be the solution to problem (2.4) and let J(u(·)) = µ2. Then
we will have x ∈ G(t1). Indeed, if we assume that x /∈ ∂G(t1), then

(x− x̂)⊤W−1(t1)(x− x̂) = ν2 < µ2.

Hence, the control system can be transferred to the point x by the control v(·), for this control we
have J(v(·)) ≤ ν2 < µ2 which contradicts to the optimality of u(t). Thus, we come to the following
statement.

Assertion 1. Let system (1.1)4 be completely controllable. In order to control u(·) steers a

trajectory of system (1.1) to point x, lying on the boundary of the reachable set G(t1), it is necessary
and sufficient that this control solves the extremal problem (2.4) and the minimum of functional J
equals to µ2.

3. The algorithm of solving the optimal control problem

Having the parameters of the reachable set given, let us describe the algorithm of the solution
of the problem. Consider system (1.1) and assume that it is completely controllable. Then, at the
first stage, we should solve the Problem 1

c⊤x→ min,

Dx ≤ d,

(x− x̂)⊤W−1(t1)(x− x̂) ≤ µ2.

(3.1)

The problem (3.1) is a linear programming problem with an additional constraint, which is defined
by an inequality with a positive definite quadratic form. This problem may be solved by various
algorithms. For example, in [11] the authors proposed a finite convergent algorithm for solution of
the problem of type (3.1).

The second way of finding the solution concerns with description of the ellipsoidal reachable
set via its support function:

G(t1) = {x ∈ R
n : (l, x) ≤ ψ(l), ∀l ∈ S},

where the support function has the form

ψ(l) = µ
√

l⊤W (t1)l + (x̂, l),
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with S = {l : ‖l‖ = 1}. Then, the problem (3.1) may be written as follows

c⊤x→ min,

Dx ≤ d, l⊤x− ψ(l) ≤ 0, l ∈ S.
(3.2)

The problem (3.2) is a semi-infinite linear programming problem [6], which can be solved by a
number of effective numerical algorithms.

Choosing a finite grid of N vectors li ∈ S, we can approximate the problem (3.2) by the
following linear programming problem with a finite number of constraints

c⊤x→ min,

Dx ≤ d, li
⊤x− ψ(li) ≤ 0, i = 1, ..., N.

(3.3)

Let a solution x∗ of problem (3.1) ((3.2), (3.3)) be obtained (this solution is unique as a rule).
Then we come to the next stage: to find the solution of the next problem

J(u(·)) → min, x(t0) = x0, x(t1) = x∗. (3.4)

For completely controllable system this solution does exist and is unique. It may be obtained from
the maximum principle:

u(t) = B⊤(t)p(t), ṗ = −A⊤(t)p(t), p1 = p(t1). (3.5)

Represent p(t) as follows
p(t) = X⊤(t1, t)p

1,

then we have

x(t1) = x̂+

∫ t1

t0

X(t1, τ)B(τ)B⊤(τ)X⊤(t1, τ)p
1dτ = x∗. (3.6)

Thus, to find an optimal control it is sufficient:
1) to find a vector p1 from the linear equation

W (t1)p
1 + x̂ = x∗, (3.7)

2) to integrate adjoint equation (3.5) with boundary condition p(t1) = p1 and substitute p(t) into
the formula for u(t).

We can put from the very beginning x(t1) = x̂ + W (t1)p
1 and solve a semi-infinite linear

programming problem in the dual variables p1

c⊤W (t1)p
1 → min

DW (t1)p
1 ≤ d−Dx̂, l⊤W (t1)p

1 − µ
√

l⊤W (t1)l ≤ 0, l ∈ S.
(3.8)

The last form is more convenient, it may be used even in the case of degenerate matrix W (t1).
Really, it is known [8] that if there exists a control from L2 that steers the control system from
x0 to x∗, than control u(·) solving the problem (3.4) is a linear combination of columns of matrix
B⊤(τ)X⊤(t1, τ). That is

u(τ) = B⊤(τ)X⊤(t1, τ)p
1

for some p1 ∈ R
n. Substituting the control u(t) into equality (3.6) we get (3.7). Thus, the following

theorem holds.

Theorem 1. Assume that the system of constraints (1.1), (1.4) is consistent. Then the optimal

control in the problem (1.3)–(1.4) is given by formulas (3.5), where p1 is a solution to the linear

semi-infinite optimization problem (3.8).
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4. Example
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Figure 1. Graphs of optimal controls

Consider an illustrative example of optimal
control problem for a linear control system de-
scribed by the equations

ẋ1 = x2,

ẋ2 = −x1 + x3, (4.1)

ẋ3 = u

with t0 = 0, t1 = 2π and x0 = (1, 0, 0)⊤.
We consider the integral quadratic constraints

on controls given by the inequality (1.2) with µ2 = 1.

Assume a matrix D and a vector d that determine the terminal constraints are

D =





0 1 0
0 −1 0
0 0 −1



 , d =





1
1
0



 .

Integrating a differential equations (2.2) for matrix W and calculating vector x̂ we get

W (2π) =





9.4264 0.0005 6.2831
0.0005 3.1399 0.0000
6.2831 0.0000 6.2832



 , x̂ =





1
0
0



 .

Let the terminal cost is determined by vector c = (0, 2, 2)⊤. Solving the problem (3.1) we get the
solution

x∗ = (0.9993,−1.0000, 0.0000)⊤ , p1 = (−0.0002,−0.3185, 0.0002)⊤ .

The graph of the optimal control is shown in Figure 1 by the black line. Here x∗ is the interior
point of the reachable set, so there are infinitely many admissible control inputs that steer the
trajectories to point x∗. Among these inputs the considered control input has a minimal value of
the integral functional J(u(·)) which equals to 0.3185.

Consider another case and put c = (1, 0, 0)⊤. In this case we have the following solution

x∗ = (−0.7729,−0.0003, 0.0000)⊤ , p1 = (−0.5640,−0.0000, 0.5640)⊤ .

Here (x∗ − x̂)⊤W−1(2π)(x∗ − x̂) = 1, hence x∗ belongs to the boundary of the reachable set. In
this case there exists a unique optimal control input which is shown in Figure 1 by the blue line.

5. Further generalizations

Consider here the generalized statement for the previous problem. We assume that integral
constraints restrict simultaneously a control and a trajectory of system (1.1) as follows

J(u(·)) =
1

2

∫ t1

t0

(

x⊤(t)Q(t)x(t) + u⊤(t)R(t)u(t)
)

dt ≤
µ2

2
, (5.1)

where Q(t) is a nonnegative definite and R(t) is a positive definite matrix for every t ∈ [t0, t1].
Suppose Q(t) and R(t) to be the measurable and bounded matrix functions.
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Assume that a pair (A(t), B(t)) is completely controllable on [t0, t1]. Let x(t0) = x0 be fixed
and let x ∈ G(t1). The set of trajectories satisfying inequality (5.1) is a compact set in C. Hence,
there exists the solution to the problem

J(u(·)) → min, x(t0) = x0, x(t1) = x,

this solution is unique due to strict convexity of the functional J(u(·)).
Consider a Hamiltonian

H(t, x, u, (p0, p)) = −p0
1

2

(

x⊤Q(t)x+ u⊤R(t)u
)

+ p⊤(A(t)x+B(t)u).

According to the maximum principle (see, for example, [4, 10]) there exist (p0, p(·)) 6= 0 such that
u(t) maximizes a Hamiltonian, hence we have ∂H

∂u
= 0 and

ṗ(t) = −
∂H

∂u
= −A⊤(t)p(t) + p0Q(t)x.

Assuming p0 = 0, we get p(·) 6= 0. Then p(t) is a nonzero solution of the equation

ṗ(t) = −A⊤(t)p(t),

and the condition ∂H/∂u = 0 implies the equality p⊤(t)B ≡ 0, this contradict to the controllability
conditions. Thus, p0 6= 0, so we can take p0 = 1. In this case we have

u(t) = R−1(t)B⊤(t)p(t). (5.2)

Substituting control (5.2) into equations of the control system we get

ẋ = A(t)x+B(t)R−1(t)B⊤(t)p,

ṗ = −A⊤(t)p+Q(t)x.
(5.3)

Thus, (5.3) is a linear homogeneous system of differential equations

(

ẋ
ṗ

)

=

(

A(t) B(t)R−1(t)B(t)
Q(t) −A⊤(t)

)(

x
p

)

. (5.4)

The solution of (5.4) with the initial state x(t0) = x0, p(t0) = p0 has the form

(

x(t)
p(t)

)

= Y (t)

(

x0

p0

)

,

where Y (t) is the fundamental matrix of system (5.4) satisfying the initial condition Y (t0) = I.
Representing Y (t) as a block matrix

Y (t) =

(

Y11(t) Y12(t)
Y21(t) Y22(t)

)

,

we will have
x(t) = Y11(t)x

0 + Y12(t)p
0,

p(t) = Y12(t)x
0 + Y22(t)p

0,

x = x(t1) = Y11(t1)x
0 + Y12(t1)p

0,

u(t) = R−1(t)B⊤(t)
(

Y12(t)x
0 + Y22(t)p

0
)

.

(5.5)
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Substituting x(t) and u(t) into J(u) we get

J(u(·)) =
1

2

∫ t1

t0

[

(

x0
⊤
Y11

⊤(t) + p0
⊤
Y12

⊤(t)
)

Q(t)
(

Y11(t)x
0 + Y12(t)p

0
)

+
(

x0
⊤
Y12

⊤(t) + p0
⊤
Y22

⊤(t)
)

B(t)R−1⊤(t)B⊤(t)
(

Y12(t)x
0 + Y22(t)p

0
)

]

dt ≤
µ2

2
,

or

x0
⊤
S11x

0 + x0
⊤
S12p

0 + p0
⊤
S22p

0 ≤ µ2, (5.6)

where

S11 =

∫ t1

t0

(

Y11
⊤(t)Q(t)Y11(t) + Y12

⊤(t)B(t)R−1(t)B⊤(t)Y12
⊤(t)

)

dt,

S12 = 2

∫ t1

t0

(

Y11
⊤(t)Q(t)Y12(t) + Y12

⊤(t)B(t)R−1(t)B⊤(t)Y22
⊤(t)

)

dt,

S22 =

∫ t1

t0

(

Y12
⊤(t)Q(t)Y12(t) + Y22

⊤(t)B(t)R−1(t)B⊤(t)Y22
⊤(t)

)

dt.

Matrices S11, S22 are, obviously, nonnegative definite.

Assertion 2. If the pair (A(t), B(t)) is completely controllable on [t0, t1] then S22 is a positive

definite matrix.

P r o o f. Suppose to the contrary that there exists p0 6= 0 : S22p
0 = 0. Let us take x0 = 0 and

α ∈ R. Denote

p̄(t) = Y22(t)p
0, ū(t) = R−1B⊤(t)p̄(t), x̄(t) = Y12(t)p

0.

Multiply p0 on α, then αū(t) satisfies (5.1), that is

α2

∫ t1

t0

ū⊤(t)R(t)ū(t)dt ≤
µ2

2

for any α, this implies ū(t) ≡ 0, that is B⊤(t)p̄(t) ≡ 0. To zero controller ū(t) and state x0 = 0
there corresponds the trajectory x̄(t) ≡ 0. Hence, from the equations of adjoint system we get

˙̄p(t) = −A⊤(t)p̄(t) +Q(t)x̄(t) = −A⊤(t)p̄(t).

Thus, p̄(t) is a nonzero solution of the adjoint homogenous system such that p̄⊤(t)B(t) ≡ 0. This
contradicts to the controllability of the system.

In the last case the problem (3.1) may be written as follows

c̄⊤p0 → min

D̄p0 ≤ d̄, p0
⊤
S22p

0 + x0
⊤
S12p

0 ≤ µ2 − x0
⊤
S11x

0,
(5.7)

where

c̄⊤ = c⊤Y12(t1), D̄ = DY12(t1), d̄ = d−DY11(t1)x
0.

This is also a problem of the above type with the linear constraints and one quadratic constraint.
Solving this problem we can obtain an optimal control by the explicit formulas (5.5).

The reduction of the integral constraints to quadratic constraint (5.6) allows us to easily gen-
eralize the considered problem to the case, when x0 is not fixed but belongs to some polyhedron.
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6. Conclusion

We consider an optimal control problem for a linear system with integrally constrained control,
with a linear terminal cost and with terminal constraints given by a set of linear inequalities. This
problem is, in fact, the ill-posed problem because of nonuniqueness of optimal control, which always
takes place if the end point of the optimal trajectory belongs to the interior of the reachable set of
the control system. We propose here a simple numerical algorithm for solving the optimal control
problem, which uses a known explicit description of the reachable sets for linear systems with
integral quadratic constraints on control functions. The algorithm is based on the reduction of
considered problem to the solution of a finite-dimensional convex programming problem in primal
or dual variables. This method allows to avoid difficulties related to nonuniqueness of optimal
control.
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Abstract: The Hitting Set Problem (HSP) is the well known extremal problem adopting research interest in
the fields of combinatorial optimization, computational geometry, and statistical learning theory for decades. In
the general setting, the problem is NP-hard and hardly approximable. Also, the HSP remains intractable even
in very specific geometric settings, e.g. for axis-parallel rectangles intersecting a given straight line. Recently, for
the special case of the problem, where all the rectangles are unit squares, a polynomial but very time consuming
optimal algorithm was proposed. We improve this algorithm to decrease its complexity bound more than 100
degrees of magnitude. Also, we extend it to the more general case of the problem and show that the geometric
HSP for axis-parallel (not necessarily unit) squares intersected by a line is polynomially solvable for any fixed
range of squares to hit.

Key words: Hitting set problem, Dynamic programming, Computational geometry, Parameterized com-
plexity.

Introduction

We consider the parameterized complexity of a geometric statement of the well-known Hitting
Set Problem (HSP), engaging researchers in combinatorial optimization, computational geometry
and statistical learning from early 1980-th.

To the best of our knowledge, HSP gains theoretical interest because it was the first intractable
combinatorial optimization problem, whose approximation algorithms were dramatically improved
[11] on the basis of Vapnik and Chervonenkis’s [15] results in statistical learning theory. The
development of randomized algorithms for HSP and related combinatorial problems defined on
range spaces of finite VC-dimension, initiated by seminal papers [1] and [6] established a new field
in modern computational geometry.

On the other hand, the concepts of hitting set and classifier ensemble, making decisions by some
voting logic, seem to be related very closely. Consequently, approximation techniques developed
for HSP and its dual Set Cover problem are closely related to the well-known boosting learning
technique [14], especially in the context of the minimal committee problem looking for minimum
VC-dimension correct majoritary classifier ensemble (see, e.g., [8–10]).

In addition, new efficient optimal and approximation algorithms for Hitting Set and Set Cover
problems have a practical importance, e.g. in design of reliable wireless networks [13].

The Hitting Set Problem for Axis-Parallel Rectangles (HSP–APR) is a well-studied geometric
setting of the HSP. This setting is also NP-hard [5] and remains intractable even for unit squares.
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In papers [2,7], first polynomial time approximation schemes (PTAS) are proposed for axis-parallel
squares. Paper [3] introduces 6-approximation polynomial time algorithm for the case of rectangles
intersecting some axis-monotone curve. In [4], this particular case of HSP–APR is proved to be
NP-hard even for a straight line and the first 4-approximation algorithm is constructed.

In this paper, we improve one of the recent results describing a polynomial time solvable subclass
of this problem. Recently, Mudgal and Pandit [12] introduced an optimal polynomial time algorithm
for the Hitting Set Problem for Axis Parallel Unit Squares Intersecting a given Straight Line
(HSP–APUS–ISL). The theoretical importance of this result can hardly be overestimated, since
almost all known geometric settings of the HSP, including extremely specific ones, are intractable.
Unfortunately, this algorithm is impractical due to its incredibly high time consumption of O(n145).
In Section 2, we propose the improved version of the algorithm, whose complexity bound O(n37)
is still high but by more than 100 degrees of magnitude better. Further, in Section 3, we extend
this algorithm on a case of squares of different sizes (HSP–APS–ISL) and show that this problem
can be solved to optimal in polynomial time for any fixed range of square sizes.

1. Problem statement

We consider the following geometric setting of the well-known Hitting Set Problem, which is
called the Hitting Set Problem for Axis-Parallel Squares Intersecting a Straight Line (HSP–APS–
ISL) (see Fig. 1). In the Euclidean plane, a finite collection S = {Q1, . . . , Qn} of axis-parallel
(closed) squares intersecting some straight line d is given. For the collection S, it is required to
find a hitting set P ∗ of the minimum size, i.e.

P ∗ = arg min{|P | : P ⊂ R2, P ∩Qj 6= ∅, j = 1, . . . , n}.

Figure 1. Problem statement
Figure 2. K does not exceed the number of rectan-
gular cells induced by the lines defining borders of
Q1, . . . , Qn

Without loss of generality we assume that the line d is defined by the equation kx+ y = 0 for
some k ≥ 1.

The collection S partitions the plane onto mutually disjunctive regions θ1, . . . , θK such that,
any points p1 and p2 belong to the same region θk if and only if

(∀Qj ∈ S) ((p1 ∈ Qj) ⇐⇒ (p2 ∈ Qj)).

Since each minimal hitting set contains at most one point pk taken from any region θk, the initial
continuous problem is polynomially equivalent to the corresponding combinatorial one, which is of
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finding a minimal hitting set among subsets of the finite set

P = {p1, . . . , pK}, pk ∈ θk \
⋃
l 6=k

θl.

Indeed, for any collection of n axis-parallel squares (and even rectangles), the corresponding set P
contains at most O(n2) elements (see Fig. 2) and can be constructed in polynomial time.

2. Improved algorithm for unit squares

In this section we describe parameterized optimal algorithm for HSP–APS–ISL and discuss
its application to solving the special case of this problem, HSP–APUS–ISL, where collection S
consists of equal squares (without loss of generality, which are assumed to be unit). We start with
the similar (but not the same) notation to introduced in [12].

First, we partition the plane by straight lines l0, . . . , lr+2 orthogonal to d with distance of
√

2/2
between each neighboring lines such that, for each square Qj ∈ S, its center Cj is located between
l1 and lr+1 (hereinafter all tights are broken arbitrarily). For any i = 0, . . . , r+ 1, we denote by Ri

the stripe located between li and li+1. Next, we introduce the notation Si = {Qj : Qj ∩ Ri 6= ∅},
Sin
i = {Qj ∈ Si : Cj ∈ Ri}, and Sout

i = Si \ Sin
i . By construction, Sout

i ⊂ Sin
i−1 ∪ Sin

i+1.
As in [12], we assume that any stripe Ri is intersected at least by a single square Qj . Further,

we find an optimal hitting set recursively, by the dynamic programming procedure presented in
Algorithm 1.

Algorithm 1 Parameterized exact DP based algorithm
Input: a collection S = {Q1, . . . , Qn} of axis-parallel squares intersecting a given straight line d
Outer parameter: an upper bound q of the size of subsets to search for
Output: the minimum size hitting set P for S.

1: Construct a set P induced by the collection S; let Pi = P ∩Ri;
2: for all U ⊂ Pr−1 and V ⊂ Pr, s.t. |U |, |V | ≤ q do
3: define Wr = {W ⊂ Pr+1 : |W | ≤ q, U ∪ V ∪W ∩Qj 6= ∅ (Qj ∈ Sr)} and

T (r, U, V ) =

{
min{|U ∪ V ∪W | : W ∈ Wr}, if Wr 6= ∅,

+∞, otherwise

4: end for
5: for all 1 ≤ i ≤ r − 1 do
6: for all U ⊂ Pi−1 and V ⊂ Pi, s.t. |U |, |V | ≤ q do
7: define Wi = {W ⊂ Pi+1 : |W | ≤ q, U ∪ V ∪W ∩Qj 6= ∅ (Qj ∈

⋃
l≥i Sl)} and

T (i, U, V ) =

{
|U |+ min{T (i+ 1, V,W ) : W ∈ Wi}, if Wi 6= ∅,

+∞, otherwise

8: end for
9: end for

10: Output
arg min{T (1, U, V ) : U ⊂ P0, V ⊂ P1, |U |, |V | ≤ q}.

Indeed, for any i ∈ 1, . . . , r, denote Pi = P ∩ Ri. Let, for U ⊂ Pi−1 and V ⊂ Pi, T (i, U, V ) be
the size of a smallest hitting set P for

⋃
l≥i Sl such that P ∩ Pi−1 = U and P ∩ Pi = V . Similarly

to [12], we express T (i, U, V ) in terms of T (i+ 1, U ′, V ′) but for a substantially smaller subsets U ′

and V ′.
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Algorithm 1 has an outer parameter q, which meaning is twofold. On the first hand, q depends
on size-length of the squares to hit and provides a uniform upper bound for the smallest size of a
hitting set for an arbitrary Si. On the other hand, q bounds the number of subset enumerated at
each iteration of Algorithm 1. Therefore, its complexity bound can be defined in terms of q again.

Figure 3. Any unit square Qj ∈ Sin
i is hitted by one of the centers A and B of

√
2/2-squares

The following Theorem summarizes the properties of Algorithm 1.

Theorem 1. For q = 6, Algorithm 1 finds an optimal hitting set for the collection S in time
of O(n37).

P r o o f. We start with the following simple fact. By construction, for any i ∈ {1, . . . , r}
and any j ∈ Sin

i , Qj∩{A,B} 6= ∅ (see Fig. 3). As a consequence, for any optimal hitting set P and
any i ∈ {1, . . . , r}, |Pi| ≤ 6, where Pi = P ∩ Ri. Indeed, assume by contradiction that, for some i,
|Pi| > 6. Since Si ⊂ Sin

i−1 ∪Sin
i ∪Sin

i+1 and Pi ∩Qj = ∅ for any Qj /∈ Si, we can substitute Pi by an
appropriate 6-point subset P ′i such that P ∪P ′i \Pi remains a hitting set for S and |P ′| < |P |. The
contradiction obtained with optimality of P finalizes our argument. Hence, Algorithm 1 realizing
classic dinamic programming technique finds an optimal hitting set for the given collection S.

Let us obtain an upper bound for its running time. Obviously, the loop 5-9 having r − 1 =
O(n) iterations is the most time consuming part of Algorithm 1. In each iteration, O(|Pi−1|6) ×
O(|Pi|6) = O(n24) subproblems each having time complexity of O(n12) should be solved. Therefore,
the overall running time is O(n37). �

3. General case of HSP–APS–ISL

By scaling, we can easily show that the result of Section 2 remains valid in the case of equal
squares of any side-length. In this section, we extend this result to the more general case. Let a
and b be the minimum and the maximum values of side-lengths of the given squares. By the same
reason, assume that a = 1.

3.1. Case of k = 1

We proceed with the following observation. For k = 1, as in Section 2, any square Q of size at
least 1, whose center belongs to some stripe R′ of width

√
2/2 orthogonal to the line d, is hitted

by the points A and B (like in Fig. 3). Therefore, in this case, we can adapt Algorithm 1 to take
into account the squares, whose side-lengths are greater then 1.
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Figure 4. Partition of the plane for b = 4

Indeed, as above, consider stripes Ri of width b
√

2/2 consisting all the squares. Then, partition
each of them onto dbe substripes of width

√
2/2 (see Fig. 4) and use all other notation introduced

in Section 2 as is. The following assertion is valid.

Theorem 2. Let the given collection S consists of squares with side-lengths from [1, b]. Al-
gorithm 1 with q = 6dbe finds an optimal hitting set for this collection in time of O(n6q+1) =
O(n36dbe+1).

The argument proving Theorem 2 is similar to the proof of the Theorem 1. For the sake of
brevity, we skip the proof.

3.2. What if k > 1

In this section, we show that to find an optimal solution for HSP–APS–ISL we can use Algo-
rithm 1 again with an adjusted value of the parameter q. As above, this value is defined by the
number of points needed to hit any square intersecting the line d, whose center belong to some
stripe of the width

√
2/2. Although, for k > 1, points A and B (as in Fig. 3) do not hit all such

squares, we can still provide a finite point collection that does.

Without loss of generality, assume that the strip R (of width
√

2/2)) orthogonal to the line d
is located symmetrically with respect to the origin. An arbitrary square Q intersecting the line d,
whose center C belongs to the stripe R is called R-centered.

Consider finite point sequences {At} and {Bt} defined by the following equation

At = −Bt =

[
k + 2t

2
√

2(1 + k2)
,

1− 2tk

2
√

2(1 + k2)

]
(t ∈ {−1, . . . , p}). (3.1)

Theorem 3. For any k > 1, any R-centered square Q of size belonging to the range [1, p
√

2]
is hitted by the points A0, . . . Ap, B0, B1, . . . Bp.
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Figure 5. Hitting of large squares by the centers of neighboring
√

2/2-squares

P r o o f. 1. Consider an arbitrary R-centered square Q. Theorem 3 is evidently valid if the
center C of this square belongs to one of

√
2/2-squares centered at A0 or B0. Consider the other

option. Without loss of generality, assume that C belongs to right-upper part of the stripe R (as
in Fig. 4). The square Q coincides with an intersection of four closed halfplanes bordering it from
the left, top, right, and bottom sides. We denote them by HL, HT , HR, and HB, respectively. To
proceed with the argument, it is sufficient to prove that there exists a point At ∈ Q = HL ∩HT ∩
HR ∩HB.

The inclusion At ∈ HT is valid for any t = 0, 1, . . . , p, since yAt ≤ yC by the location assumption
for the square Q. Furthermore, this assumption implies that A−1 can not be located to the right
of the border of HL. Suppose, At−1 6∈ HL and Ai ∈ HL for any i ≥ t. Now, we show that At is the
desired point hitting the square Q. Indeed, consider the intersection point D of the line d with the
vertical line visiting the point Ai−1. Since

xD =
k + 2(t− 1)

2
√

2(1 + k2)

and

kxD + yD = 0,

we obtain

yAt − yD =
1− 2tk + k(k + 2(t− 1))

2
√

2(1 + k2)
=

(k − 1)2

2
√

2(1 + k2)
≥ 0.

Therefore, At ∈ HB (see Fig. 6).

Inclusion At ∈ HR follows easily from equation (3.1). Indeed, for any k > 1

xAt − xAt−1 =
1

2
√

2(1 + k2)
< 1/2 ≤ xC − xAt−1 ,

since a size of the square Q is at least 1. Thus, At ∈ HL ∩HT ∩ HR ∩HB = Q.

2. To obtain the upper side-length bound of the fittable squares, it is sufficient to calculate the
minimum side-length of the R-centered square touching the point Ap by its left side (Fig. 7). It
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Figure 6. At belongs to HB .

is easy to show that this length coincides with s = 2(xF − xAp), where XF can be found from the
following system 

xE = xAp =
k + 2p

2
√

2(1 + k2)
,

kxE + yE = 0,

−xE + yE = z,

−xF + kyF = −
√

1 + k2

2
√

2
,

−xF + yF = z,

i.e.

xF =
k3 + 2pk2 + 2pk − 1

2
√

2(k − 1)
√

1 + k2

and

s =
k3 + 2pk2 + 2pk − 1

(k − 1)
√

2(1 + k2)
− k + 2p√

2(1 + k2)
=

√
2(1 + k2)

2
+
p
√

2(1 + k2)

k − 1
.

To complete our proof, we should minimize s = s(k) for k > 1.
The derivative

s′(k) =

√
2

2

k(k − 1)2 − 2p(k + 1)

(k − 1)2
√

1 + k2

is vanishing if and only if
k3 − 2k2 + k = 2p(k + 1). (3.2)

For p = 0, the function s(k) has no minimizers in (1,∞). The right limit

lim
k→+0

s(k) = inf{s(k) : k > 1} = 1,

although s(1) = +∞, as it follows from Subsection 3.1.
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Given that p ≥ 1, it is sufficient to consider a few cases. If p = 1 we have a single root (in the
feasible domain {k : k > 1}) and it is easy to see that this root is a minimizer of s(k), since s′(k)
changes its sign at this point. Further, it can be verified that, for any p > 1, we also have the
unique extremal point.

Denote by k̄ = k̄(p) this extremum for the given p. Using equation (3.2), we obtain

s(k̄) =

√
2(1 + k̄2)3/2

2(1 + k̄)
.

Therefore, since k̄ > 1,

s(k̄(p))

p
=

√
2(1 + k̄2)3/2

k̄(1− k̄)2
≥
√

2(3/2 + k̄2)

(k̄ − 1)2
>
√

2.

Theorem is proved.
�

Figure 7. Estimation of s(k̄).

Remark 1. It is easily to verify that k̄ = k̄(p) is a monotonically increasing function and tends
to +∞ as p→ +∞. Therefore,

lim
p→+∞

s(k̄(p))

p
= lim

k̄→+∞

√
2(1 + k̄2)3/2

2(1 + k̄)
=
√

2.

Applying the approach proposed in Subsection 3.1, we obtain our final result. Indeed, let we
should find the minimum hitting set for n squares intersecting the line d; sizes of the squares belong
to [a′, b′]. First, by scaling, transform their sizes to the range [1, b], where b = b′/a′.

Further, partition the plane onto d-orthogonal stripes of width b
√

2/2; we call these stripes
wide. Finally, we partition each wide stripe onto dbe

√
2/2-width narrow substripes.

By construction, any square intersecting a wide stripe is centered at this or two neighboring
wide stripes. Therefore, by Theorem 3, it can be hit by q = 6dbe+2db/

√
2e, and the optimal hitting

set can be found by Algorithm 1 using this value of q. Hence, we proved the following theorem.
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Theorem 4. For any constant c and any square collection with size-range [a, cȧ], the problem
HSP–ASP–ISL can be solved to optimality in time O(n6q+1), where q = 6dce+ 2dc/

√
2e.

Remark 2. Results of Theorem 2 and 3 shows that HSP–APS–ISL is polynomial solvable for
any fixed range of squares, since the running time bound of Algorithm 1 in this case is

O(n6(6dce+2dc/
√

2e)+1).

Unfortunately, the question of constructing for this problem an FPT algorithm having parameterized
complexity bound like f(c) · nO(1) still remains open.

4. Conclusion

In the paper, the improved version of the optimal polynomial time hitting set construction
algorithm for axis-parallel squares intersecting the given straight line introduced in [12] is proposed.
Our modification has better upper time complexity bound by 100 orders of magnitude.

Also, we propose an extension of this algorithm to the case of non-unit squares and show that
the problem can be solved to optimality in polynomial time for any fixed range of squares.

As for the future work, it would be interesting to establish the complexity status of the con-
sidered problem in the case, where this parameter is unbounded. Also, it is interesting to answer
the question, does the Hitting Set Problem for Axis-Parallel Squares belong to the class of Fixed
Parameter Tractable (FPT) problems.
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Abstract: We consider a three-dimensional nonlinear wave equation with the source term smoothly changing

over time and space due to a small parameter. The behavior of solutions of this PDE near the typical “butterfly”

catastrophe point is studied. In the framework of matched asymptotic expansions method we derive a nonlinear

ODE of the second order depending on three parameters to search for the special solution describing the rapid

restructuring of the solution of the PDE in a small neighborhood of the catastrophe point, matching with

expansion in a more outer layer. Numerical integration curves of the equation for the leading term of the inner

asymptotic expansion are obtained.

Key words: Matched asymptotic expansions, Numerical integration, Butterfly catastrophe, Nonlinear ODE

and PDE.

Introduction

This paper is devoted to the study of specific behavior of a solution of the nonlinear wave PDE

−
∂2U

∂2T
+
∂2U

∂X2
+
∂2U

∂Y 2
+
∂2U

∂Z2
= f(εT, εX, εY, εZ,U) (0.1)

as a smoothed shock wave, the so called step-like contrast structure. Since this equation (0.1)
contains 4 independent variables in every open domain of the arguments of function in the right-
hand side of this equation there typically exists a point of catastrophe related to degeneration of
f up to 5-th order with respect to the unknown function, that corresponds to “butterfly” type
catastrophe [2].

The purpose of this paper is by applying the matched asymptotic expansions method [3] and
catastrophe theory [2] to deduce the nonlinear ODE of the second order, which depends on three
parameters, the ODE, which would be satisfied by the special solution related to a step-like con-
trast structure. We explore also the variants of such special solutions behavior depending on the
parameter settings.

The similar equation with two independent variables and the corresponding typical point of
“cusp” catastrophe was considered in [12]. The detailed study of special solutions with obtaining
a uniform asymptotic expansion was carried out in [5], [6], this paper mainly follows the approach
taken in these works.

1This work was supported by RFBR, research project No 16–31–00222.
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1. Preliminary constructions

We consider first a more general than in equation (0.1) form of the differential operator in the
left-hand side of PDE the resultant ODE in some cases will have the first order while in others it
will be the second order. We suppose to study the constructed ODE in our following works in the
framework of RFBR Research Project mentioned above.

Consider a nonlinear PDE of such form

2∑

|α|=1

Aα(εR)∂αU(ε,R) = f(εR, U(ε,R)). (1.1)

Following [13, p. 15] we denote by ∂α the operator of differentiation with respect to indepen-
dent variables and assume that the multi-index α = (α1, . . . , α4) corresponds to the independent
variables, in particular, (R1, . . . , R4) = R in equality (1.1).

The relation (0.1) is a particular case of the equation (1.1), which corresponds to the following
values of coefficients: Aα = 0 for 0 ≤ αn < 2, n = 1, . . . , 4 and 1 = −A2,0,0,0 = A0,2,0,0 = A0,0,2,0 =
A0,0,0,2.

In order to reduce the equation (1.1) to the standard form of singular equations with a small
parameter multiplying the derivative, we make the change of variables s = εR, V (ε, s) = U(ε, εR),
resulting equation (1.1) takes the form

2∑

|α|=1

ε|α|Aα(s)∂
αV (ε, s) = f(s, V (ε, s)). (1.2)

Let the function f(s, V ) be smooth and satisfy the inequality fV (s, V ) 6= 0, (s, V ) ∈ Ωs × ΩV .
Let some conditions relevant to the equation (1.2) specify a solution on the domain Ωs asymptoti-
cally approximated by a series of the following form

V (ε, s) = V0(s) +

∞∑

n=1

εnVn(s), ε→ 0, (1.3)

on the domain Ωs except for a neighborhood of its borders, and let the principal term V0(s) of the
series (1.3) satisfy the equation

f(s, V0(s)) = 0. (1.4)

Examples of such statements of problems are presented, for instance, in the monograph [11] and in
the paper [5].

At the boundary of Ωs could be located points of degeneracy of the function f(s, V ) with
respect to the unknown function, i.e., zeros of the function fV (s, V ) on the boundary of the set Ωs,
which may contain the manifolds of points of “fold” catastrophe and “cusp” catastrophe, smooth
lines of “swallowtail” catastrophe and isolated points of “butterfly” catastrophe [2].

2. Derivation of special equation

Let a point (s◦, V ◦) on the boundary of the domain Ωs×ΩV be an isolated point of “butterfly”
(A±5) type catastrophe [2, p. 5,11] of the function f(s, V ). Then Taylor asymptotic expansion of
f in the neighborhood of this point is

f(s, V ) =
∞∑

m=0

(
bm +Gm(s) + G̃m(s)

)
(V − V ◦)m,
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where

Gm(s) =

4∑

j=1

bm,j(sj − s◦j),

G̃m(s) =
∞∑

|α|=2

bm,α(s− s◦)α,

0 = b0 = b1 = b2 = b3 = b4, (2.1)

b5 = κ 6= 0. (2.2)

We introduce the following notation

B =
(
bn−1,j

)
n,j=1,...,4

.

The vanishing of the five coefficients (2.1) is achieved by the choice of the values of the five coor-
dinates of a point (s◦, V ◦); the existence of a solution of a system of five equations

∂n

∂V n
f(s, V ) = 0, n = 0, . . . , 4

with respect to five unknowns is a typical situation, while satisfying any additional independent
relations would not be the typical for functions f(s, V ), and this, in particular, validates the
assumption (2.2) and the inequality

detB 6= 0. (2.3)

Performing the change of variables

σn = −Gn−1(s), n = 1, . . . , 4; σ = B(s− s◦); V (ε, s) = V (ε, s◦ +B−1σ) = W(ε,σ) (2.4)

and using the approach of catastrophe theory [2, p. 37,38,43], we find that there is a diffeomorphism
of a neighborhood of (s◦, V ◦) onto a neighborhood of the origin of variables (σ,W) satisfying the
asymptotic relation

V − V ◦ = H0(σ) +W(1 +H1(σ)) +

∞∑

m=2

Wm(Cm +Hm(σ)), (2.5)

Hm(σ) =

∞∑

|α|=1

Cm,ασ
α

with a set of numerical coefficients Cm, Cm,α. Additionally, in the neighborhood of (σ◦, V ◦) this
diffeomorphism satisfies the identity

f(σ, V ) ≡ −ϕ1 − ϕ2W − ϕ3W
2 − ϕ4W

3 + κW5, (2.6)

where the number κ is the same as in (2.2), and the coefficients ϕn = ϕn(σ) have the asymptotic
representation

ϕn(σ) = σn +

∞∑

|α|=2

cn,ασ
α. (2.7)

To study in details the behavior of the solution near the point of catastrophe s◦ corresponding
to the value σ = 0 we perform the coordinate stretching

σn = εβnSn, βn > 0, n = 1, . . . , 4; W(ε,σ) = εγW (ε,S), γ > 0 (2.8)
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with some exponents (β1, . . . , β4) = β and γ, the exact values of which will be defined below.
Since the leading term W of the series (2.5) has to satisfy the limiting equation (1.4) with

expression (2.6) substituted into it instead of function f , then it turns out, that it depends on the
all ϕn(σ), n = 1, . . . , 4, and hence, by virtue of the asymptotics (2.7), it is dependent on all σn,
n = 1, . . . , 4. To achieve this effect, when making the change of variables (2.8), we need to balance
all the exponents of powers of ε arising from the terms in equation (1.4). Setting

βn = (n+ 1)γn, n = 1, . . . , 4, (2.9)

we obtain the asymptotic approximation

f(s, V (ε, s)) = ε5γ
(
−S1 − S2W − S3W

2 − S4W
3 + κW 5

)
+

∞∑

m=6

εmγPm(S,W ), ε→ 0,

where W = W (ε,S). Below, we will analyze the behavior of the principal term of the asymptotic
expansion

W (ε,S) = w(S) +

∞∑

n=1

εnwn(S), ε→ 0. (2.10)

To derive the principal term of the asymptotics of the left-hand side part of the equation (1.2) we
transform the operators of differentiation with the use of changes of variables written in equali-
ties (2.4), (2.8):

εβndSn = dσn =
4∑

j=1

bn−1,j dsj .

To simplify the calculations we denote εγW (ε,S) = W̃(ε,S), then, as

4∑

n=1

∂

∂Sn
(W̃(ε,S)) dSn = dW̃(ε,S)) = dV (ε, s) =

4∑

j=1

∂

∂sj
V (ε, s) dsj ,

we have
4∑

n=1

ε−βn
∂

∂Sn
(W̃(ε,S))

4∑

j=1

bn−1,j dsj =

4∑

j=1

∂

∂sj
V (ε, s) dsj ,

whence
∂

∂sj
=

4∑

n=1

ε−βnbn−1,j
∂

∂Sn
,

2∑

|α|=1

ε|α|Aα(s)∂
αV (ε, s) = εγ

2∑

|α|=1

ε|α|Âα(S)

4∏

j=1

(
4∑

n=1

ε−βnbn−1,j
∂

∂Sn

)αj

W (ε,S),

where
Âα(S) = Aα(s

◦ +B−1σ(S)), σ(S) = (εβnSn)n=1,...,4 .

Consequently, under the condition of smoothness of functions Aα(s) and taking into account (2.8)–
(2.10) at a fixed value of S and ε→ 0 the equation (1.2) can be written as

ε1−β1+γ

(
M

∂

∂S1
W (ε,S) +O(εγ)

)
+ ε2−2β1+γ

(
N

∂2

∂(S1)2
W (ε,S) +O(εγ)

)
=

ε5γ
(
−S1 − S2w − S3w

2 − S4w
3 + κw5 +O(εγ)

)
, (2.11)
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if we collect on the left-hand side in one bracket only the terms with derivatives of the first order
and in another bracket – only with second-order derivatives; here

M =
∑

|α|=1

Q(α), N =
∑

|α|=2

Q(α),

Q(α) = Aα(s
◦)bα, b = (b0,1, . . . , b0,4).

In particular, the constants M = 0 and N = −(b0,1)
2 + (b0,2)

2 + (b0,3)
2 + (b0,4)

2 correspond to the
equation (0.1) and the constants M = −b0,1 and N = (b0,2)

2 + (b0,3)
2 + (b0,4)

2 are matched with
the diffusion equation

−
∂U

∂T
+
∂2U

∂X2
+
∂2U

∂Y 2
+
∂2U

∂Z2
= f(εT, εX, εY, εZ,U).

In accordance with the practice of matched asymptotic expansions method [3], when transiting
to an internal scale, we need to choose γ such, that the exponents of powers of ε at the main terms
of the asymptotics of the left-hand and right-hand sides of the equation coincide with each other
after the transition to the new variables.

Let us consider the following two situations separately:

1) when the constant M 6= 0;

2) when in the original equation (1.1) all the coefficients of the first derivatives are identical to
zero and the constant N 6= 0.

Note that implementation of these inequalities for the constant M and N , the value of which,
except for special cases (for example, the lack of the first order in the original equation (1.1)),
depends on the choice of f on the right-hand part of the original equation, is a typical situation
similar to inequality (2.3), as noted above.

In the first case, by virtue of (2.9) and (2.11) we come to the conclusion, that γ has to satisfy
the relation

min{1− 4γ, 2− 9γ} = 5γ.

Solving it and taking into account the inequality γ > 0, we obtain the value γ = 1/9. Substituting
it into the equality (2.11), we receive the estimate

M
∂

∂S1
w(S) + S1 + S2w(S) + S3w

2(S) + S4w
3(S)− κw5(S) = O(ε1/9). (2.12)

The limiting equation to 2.14 is an ODE of the first order with respect to w(S) as a function of one
variable S1 and three parameters S2, S3, S4. By making in the ODE the linear change of variables

S1 = (M5
κ
−1)1/9 x, S2 = (M4

κ)1/9 y, S3 = (Mκ)1/3 z, S4 = (M2
κ
5)1/9 t,

u(x) = (Mκ
−2)1/9 w(S1(x), S2(y), S3(z), S4(t)),

we obtain the first order nonlinear ODE

ux = u5 − tu3 − zu2 − yu− x, (2.13)

which depends on three parameters y, z, t. We plan the study of the behavior of solutions of
ODE (2.13) to be hold in subsequent papers in the framework of the above mentioned RFBR
research project.
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In the second case, in the relation (2.11) the first term of the equation is completely missing
and the equation for γ becomes simpler 2− 9γ = 5γ, whence γ = 1/7 and therefore equality (2.11)
takes the form:

N
∂2

∂(S1)2
w(S) + S1 + S2w(S) + S3w

2(S) + S4w
3(S)− κw5(S) = O(ε1/7). (2.14)

We turn to the equation obtained from (2.14) as a result of passing to the limit as ε → 0 and at
the same time producing a linear change of variables

S1 = − sgn(κ)
∣∣N5

κ
−1
∣∣1/14 x, S2 = − sgn(κ)

∣∣N2
κ

∣∣1/7 y,
S3 = − sgn(κ)

∣∣N3
κ
5
∣∣1/14 z, S4 = − sgn(κ)

∣∣Nκ
4
∣∣1/7 t,

u(x) =
∣∣Nκ

−3
∣∣1/14 w(S1(x), S2(y), S3(z), S4(t)).

Thus, we obtain the desired nonlinear second-order ODE

sgn(N)uxx = u5 − tu3 − zu2 − yu− x, (2.15)

depending on three parameters y, z, t. This ODE is held for a special solution describing the rapid
reconstruction of the original PDE solution in a small neighborhood of the catastrophe point s◦.

3. Matching with more outer layer condition

Consider the multi-valued relation

u = h(x; y, z, t), (3.1)

each value of which is a root of the equation

0 = u5 − tu3 − zu2 − yu− x.

In order to apply the matched asymptotic expansions method, it is necessary to construct a
function u(x) = u(x; y, z, t), which is a solution of the equation (2.15), i.e., it is the principal term
of the asymptotic expansion of the solution of the original problem for PDE in the inner layer (the
layer, projection of which onto the axis Ox is the set |x| < ε−2/7+δ1) in such way that it would
be matched with the solution of the original problem in the more outer layer (projection of which
onto the axis Ox is the set |x| > ε−2/7+δ2), where 0 < δ1 < δ2 < 2/7 are some numbers. Therefore
it is necessary to match u(x; y, z, t) and V0(s), the leading term of the series (1.3), which satisfy
the equation (1.4). As a consequence of that we will look for those solutions u(x) = u(x; y, z, t) of
equation (2.15), which satisfies the limiting relation

lim
x→−∞

|u(x; y, z, t) +H(x; y, z, t)| = 0, (3.2)

where u = H(x) = H(x; y, z, t) stands for the maximal extension over axis Ox in the right-hand
direction of a smooth branch of the root (3.1) defined in a neighborhood of x = −∞. Thus, we will
configure the function u(x; y, z, t) to match with the V0(s) on the left-hand side along axis Ox and
then we will study the behavior of such a curve with an increase in the variable x.
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4. Numerical search for special integral curves

Integral curves of solutions given in this paper shown in bold and green on the figures below were
calculated using explicit Runge–Kutta–Felberg (4,5) method [1] with variable step and accuracy
control. In all figures a red thick line represents the graph of the root (3.1).

Note that the behavior of solutions of equations (2.15) significantly depends on the sgn(κ) in
the left-hand side. For minus sign it is typical to appear rapid fluctuations of solutions after passing
the branching point of a multi-valued relation (3.1). Figure 1 illustrates the occurrence of such
fluctuations of the integral curve of the equation

−uxx = u5 + 9u3 − 8u− x, (4.1)

computed under condition (4.6). In this work we do not perform a detailed study of such solutions
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Figure 1. Integral curve for equation (4.1) under condition (4.6) and graph of root line (3.1)

with fluctuations; we focus on so-called step-like contrast structures. Therefore, we will consider
only the equation with plus sign:

uxx = u5 − tu3 − zu2 − yu− x. (4.2)

The purpose of construction and further study of the behavior of the integral curves was to test
the hypothesis about the possibility of proving the existence of such special solutions within the
framework of the approach of [5], [6]. Therefore, at this stage, we have considered the case when
the parameter z in the right-hand side of equation (4.2) is zero, since this option, on the one hand,
includes the very point of “butterfly” catastrophe (at the origin of all variables and parameters).
On the other hand, it is very close to “cusp” catastrophe type of discussed in these papers, since
in this case, the root line (3.1) is odd (symmetric with respect to the origin), and therefore the
solution can be constructed as the extension based on oddness onto the negative half-axis (x < 0)
of a solution u(x) of the Cauchy problem for the equation

uxx = u5 − tu3 − yu− x (4.3)

with the initial conditions

u(0) = 0, (4.4)

ux(0) = α. (4.5)
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In this case, the limiting relation (3.2) takes the form

lim
x→+∞

|u(x; y, 0, t) +H(x; y, 0, t)| = 0. (4.6)

Thus, below, we consider integral curves only for the Cauchy problem (4.3)–(4.5). As a problem of
obtaining the principal term of the internal expansion of the original problem for PDE it presents the
extension of study conducted by one of the authors of this paper of bisingular initial problems with
one small parameter for the systems of one, two or more of ODEs, which also has the property of
degeneration of high-order of right-hand part of the equation in respect to the unknown function [4,
7–10].

According to the theorem proved in [6], one can find the initial value of α0 of the derivative
ux(x) corresponding to the solution that satisfies the asymptotics (4.6) by calculating the exact
lower boundary for a certain set of M. The numerical set M depending on the parameters of the
differential equation was determined in [6] as follows: the number of α belong to the set M , if and
only if the solution of the Cauchy uα(x) corresponding to initial condition (4.5) with this value of
α has the property, that there exists a point xα such that

• for 0 < x < xα function uα(x) is less than the function H(x);

• at the point xα functions uα and H(x) coincide.

It is not difficult to see that the most top branch of the root (3.1) defined by the formula
u = H(−x), to which the desired solution has to approach (see, eg., Fig. 4.a), consists by virtue of
the equation (4.3) (except, perhaps, for its leftmost point) of points of repulsion, which damps on
approaching the line u = H(−x) and rapidly increases with increasing the distance from this line in
any vertical direction. Therefore, most of the curves produced with the initial conditions (4.4), (4.5),
either pass through a line of u = H(−x), and quickly grow up, tending to +∞, or, if the initial
velocity (4.5) is not sufficient, can not come close to this line and are broken down to −∞. Search
for the fine line of the balance between these two states of computed integral curves is consistent
with the idea of the works [5], [6] of the initial value of α0 = infM in (4.5).

We have implemented a simple binary search algorithm of this balance: in the transition from
the range [am, bm] of possible values ux(0) at the current step to the next step range [am+1, bm+1]
we always choose one of the intervals [am, cm], [cm, bm] (where cm is the middle of the segment
[am, bm]), for which the integral curve started with an initial rate of am+1 breaks down to −∞,
and one with initial rate of bm+1 grows up to +∞. Clearly, the value bm pretend to be an element
α of the set M described above and the limit of the decreasing sequence bm could play the role of
α0 = infM .

5. Illustrations of section at z = 0 of separatrix of “butterfly” catastrophe (A±5)

This section of the paper is complementary, although it still has an indirect relationship to
the purpose of this paper. Here, for the first time, as far as we know, the three-dimensional
illustration of the cross section for z = 0 separatrix [2, p. 51] “butterfly” catastrophe (A±5) are
given. Separatrix corresponding to such a point of catastrophe is the set of points (x◦, y◦, z◦, t◦)
included into the parameter space of the parametric family of functions

ψ(u;x, y, z, t) = u5 − tu3 − zu2 − yu− x, (5.1)

with the following property: when such a point (x◦, y◦, z◦, t◦) is substituted into (5.1) the resultant
function ψ◦(u) has at least one non-Morse point, i.e., the following relation holds

∃u◦ :
(
ψ◦(u◦) = 0,

∂ψ◦

∂u
(u◦) = 0

)
.
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The separatrix [2, p. 57–58] divides the parameter space into open domains corresponding to
which subfamilies of the general family of functions (5.1) are structurally stable.

To construct a three-dimensional surface data we implemented the approach applied in [2, p. 62–
63] to the function of “swallowtail” catastrophe (A4). Knowledge about the configuration of the

0
0.2

0.4
0.6

0.8
1

1.2
1.4

t

–0.6

–0.4

–0.2

0

y

–0.4

–0.2

0

0.2

0.4

x
0

0.2
0.4

0.6
0.8

1
1.2

t

–0.6
–0.4

–0.2
0 y–0.4

–0.2

0

0.2

0.4

x

0
0.2 0.4 0.6 0.8 1 1.2 1.4

t

–0.6
–0.4

–0.2
0y

–0.4

–0.2

0

0.2

0.4

x

00.20.40.6
1.21.4

t

–0.6 –0.4
0

y

–0.4

–0.2

0

0.2

0.4

x

Figure 2. Section at z = 0 of separatrix of family of functions (5.1)

section of the separatrix allows us to study not all possible options for the behavior of curves at z = 0
through taking only one representative from each of the open domains of the parameters (x, y, t)
corresponding to Morse functions from the family (5.1) and additional representatives from the
border separatrix itself, detailed analysis of which can be done by ranking the degree of degeneracy
of the function (5.1) with respect to u. Some of the chosen within the framework of this concept
values of the parameters (x, y, t) are given in Table 1. The figures with the corresponding integral
curves of the Cauchy problem (4.3)–(4.5) illustrating the results of the described above algorithm
of the binary search for the solution of the asymptotic problem (4.3), (4.4), (4.6) are placed in the
next section of the paper.

Table 1. Parameter values and corresponding numbers of figures

No y t Corresponding figures

1 -8 9 Fig. 3, 4

2 -10 5 Fig. 5
3 8 -9 Fig. 6

4 8 8 Fig. 7
5 -8 -8 Fig. 8

6 8 0 Fig. 9
7 0 0 Fig. 10
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6. Illustrations of numerical calculations

This section is devoted to illustrations of the integral curves for the Cauchy problem (4.3)–(4.5)
obtained using the binary search for the initial speed as described above. We remind that in the
figures bold green line represents the integral curves and the red bold line corresponds to the graph
of the root function (3.1). In figures with contour distributions the increase in the intensity of green
shade in the color of lines corresponds to the increase of positive values of the function, and increase
in the intensity of blue shade in the color of lines corresponds to the increase in the absolute value
of the negative values. The contour distributions are given in the paper to show the rate of the
function (5.1) changing with increasing distance from the line of the root (3.1) in different parts of
the line.
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Figure 3. Some intermediate stages of search for optimal initial rate ux(0) for the Cauchy problem
(4.3)–(4.5) for y = −8, t = 9

The root line (3.1) for y = −8, t = 9 and z = 0 shown in Fig. 3 and 4 has an explicit double
system of bends, in virtue of which the integral curves of the Cauchy problem (4.3)–(4.5) obtained
for different values of the initial velocity demonstrate a variety of processes including fluctuations.
Partial figures of the Fig. 3 marked with letters from a) to f) correspond to selected stages of the
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binary search, which embodied such variants of the curve behavior as the gradual disappearance of
the interval of oscillation and the slow emergence and expand of the interval, on which the curve
passes very close to the line of the root (3.1).
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Figure 4. Results obtained for y = −8, t = 9 z = 0: a) contour distributions of function (5.1); b) integral
curves for the Cauchy problem (4.3)–(4.5) for ux(0) = 7.38348579007552236
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Figure 5. Results obtained for y = −10, t = 5 z = 0: a) contour distributions of function (5.1); b) integral
curves for the Cauchy problem (4.3)–(4.5) for ux(0) = 0.10031199880359876075

The situation that occurs when y = −10, t = 5 and z = 0 is shown in Fig. 5. It is characterized
by the presence of two deflections of green curve, which is the approximation of the desired solution
of the asymptotic problem (4.3), (4.4), (4.6), from the root line (3.1) in various ways: in the
beginning integral curve follows the line of the root, then exceeds it, then crosses and passes below
the root line and later again starts to follow it.

Situation in Fig. 6 that occurs when y = 8, t = −9 and z = 0, is very similar to the pattern for
case of “cusp” catastrophe studied in the works [5], [6], the resemblance in the shape of the root
lines (3.1) and of integral curves is explicit.

If y = 8, t = 8 and z = 0, as shown in Fig. 7, the root line (3.1) has a larger number inflection
points, than one in the case of “cusp” catastrophe or than in Fig. 6, but the behavior of the integral
curve remains broadly similar: a sharp increase is replaced by following the root line.

The graph the function (3.1) in Fig. 8 for y = −8, t = −8 and z = 0 increases gradually and
remains single-valued for all points of positive half-axis (x > 0). By virtue of this fact, immediately
from the very point x = u = 0, the root line (3.1) becomes an attractor for the approximation
curve for the solution of asymptotic problem (4.3), (4.4), (4.6) and the integral curve following it
until the final rapid movement to the vertical infinity.
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Figure 6. Results obtained for y = 8, t = −9 z = 0: a) contour distributions of function (5.1); b) integral
curves for the Cauchy problem (4.3)–(4.5) for ux(0) = 1.982684405999750261
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Figure 7. Results obtained for y = 8, t = 8 z = 0: a) contour distributions of function (5.1); b) integral
curves for the Cauchy problem (4.3)–(4.5) for ux(0) = 12.406010731733428955
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Figure 8. Results obtained for y = −8, t = −8 z = 0: a) contour distributions of function (5.1); b) integral
curves for the Cauchy problem (4.3)–(4.5) for ux(0) = 0.1236970813110499762

The situation in Fig. 9, corresponding to the values y = 8, t = 0 and z = 0 of the parameters
and therefore to the absence of not only a quadratic but also a cubic term in the formula (5.1), the
shape of the root line (3.1) has a more extended than in Fig. 6, the interval of domination of the
linear term near the origin, but the behavior of the integral curve remains broadly the same as in
the Fig. 6.

The values of the parameters for which the curves in Fig. 10 are constructed, correspond to the
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Figure 9. Results obtained for y = 8, t = 0 z = 0: a) contour distributions of function (5.1); b) integral
curves for the Cauchy problem (4.3)–(4.5) for ux(0) = 4.0017096188039309541127989
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Figure 10. Results obtained for y = 0, t = 0 z = 0: a) contour distributions of function (5.1); b) integral
curves for the Cauchy problem (4.3)–(4.5) for ux(0) = 0.9725146994563902

origin of the parameter space of the function (5.1). In Fig. 10 the point x = u = 0 is the very point
of “butterfly” catastrophe. One can note that in a neighborhood of this point the integral curve
slightly deviates from almost vertically growing root line.

Thus, the results of calculations for the values of the parameters in Table 1 show that, gradually
increasing the accuracy of the curve fitting method [1] and using a binary search algorithm, it is
possible to obtain curves, which for more and more long time remain close to the line of balance
noted above, that is consistent with hypothesis about the construction of the desired curve satisfying
the asymptotic condition (4.6) as the solution of the Cauchy problem (4.3)–(4.5) with the value
α0 = infM of the initial rate.

7. Conclusion

We considered a PDE with an arbitrary linear combination of differentiation operators with
smooth coefficients of the first and second orders on the left-hand side of the equation and a
nonlinear function in the right-hand side, which depends on the desired function and contains a
small parameter. We consider and analyze also the three-dimensional nonlinear wave equation with
the source term smoothly changing over time and space.

The primary study of the behavior of solutions of this PDE near the typical point of “but-
terfly” catastrophe was held. We deduce two nonlinear ODE of the first and the second orders,
respectively, depending on three parameters. The order of equation depends on the configuration
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of the coefficients of the linear combination on the left-hand side of the original PDE and of the
properties of the nonlinear function on its right-hand side.

We use the resulting second-order ODE to search for a special solution describing the rapid
reconstruction of the solution of the wave PDE in a small neighborhood of the catastrophe point
matched with expansion in a more outer layer. We have done a primary study: we produced integral
curves that allow one to analyze the behavior of such a special solution. The results revealed no
contradictions with the possibility to prove the existence of special solution within the framework
of the approach given in [5, 6].
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Abstract: The paper is devoted to the formalization of a concept of impulse-sliding regimes generated by
positional impulse controls for systems with delay. We define the notion of impulse-sliding trajectory as a limit
of a sequence of Euler polygonal lines generated by a discrete approximation of the impulse position control.
The equations describing the trajectory of impulse-sliding regime are received.
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Introduction

Usually, the positional control algorithms are introduced by substitution in the program control
models the initial time and the initial model position to an arbitrary time moment and to an
arbitrary state. Such replacement may result in that we will need to realize an impulse control
action at each time moment. This fact leads to the appearance of a moving or a so called sliding
impulse. Such phenomenon from the point of view of the theory of differential equations requires
an appropriate formalization. In addition, this motion type in the space of positions creates the
motion sliding on some functional manifold. Impulse-sliding regimes in systems without delay were
considered in [1–3]. Impulse-sliding regimes for linear systems with delay were studied in [4]. The
reaction of nonlinear systems with delay to impulse actions is understood here as in the paper [5].
The definition of a solution of nonlinear systems with delay given in [5] is a generalization for the
notion of solution for systems without delay in [6, 7].

1. Formalization of impulse-sliding regime

Consider a dynamic system with impulse control

ẋ(t) = f
(
t, x(t), x(t− τ)

)
+B(t, x(t))u, t ∈ [t0, ϑ], (1.1)

with the initial condition

x(t) = φ(t), t ∈ [t0 − τ, t0], (1.2)

where f(·, ·, ·) is a function with value in Rn, B(·, ·) is a m × n-matrix function. Elements of
f and B are continuous functions and satisfy the conditions, which guarantee the existence and

1The research was supported by Russian Science Foundation (RSF) (project No.16–11–10146).
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uniqueness of a solution for any summable function u(t). Let xt(·) be a function-prehistory xt(·) =
{x(t+s); −τ ≤ s < 0}. The function φ(t) here is a function of bounded variation for t ∈ [t0−τ, t0].

We will assume that the function B(t, x) satisfies the well-known Frobenius condition [8],

n∑
ν=1

∂bij(t, x)

∂xν
bνl(t, x) =

n∑
ν=1

∂bil(t, x)

∂xν
bνj(t, x). (1.3)

According to [5, 6] this condition ensures the uniqueness of the system response to the impact
of a generalized control u(t) (the generalized derivative of a bounded variation function). We note
that there are various ways of defining a solution for the equation (1.1) which lead generally to
various implementations of the trajectories [6]. We will use the definition that is based on the
closure of the set of smooth trajectories in the space of functions of bounded variation [6]. This
definition is the most natural from the point of view of control theory. This is due to the fact that
impulse controls are often some control idealizations operating in short time intervals and with
great intensity.

By an impulse positional control we will mean an operator t, xt(·) −→ U(t, x(t)) mapping the
space of extended states {t, x(t)} into the space of m-vector-valued distributions

U(t, x(t)) = r(t, x(t)) δt. (1.4)

In this paper we assume that a delay is only in f(t, x(t), x(t− τ)) and a control function does
not contain a delay.

Here r(t, x(t)) is m-dimensional vector function, δt is the Dirac impulse function concentrated at
t. The system reaction to the impulse position control U(t, x(t)) (which we call an impulse-sliding
regime) is defined as the set of Euler polygonal functions xh(·), h = max(tk+1 − tk) corresponding
to all decompositions t0 < t1 < ... < tp = ϑ of the interval [t0, ϑ]. The Euler polygonal function
(Euler line) xh(·) is constructed as a left continuous function of bounded variation such that the
equation holds

ẋh(t) = f
(
t, xh(t), xh(t− τ)

)
+

p∑
i=1

B(t, xh(t))r(ti, x(ti))δti (1.5)

with the initial condition x(t) = φ(t), t ∈ [t0 − τ, t0].
The Euler line satisfies the equation

xh(t) = φ(t0) +

∫ t

t0

f
(
ξ, xh(ξ), xh(ξ − τ)

)
dξ +

∑
ti<t

S
(
ti, x

h(ti), r(ti, x(ti))
)

(1.6)

and the jump functions are defined by the equations

S
(
ti, x

h(ti), r(ti, x
h(ti))

)
= z(1)− z(0), (1.7)

ż(ξ) = B(t, z(ξ)) r(ti, x
h(ti)), z(0) = xh(ti). (1.8)

Here the jump function S(t, x, µ) is the solution of the equation

∂y

∂µ
= B(t, y). (1.9)

We will assume that the equality

r
(
t, x(t) + S

(
t, x(t), r(t, x(t))

))
= 0. (1.10)

is true.
This equality means that after the action of impulse at the system at time t, the state {t, x(t)}

will belong to the manifold r(t, x(t)) = 0.
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2. Properties of the impulse-sliding regime

Lemma 1. Assume that for all admissible values t1, t2, x1, x2, y1 and y2 the following inequal-
ities are true

∥f(t, x, y)∥ ≤ C
(
1 + sup

[t0−τ ]
∥x(·)∥

)
, (2.1)

∥S(t1, x1, r(t1, x1))− S(t2, x2, r(t2, x2))∥ ≤ L
(
|t1 − t2|+ ∥x1 − x2∥

)
. (2.2)

Then for all decompositions h and all t ∈ [t0, ϑ] the set of Euler polygonal functions x
h(·) is bounded,

what means that there exists a constant M such that

∥xh(t)∥ ≤ M. (2.3)

P r o o f. From (1.6) and (2.1) the following inequality follows

∥xh(t)∥ ≤ ∥φ(t0)∥+ C

∫ t

t0

(
1 + sup

[t0−τ,ξ]
∥xh(·)∥

)
dξ +

∑
ti<t

∥∥S(ti, xh(ti), r(ti, xh(ti))∥∥. (2.4)

Due to the fact that
S
(
ti−1, x

h(ti−1 + 0), r(ti−1, x
h(ti−1 + 0)

)
= 0,

in view of (2.2), we have the inequalities

∥S(ti, xh(ti), r(ti, xh(ti))∥ = ∥S(ti, xh(ti), r(ti, xh(ti))∥−

−S
(
ti−1, x

h(ti−1 + 0), r(ti−1, x
h(ti−1 + 0)

)
≤ L

(
ti − ti−1 + ∥xh(ti)− xh(ti−1 + 0)∥

)
.

(2.5)

At the same time, in view of (2.1),

∥xh(ti)− xh(ti−1 + 0)∥ ≤
∫ ti

ti−1

∥f(ξ, xh(ξ), xh(ξ − τ))∥dξ

≤ C
(
ti − ti−1 + L

∫ ti

ti−1

(1 + sup
[t0−τ,ξ]

∥xh(·)∥)dξ
)
.

(2.6)

In consequence, from (2.4) in view of (2.5) and (2.6) we get the following inequality

∥xh(t)∥ ≤ ∥φ(t0)∥+ (L+ C)(t− t0) + L(1 + C)

∫ t

t0

sup
[t0−τ,ξ]

∥xh(·)∥dξ. (2.7)

As in [9], from the last inequality we get

sup
[t0−τ,t]

∥xh(·)∥ ≤ R+ (L+ C)(t− t0) + L(1 + C)

∫ t

t0

sup
[t0−τ,ξ]

∥xh(·)∥dξ, (2.8)

where
R = sup

[t0−τ,t0]
∥φ(·)∥.

Applying the result of [10] we get from (2.8) the estimate

sup ∥xh(·)∥ ≤
(
R+ (L+ C)(ϑ− t0)

)
eL(1+C)(ϑ−t0),

which completes the proof of the lemma. �
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Note that as a constant M we can take the following number

M =
(
R+ (L+ C)(ϑ− t0)

)
eL(1+C)(ϑ−t0).

Let D be a bounded closed set which contains all xh(·). By continuity we may assume that all
functions f(t, x, y), B(t, x) and r(t, x) are bounded.

Denote

M1 = max
[t0,ϑ]×D×D

∥f(t, x, y)∥, M2 = max
[t0,ϑ]×D

∥B(t, x)∥, M3 = max
[t0,ϑ]×D

∥r(t, x)∥. (2.9)

Lemma 2. Under the above assumptions from each confinal sequence of Euler functions {xh(·)}
we can select a subsequence {xhp(·)} uniformly at (t0, ϑ] converging to absolutely continuous func-
tion x(·). Moreover for all t ∈ (t0, ϑ] we have r(t, x(t)) = 0

(
x(t) = φ(t) for t ∈ [t0−τ, t0]

)
, in other

words the limit element of the impulse-sliding regime moves over the manifold which is described
by the equation r(t, x(t)) = 0.

P r o o f. The proof of convergence of xh(·) uses the generalization of Arzela’s lemma from [11].
Let xhi(·) be a confinal sequence. Then according to (1.6) we have

∥xhi(t′′)− xhi(t′)∥ ≤
∫ t′′

t′
∥f(t, xh(t), xh(t− τ)∥ds+

m(t′′)∑
k=m(t′)+1

∥S(tk, xhi(tk), r(tk, x
hi(tk)))∥, (2.10)

where m(t) is the nearest point on the left in the decomposition which generates the polygonal line
xhi(·). In accordance with (1.6) we have

∥S(tk, xhi(tk), r(tk, x
h(tk)))∥ = ∥S(tk, xh(tk), r(tk, xh(tk)))∥−

−
∥∥S(tk−1, x

hi(tk−1 + 0), r(tk−1, x
hi(tk−1 + 0))

)∥∥.
Considering (2.2) we get

∥S(tk, xhi(tk), r(tk, x
h(tk)))∥ ≤ L

(
tk − tk−1 + ∥xhi(tk)− xhi(tk−1 + 0)∥

)
.

At the same time

xhi(tk)− xhi(tk−1 + 0) =

∫ tk

tk−1

f(ξ, xh(ξ))dξ.

By taking into account (2.8), we obtain∥∥S(tk, xhi(tk), r(tk, x
h(tk))

)∥∥ ≤ L
(
tk − tk−1 +M1(tk − tk−1)

)
= L(1 +M1)(tk − tk−1). (2.11)

From (2.10) and (2.11) it follows that

∥xhi(t′′)− xhi(t′)∥ ≤
(
M1 + L(1 +M1)

)
(t′′ − t′) + L(2 +M)(t′ − ttihi

), (2.12)

where ttihi
is the nearest point at the left in partition hi to the point t′. The last inequality allows

to apply the generalization of Arzela’s lemma from [11] and ensures the existence of a subsequence
xhi(·) which uniformly converges to the function x(·).

Now we pass to the limit in the inequality (2.12) as i → ∞. As a result we have

∥x(t′′)− x(t′)∥ ≤ (M1 + L(1 +M1))(t
′′ − t′).

This means that x(t) is an absolutely continuous function at (t0, ϑ].



Impulse-sliding regimes in systems with delay 145

Now let us show that the limit element xh(·) belongs to the manifold r(t, x) = 0. Let tmthi
be

the nearest point from the left in partition hi by the time t. The following inequality holds

∥r(t, x(t)∥ ≤ ∥r(t, x(t))− r(t, xhi(t)) + r(t, hi(t))∥

≤ ∥r(t, x(t))− r(t, xhi(t))∥+ ∥r(tmthi
xhi(tmthi

+ 0))− r(t, xhi(t))∥

≤ L
[
∥x(t)− xhi(t)∥+ (t− tmthi

) + ∥xhi(tmthi
+ 0)− xhi(t)∥

]
≤ L

[
∥x(t)− xhi(t)∥+ (L+M)(t− tmihi

)
]
.

By the uniform convergence of the sequence xhi(·) the first term at the right hand part at the
last inequality tends to zero. The second one tends to zero because hi → 0 when i → ∞. Therefore
r(t, x(t)) ≡ 0 when t ∈ (t0, ϑ], this completes the proof of lemma. �

Lemma 3. Let r(t, x) be a vector function continuously differentiable in all variables. Then
the following equality holds

S(tk, x
h(tk), r(tk, x

h(tk)))− S(tk−1, x
h(tk−1 + 0), r(tk−1, x

h(tk−1 + 0)))

=

∫ tk

tk−1

[
∂S(ξ, xh(ξ), r(t, xh(ξ)))

∂ξ
+

∂S(ξ, xh(ξ), r(ξ, xh(ξ)))

∂x
f(ξ, xh(ξ), xh(ξ − τ))+ (2.13)

+
∂S(ξ, xh(ξ), r(ξ, xh(ξ)))

∂r

(∂r(ξ, xh(ξ))
∂ξ

+
∂r(ξ, xh(ξ))

∂x
ḟ(ξ, xh(ξ), xh(ξ − τ))

)]
dξ.

The lemma follows from the the formula for differentiating a composite function.

Theorem 1. Let all assumptions given above hold. Then an impulse-sliding regime on (t0, ϑ]
is described by the equation

ẋ(t) =
∂S(t, x(t), r(t, x(t))))

∂t
+

∂S(t, x(t), r(t, x(t)))

∂r

∂r(t, x(t))

∂t
+

+

[
E +

∂S(t, x(t), r(t, x(t)))

∂x
+

∂S(t, x(t), r(t, x(t)))

∂r
× ∂r(t, x(t)))

∂x

]
f(t, x(t), x(t− τ)),

(2.14)

x(t0 + 0) = x(t0) + S
(
t0, x(t0), r(t0, x(t0))

)
.

P r o o f. According to (1.6) and Lemma 3 xh(t) satisfies the equation

xhi(t) = φ(t0) +

∫ t

t0

f(ξ, xhi(ξ), xhi(ξ − τ))dξ +

∫ tmhi

t0

[
∂S(ξ, xhi(ξ), r(t, xhi(ξ)))

∂ξ
+

+

(
∂S(ξ, xhi(ξ), r(ξ, xhi(ξ)))

∂x
+

∂S(ξ, xhi(ξ), r(ξ, xhi(ξ)))

∂r
× ∂r(ξ, xhi(ξ))

∂x

)
f(ξ, xhi(ξ), xhi(ξ − τ))+

+
∂S(ξ, xhi(ξ), r(ξ, xhi(ξ)))

∂r
· ∂r(ξ, x

hi(ξ))

∂ξ

]
dξ.

Passing to the limit at the last equation and bearing in mind that x(t) is an absolutely continuous
function, we can see that the theorem is true. �
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3. Conclusion

The formalization of the impulse-sliding regime for a nonlinear system with time delay is made.
The equation to describe the limiting element of impulse-sliding regime is obtained.
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