THE IMPACT OF TOXICANTS IN THE MARINE THREE ECOLOGICAL FOOD-CHAIN ENVIRONMENT: A MATHEMATICAL APPROACH

Kavita Yadav     (S. M. S. Govt. Model Science College, Gwalior-474011, India)
Raveendra Babu A.     (Department of Mathematics, Prestige Institute of Management and Research, Gwalior-474020, India)
B.P.S. Jadon     (S. M. S. Govt. Model Science College, Gwalior-474011, India)

Abstract


To explore the impact of toxicants on a marine ecological food chain system consisting of three species, this work develops and analyzes a non-linear mathematical model. The model consists of five state variables: phytoplankton, zooplankton, fish, environmental toxicant, and organismal toxicant. We have incorporated the Monod-Haldane functional response as a predation function for each species. Using the Jacobian matrix, the stability analysis was conducted, and necessary constraints were obtained for the system's local and global stability. Hopf bifurcation analysis was performed for carrying capacity (\(K\)) and the rate of decrease in the growth rate of phytoplankton due to the presence of toxicants (\(r_1\)). Also, phase portraits are presented for different parameters of the model. In addition, numerical simulations are executed using MATLAB to prove theoretical findings and explore the impact of parameter variation on ecological species behavior.

Keywords


Environmental toxicant, Marine food chain, Stability, Hopf-bifurcation, Lyapunov function

Full Text:

PDF

References


  1. Alebraheem J. Predator interference in a predator-prey model with mixed functional and numerical responses. J. Math., 2023. Art. no. 4349573. DOI: 10.1155/2023/4349573
  2. Babu A.R., Misra O.P., Singh C., Kalra P. Model for the dynamical study of a three-species food-chain system under toxicant stress. Int. J. Sci. Res. Sci., 2015. Vol. 1, No. 2. P. 493–513.
  3. Babu A.R., Yadav K., Jadon B.P.S. The study of top predator interference on tri species with “food-limited” model under the toxicant environment: A mathematical implication. Liberte J., 2025. Vol. 13, No. 1. P. 20–35. DOI: 10.5281/zenodo.15878934
  4. Babu A.R., Gupta S., Rathaur N., Agarwal T., Sharma M. The effects of crowding and toxicant on biological food-chain system: a mathematical approach. Hilbert J. Math. Anal., 2024. Vol. 2, No. 2. P. 080–091. DOI: 10.62918/hjma.v2i2.24
  5. Das K., Srinivas M.N., Saikh A., Biswas Md.H.A. Impact of nanomaterial in the marine environment: through mathematical modelling by eco-path framework. Commun. Biomath. Sci., 2024. Vol. 7, No. 1. P. 148–161. DOI: 10.5614/cbms.2024.7.1.8
  6. Hallam T.G., de Luna J.T. Effects of toxicants on populations: A qualitative: Approach III. Environmental and food chain pathways. J. Theoret. Biol., 1984. Vol. 109, No. 3. P. 411–429. DOI: 10.1016/S0022-5193(84)80090-9
  7. Haque M., Ali N. Chakravarty S. Study of a tri-trophic prey-dependent food chain model of interacting populations. Math. Biosci., 2003. Vol. 246, No. 1. P. 55–71. DOI: 10.1016/j.mbs.2013.07.021
  8. Hallam T.G., Clark C.E., Jordan G.S. Effects of toxicants on populations: A qualitative approach II. First order kinetics. J. Math. Biol., 1983. Vol. 18. P. 25–37. DOI: 10.1007/bf00275908
  9. Liu Z., Tan R. Impulsive harvesting and stocking in a Monod–Haldane functional response predator-prey system. Chaos, Solitons & Fractals, 2007. Vol. 34, No. 2. P. 454–464. DOI: 10.1016/j.chaos.2006.03.054
  10. Liu W.M. Criterion of Hopf bifurcations without using eigenvalues. J. Math. Anal. Appl., 1994. Vol. 182, No. 1. P. 250–256. DOI: 10.1006/jmaa.1994.1079
  11. Misra O.P., Babu A.R. A model for the dynamical study of food-chain system considering interference of top predator in a polluted environment. J. Math. Model., 2016. Vol. 3, No. 2. P. 189–218.
  12. Misra O.P., Babu A.R. Modelling effect of toxicant in a three-species food-chain system incorporating delay in toxicant uptake process by prey. Model. Earth Syst. Environ., 2016. Vol. 2. Art. no. 77. P. 1–27. DOI: 10.1007/s40808-016-0128-4
  13. Majeed A.A., Kadhim A.J. The bifurcation analysis and persistence of the food chain ecological model with toxicant. J. Phys.: Conf. Ser., 2021. Vol. 1818, No. 1. Art. no. 012191. DOI: 10.1088/1742-6596/1818/1/012191
  14. Mandal A., Tiwari P.K., Pal S. Impact of awareness on environmental toxins affecting plankton dynamics: a mathematical implication. J. Appl. Math. Comput., 2021. Vol. 66. P. 369–395. DOI: 10.1007/s12190-020-01441-5
  15. Preston B.L., Snell T.W. Direct and indirect effects of sublethal toxicant exposure on population dynamics of freshwater rotifers: a modeling approach. Aquatic toxicology, 2001. Vol. 52, No. 2. P. 87–99. DOI: 10.1016/S0166-445X(00)00143-0
  16. Panja P., Mondal S.K., Jana D.K. Effects of toxicants on Phytoplankton–Zooplankton–Fish dynamics and harvesting. Chaos, Solitions & Fractal, 2017. Vol. 104. P. 389–399. DOI: 10.1016/j.chaos.2017.08.036
  17. Pal R., Basu D., Banerjee M. Modelling of phytoplankton allelopathy with Monod–Haldane-type functional response – A mathematical study. Biosystems, 2009. Vol. 95, No. 3. P. 243–253. DOI: 10.1016/j.biosystems.2008.11.002
  18. Smith G.M., Weis J.S. Predator-prey relationships in mummichogs (Fundulus heteroclitus L.): Effects of living in a polluted environment. J. Exp. Marine Biol. Ecol., 1997. Vol. 209, No. 1–2. P. 75–87. DOI: 10.1016/S0022-0981(96)02590-7
  19. Thakur N.K., Ojha A., Jana D., Upadhyay R.K. Modeling the plankton-fish dynamics with top predator interference and multiple gestation delays. Nonlinear Dyn., 2020. Vol. 100. P. 4003–4029. DOI: 10.1007/s11071-020-05688-2
  20. Talib R.H., Helal M.M., Naji R.K. The dynamics of the aquatic food chain system in the contaminated environment. Iraqi J. Sci., 2022. Vol. 63, No. 5. P. 2173–2193. DOI: 10.24996/ijs.2022.63.5.31
  21. Yadav K., Babu A.R., Jadon B.P.S. Mathematical implications of the effect of toxicants and distributed delay on tri-trophic food chain model. J. Syst. Eng. Electron., 2024. Vol. 34, No. 12. P. 582–597. DOI: 10.5281/zenodo.14563265
  22. Zhang P., et al. Effect of feeding selectivity on the transfer of methylmercury through experimental marine food chains. Mar. Environ. Res., 2013. Vol. 89. P. 39–44. DOI: 10.1016/j.marenvres.2013.05.001




DOI: http://dx.doi.org/10.15826/umj.2025.1.011

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.