TWO METHODS OF DESCRIBING 2-LOCAL DERIVATIONS AND AUTOMORPHISMS
Abstract
In the present paper, we investigate 2-local linear operators on vector spaces. Sufficient conditions are obtained for the linearity of a 2-local linear operator on a finite-dimensional vector space. To do this, families of matrices of a certain type are selected and it is proved that every 2-local linear operator generated by these families is a linear operator. Based on these results we prove that each 2-local derivation of a finite-dimensional null-filiform Zinbiel algebra is a derivation. Also, we develop a method of construction of 2-local linear operators which are not linear operators. To this end, we select matrices of a certain type and using these matrices we construct a 2-local linear operator. If these matrices are distinct, then the 2-local linear operator constructed using these matrices is not a linear operator. Applying this method we prove that each finite-dimensional filiform Zinbiel algebra has a 2-local derivation that is not a derivation. We also prove that each finite-dimensional naturally graded quasi-filiform Leibniz algebras of type I has a 2-local automorphism that is not an automorphism.
Keywords
Full Text:
PDFReferences
- Abdurasulov K., Adashev J., Kaygorodov I. Maximal solvable Leibniz algebras with a quasi-filiform nilradical. Mathematics, 2023. Vol. 11, No. 5. Art. no. 1120. DOI: 10.3390/math11051120
- Adashev J.Q., Khudoyberdiyev A.Kh., Omirov B.A. Classifications of some classes of Zinbiel algebras. J. Generalized Lie Theory Appl., 2010. Vol. 4. Art. no. S090601.
- Adashev J., Yusupov B. Local automorphisms of n-dimensional naturally graded quasi-filiform Leibniz algebra of type I. Algebr. Struct. Their Appl., 2024. Vol. 11. P. 11–24.
- Ayupov Sh., Arzikulov F. 2-Local derivations on semi-finite von Neumann algebras. Glasg. Math. J., 2014. Vol. 56, No. 1. P. 9–12. DOI: 10.1017/S0017089512000870
- Ayupov Sh., Arzikulov F. 2-Local derivations on associative and Jordan matrix rings over commutative rings. Linear Algebra Appl., 2017. Vol. 522. P. 28–50. DOI: 10.1016/j.laa.2017.02.012
- Ayupov Sh.A., Arzikulov F.N. Description of 2-local and local derivations on some Lie rings of skew-adjoint matrices. Linear Multilinear Algebra, 2020. Vol. 68, No. 4. P. 764–780. DOI: 10.1080/03081087.2018.1517719
- Ayupov Sh.A., Arzikulov F.N., Umrzaqov N.M., Nuriddinov O.O. Description of 2-local derivations and automorphisms on finite-dimensional Jordan algebras. Linear Multilinear Algebra, 2022. Vol. 70, No. 18. P. 3525–3542. DOI: 10.1080/03081087.2020.1845595
- Ayupov Sh.A., Arzikulov F.N., Umrzaqov S.M. Local and 2-local derivations on Lie matrix rings over commutative involutive rings. J. Lie Theory, 2022. Vol. 32, No. 4. P. 1053–1071. URL: https://www.heldermann.de/JLT/JLT32/JLT324/jlt32049.htm
- Ayupov Sh., Kudaybergenov K. 2-Local derivations and automorphisms on \(B(H)\). J. Math. Anal. Appl., 2012. Vol. 395, No. 1. P. 15–18. DOI: 10.1016/j.jmaa.2012.04.064
- Ayupov Sh., Kudaybergenov K. 2-Local derivations on von Neumann algebras. Positivity, 2015. Vol. 19. P. 445–455. DOI: 10.1007/s11117-014-0307-3
- Ayupov Sh., Kudaybergenov K., Rakhimov I. 2-Local derivations on finite-dimensional Lie algebras. Linear Algebra Appl., 2015. Vol. 474. P. 1–11. DOI: 10.1016/j.laa.2015.01.016
- Ayupov Sh., Kudaybergenov K. 2-Local automorphisms on finite-dimensional Lie algebras. Linear Algebra Appl., 2016. Vol. 507. P. 121–131. DOI: 10.1016/j.laa.2016.05.042
- Ayupov Sh., Kudaybergenov K., Omirov B. Local and 2-local derivations and automorphisms on simple Leibniz algebras. Bull. Malays. Math. Sci. Soc., 2020. Vol. 43. P. 2199–2234. DOI: 10.1007/s40840-019-00799-5
- Ayupov Sh., Kudaybergenov K., Kalandarov T. 2-Local automorphisms on AW ∗-algebras. In: Positivity and Noncommutative Analysis. Trends Math. G. Buskes et al. (eds.). Cham: Birkhäuser, 2019. P. 1–13. DOI: 10.1007/978-3-030-10850-2_1
- Burgos M., Fernáandez-Polo F.J., Garcés J., Peralta A.M. A Kowalski-Słodkowski theorem for 2-local ∗-homomorphisms on von Neumann algebras. Rev. Ser. A Mat. RACSAM, 2015. Vol. 109. P. 551–568. DOI: 10.1007/s13398-014-0200-8
- Kashuba I., Martin M.E. Deformations of Jordan algebras of dimension four. J. Algebra, 2014. Vol. 399. P. 277–289. DOI: 10.1016/j.jalgebra.2013.09.040
- Kim S.O., Kim J.S. Local automorphisms and derivations on \(M_n\). Proc. Amer. Math. Soc., 2004. Vol. 132, No. 5. P. 1389–1392.
- Lai X., Chen Z.X. 2-local derivations of finite-dimensional simple Lie algebras (Chinese). Acta Math. Sinica (Chin. Ser.), 2015. Vol. 58, No. 5. P. 847–852.
- Lin Y.-F., Wong T.-L. A note on 2-local maps. Proc. Edinb. Math. Soc., 2006. Vol. 49, No. 3. P. 701–708. DOI: 10.1017/S0013091504001142
- Šemrl P. Local automorphisms and derivations on \(B(H)\). Proc. Amer. Math. Soc., 1997. Vol. 125. P. 2677–2680. DOI: 10.1090/S0002-9939-97-04073-2
- Umrzaqov S. Local derivations of null-filiform and filiform Zinbiel algebras. Uzbek Math. J., 2023. Vol. 67, No. 2. P. 162–169.
Article Metrics
Refbacks
- There are currently no refbacks.