### ON INTERPOLATION BY ALMOST TRIGONOMETRIC SPLINES

#### Abstract

The existence and uniqueness of an interpolating periodic spline defined on an equidistant mesh by the linear differential operator \({\cal L}_{2n+2}(D)=D^{2}(D^{2}+1^{2})(D^{2}+2^{2})\cdots (D^{2}+n^{2})\) with \(n\in\mathbb{N}\) are reproved under the final restriction on the step of the mesh. Under the same restriction, sharp estimates of the error of approximation by such interpolating periodic splines are obtained.

#### Keywords

Splines, Interpolation, Approximation, Linear differential operator.

#### Full Text:

PDF#### References

- Korneichuk N.P. Splines in approximation theory. Moscow: Nauka, 1984. 352 p. [in Russian]
- Micchelli C.A. Cardinal \(L\)-splines // Studies in spline functions and approximation theory, New York etc.: Acad. Press, 1976. P. 203–250.
- Novikov S.I. Approximation of the class \(W_{\infty}^{{\cal L}_{n}}\) by interpolation periodic \(L\)-splines // Approximation of functions by polynomials and splines, Sverdlovsk: Akad. Nauk SSSR, Ural. Sc. Center, 1985. P. 118–126. [in Russian]
- Novikov S.I. Generalization of the Rolle theorem // East J. Approx., 1995. Vol. 1, no. 4. P. 571–575.
- Nguen Thi T.H. The operator \(D(D^2 +1^2 )\cdots (D^2+n^2)\) and trigonometric interpolation // Anal. Math., 1989. Vol. 15, no. 4. P. 291–306. [in Russian]
- Nguen Thi T.H. Extremal problems for some classes of smooth periodic functions // Doctoral dissertation, 1994. Moscow: Steklov Institute of Math. 219 p. [in Russian]
- Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and series. Elementary functions, Moscow: Nauka, 1981. 800 p. [in Russian]
- Schoenberg I.J. On Micchelli’s theory of cardinal \(L\)-splines // Studies in spline functions and approximation theory, New York etc.: Acad. Press, 1976. P. 251–276.
- Shevaldin V.T. A problem of extremal interpolation // Mat. Zametki, 1981. Vol. 29, no. 4. P. 603–622. [in Russian]
- Shevaldin V.T. Interpolation periodic L-splines with uniform nodes // Approximation of functions by polynomials and splines, Sverdlovsk: Akad. Nauk SSSR, Ural. Sc. Center, 1985. P. 140–147. [in Russian]
- Stechkin S.B., Subbotin Yu.N. Splines in numerical mathematics. Moscow: Nauka, 1976. 248 p. [in Russian]
- Tikhomirov V.M. Best methods of approximation and interpolation of differentiable functions in the space \(C[-1,1]\) // Mat. Sb., 1969. Vol. 80, no. 122. P. 290–304. [in Russian]
- Zhensykbaev A.A. Approximation of differentiable periodic functions by splines on a uniform subdivision // Mat. Zametki, 1973. Vol. 13, no. 6. P. 807–816. [in Russian]
- Zhang J. \(C\)-curves: an extension of cubic curves // Comput. Aided Geom. Design, 1996. Vol. 13. P. 199–217.
- Roman F., Manni C., Speleers H. Spectral analysis of matrices in Galerkin methods based on generalized \(B\)-splines with high smoothness // Numer. Math., 2017. Vol. 135, no. 1. P. 169–216. DOI: 10.1007/s00211-016-0796-z
- Mainar E., Peña J.M., Sánchez-Reyes J. Shape preserving alternatives to the rational Bezier model // Comput. Aided Geom. Design, 2001. Vol. 18. P. 37–60. DOI: 10.1016/S0167-8396(01)00011-5

#### Article Metrics

Metrics Loading ...

### Refbacks

- There are currently no refbacks.