STABILITY OF GENERAL QUADRATIC EULER–LAGRANGE FUNCTIONAL EQUATIONS IN MODULAR SPACES: A FIXED POINT APPROACH
Abstract
In this paper, we establish a result on the Hyers–Ulam–Rassias stability of the Euler–Lagrange functional equation. The work presented here is in the framework of modular spaces. We obtain our results by applying a fixed point theorem. Moreover, we do not use the \(\Delta_\alpha\)-condition of modular spaces in the proofs of our theorems, which introduces additional complications in establishing stability. We also provide some corollaries and an illustrative example. Apart from its main objective of obtaining a stability result, the present paper also demonstrates how fixed point methods are applicable in modular spaces.
Keywords
Hyers–Ulam–Rassias stability, Euler–Lagrange functional equation, Modular spaces, Convexity, Fixed point method
Full Text:
PDFReferences
- Abdou A.A.N., Khamsi M.A. Fixed point theorems in modular vector spaces. J. Nonlinear Sci. Appl., 2017. Vol. 10, No. 8. P. 4046–4057. DOI: 10.22436/jnsa.010.08.01
- Cǎdariu L., Radu V. Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math., 2003. Vol. 4, No. 1. Art. no. 4.
- Eskandani G.Z., Rassias J.M. Stability of general A-cubic functional equations in modular spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2018. Vol. 112. P. 425–435. DOI: 10.1007/s13398-017-0388-5
- Gevirtz J. Stability of isometries on Banach spaces. Proc. Amer. Math. Soc., 1983. Vol. 89, No. 4. P. 633–636. DOI: 10.2307/2044596
- Gruber P.M. Stability of isometries. Trans. Amer. Math. Soc., 1978. Vol. 245. P. 263–277. DOI: 10.2307/1998866
- Hyers D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA, 1941. Vol. 27, No. 4. P. 222–224. DOI: 10.1073/pnas.27.4.222
- Jung S.-M. Hyers–Ulam stability of linear differential equations of first order, II. App. Math. Lett., 2006. Vol. 19, No. 9. P. 854–858. DOI: 10.1016/j.aml.2005.11.004
- Kayal N.C., Mondal P., Samanta T.K. The fuzzy stability of a Pexiderized functional equation. Math. Morav., 2014. Vol. 18, No. 2. P. 1–14. DOI: 10.5937/MatMor1402001K
- Khamsi M.A., Kozlowski W.M. Fixed Point Theory in Modular Function Spaces. Cham: Birkhäuser, 2015. 245 p. DOI: 10.1007/978-3-319-14051-3
- Khamsi M.A., Kozlowski W.M., Reich S. Fixed point theory in modular function spaces. Nonlinear Anal., 1990. Vol. 14, No. 11. P. 935–953. DOI: 10.1016/0362-546X(90)90111-S
- Khamsi M.A. A convexity property in modular function spaces. Math. Japonica, 1996. Vol. 44, No. 2. P. 269–279.
- Kim H.-M., Kim M.-Y. Generalized stability of Euler–Lagrange quadratic functional equation. Abstr. Appl. Anal., 2012. Vol. 2012. Art. no. 219435. DOI: 10.1155/2012/219435
- Koh H. A new generalized cubic functional equation and its stability problems. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math., 2021. Vol. 28, No. 1. P. 15–26. DOI: 10.7468/jksmeb.2021.28.1.15
- Koz lowski W.M. Modular Function Spaces. Ser. Monogr. Textb. Pure Appl. Math., vol. 122. New York: Marcel Dekker, 1988.
- Musielak J., Orlicz W. On modular spaces. Studia Math., 1959. Vol. 18, No. 1. P. 49–65.
- Musielak J. Orlicz Spaces and Modular Spaces. Ser. Lecture Notes in Math., vol. 1034. Berlin, Heidelberg: Springer, 1983. 226 p. DOI: 10.1007/BFb0072210
- Nakano H. Modular Semi-Ordered Spaces. Tokyo, Japan: Maruzen Co., Ltd., 1950. 288 p.
- Rassias J.M. On the stability of the Euler–Lagrangefunctional equation. Chinese J. Math., 1992. Vol. 20, No. 2. P. 185–190. URL: https://www.jstor.org/stable/43836466
- Rassias J.M. On the stability of the Euler–Lagrange functional equation. C. R. Acad. Bulgare Sci., 1992. Vol. 45. P. 17–20.
- Rassias J.M. Solution of the Ulam stability problem for Euler–Lagrange quadratic mappings. J. Math. Anal. Appl., 1998. Vol. 220, No. 2. P. 613–639. DOI: 10.1006/jmaa.1997.5856
- Rassias Th. M. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soci., 1978. Vol. 72, No. 2. P. 297–300. DOI: 10.2307/2042795
- Sadeghi G. A fixed point approach to stability of functional equations in modular spaces. Bull. Malays. Math. Sci. Soc., 2014. Vol. 37, No. 2. P. 333–344.
- Saha P., Samanta T.K., Mondal P., Choudhury B.S. Stability of two variable pexiderized quadratic functional equation in intuitionistic fuzzy Banach spaces. Proyecciones J. Math., 2019. Vol. 38, No. 3. P. 447–467. DOI: 10.22199/issn.0717-6279-2019-03-0029
- Saha P., Samanta T.K., Mondal P., Choudhury B.S. Stability of a two-variable pexiderized additive functional equation in intuitionistic fuzzy Banach spaces: A fixed point approach. Tamsui Oxf. J. Inf. Math. Sci., 2019. Vol. 33, No. 1. P. 30–46.
- Saha P., Samanta T.K., Mondal P., Choudhury B.S., Sen M.D.L. Applying fixed point techniques to stability problems in intuitionistic fuzzy Banach spaces. Mathematics, 2020. Vol. 8, No. 6. Art. no. 974. DOI: 10.3390/math8060974
- Tamilvanan K. et al. Ulam Stability results of functional equations in modular spaces and 2-Banach spaces. Mathematics, 2023. Vol. 11, No. 2. Art. no. 371. DOI: 10.3390/math11020371
- Ulam S.M. Problems in Modern Mathematics. New York: J. Wiley & Sons, 1964. 150 p.
- Uthirasamy N., Tamilvanan K., Nashine H. K., George R. Solution and stability of quartic functional equations in modular spaces by using Fatou property. J. Funct. Spaces, 2022. Vol. 2022. Art. no. 5965628. DOI: 10.1155/2022/5965628
- Wongkum K., Kumam P., Cho Y.J., Thounthong Ph., Chaipunya P. On the generalized Ulam–Hyers–Rassias stability for quartic functional equation in modular spaces. J. Nonlinear Sci. Appl., 10 (2017), 1399–1406. DOI: 10.22436/jnsa.010.04.10
- Zivari-Kazempour A., Gordji M.E. Generalized Hyers-Ulam stabilities of an Euler–Lagrange–Rassias quadratic functional equation. Asian-Eur. J. Math., 2012. Vol. 5, No. 1. Art. no. 1250014. DOI: 10.1142/S1793557112500143
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.