STABILITY OF GENERAL QUADRATIC EULER–LAGRANGE FUNCTIONAL EQUATIONS IN MODULAR SPACES: A FIXED POINT APPROACH

Parbati Saha     (Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal, India)
Pratap Mondal     (Bijoy Krishna Girls’ College, Howrah, Howrah – 711101, West Bengal, India)
Binayak S. Choudhuary     (Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal, India)

Abstract


In this paper, we establish a result on the  Hyers–Ulam–Rassias stability of the Euler–Lagrange functional equation. The work presented here is in the framework of modular spaces. We obtain our results by applying a fixed point theorem. Moreover, we do not use the \(\Delta_\alpha\)-condition of modular spaces in the proofs of our theorems, which introduces additional complications in establishing stability. We also provide some corollaries and an illustrative example. Apart from its main objective of obtaining a stability result, the present paper also demonstrates how fixed point methods are applicable in modular spaces.

Keywords


Hyers–Ulam–Rassias stability, Euler–Lagrange functional equation, Modular spaces, Convexity, Fixed point method

Full Text:

PDF

References


  1. Abdou A.A.N., Khamsi M.A. Fixed point theorems in modular vector spaces. J. Nonlinear Sci. Appl., 2017. Vol. 10, No. 8. P. 4046–4057. DOI: 10.22436/jnsa.010.08.01
  2. Cǎdariu L., Radu V. Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math., 2003. Vol. 4, No. 1. Art. no. 4.
  3. Eskandani G.Z., Rassias J.M. Stability of general A-cubic functional equations in modular spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2018. Vol. 112. P. 425–435. DOI: 10.1007/s13398-017-0388-5
  4. Gevirtz J. Stability of isometries on Banach spaces. Proc. Amer. Math. Soc., 1983. Vol. 89, No. 4. P. 633–636. DOI: 10.2307/2044596
  5. Gruber P.M. Stability of isometries. Trans. Amer. Math. Soc., 1978. Vol. 245. P. 263–277. DOI: 10.2307/1998866
  6. Hyers D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA, 1941. Vol. 27, No. 4. P. 222–224. DOI: 10.1073/pnas.27.4.222
  7. Jung S.-M. Hyers–Ulam stability of linear differential equations of first order, II. App. Math. Lett., 2006. Vol. 19, No. 9. P. 854–858. DOI: 10.1016/j.aml.2005.11.004
  8. Kayal N.C., Mondal P., Samanta T.K. The fuzzy stability of a Pexiderized functional equation. Math. Morav., 2014. Vol. 18, No. 2. P. 1–14. DOI: 10.5937/MatMor1402001K
  9. Khamsi M.A., Kozlowski W.M. Fixed Point Theory in Modular Function Spaces. Cham: Birkhäuser, 2015. 245 p. DOI: 10.1007/978-3-319-14051-3
  10. Khamsi M.A., Kozlowski W.M., Reich S. Fixed point theory in modular function spaces. Nonlinear Anal., 1990. Vol. 14, No. 11. P. 935–953. DOI: 10.1016/0362-546X(90)90111-S
  11. Khamsi M.A. A convexity property in modular function spaces. Math. Japonica, 1996. Vol. 44, No. 2. P. 269–279.
  12. Kim H.-M., Kim M.-Y. Generalized stability of Euler–Lagrange quadratic functional equation. Abstr. Appl. Anal., 2012. Vol. 2012. Art. no. 219435. DOI: 10.1155/2012/219435
  13. Koh H. A new generalized cubic functional equation and its stability problems. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math., 2021. Vol. 28, No. 1. P. 15–26. DOI: 10.7468/jksmeb.2021.28.1.15
  14. Koz lowski W.M. Modular Function Spaces. Ser. Monogr. Textb. Pure Appl. Math., vol. 122. New York: Marcel Dekker, 1988.
  15. Musielak J., Orlicz W. On modular spaces. Studia Math., 1959. Vol. 18, No. 1. P. 49–65.
  16. Musielak J. Orlicz Spaces and Modular Spaces. Ser. Lecture Notes in Math., vol. 1034. Berlin, Heidelberg: Springer, 1983. 226 p. DOI: 10.1007/BFb0072210
  17. Nakano H. Modular Semi-Ordered Spaces. Tokyo, Japan: Maruzen Co., Ltd., 1950. 288 p.
  18. Rassias J.M. On the stability of the Euler–Lagrangefunctional equation. Chinese J. Math., 1992. Vol. 20, No. 2. P. 185–190. URL: https://www.jstor.org/stable/43836466
  19. Rassias J.M. On the stability of the Euler–Lagrange functional equation. C. R. Acad. Bulgare Sci., 1992. Vol. 45. P. 17–20.
  20. Rassias J.M. Solution of the Ulam stability problem for Euler–Lagrange quadratic mappings. J. Math. Anal. Appl., 1998. Vol. 220, No. 2. P. 613–639. DOI: 10.1006/jmaa.1997.5856
  21. Rassias Th. M. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soci., 1978. Vol. 72, No. 2. P. 297–300. DOI: 10.2307/2042795
  22. Sadeghi G. A fixed point approach to stability of functional equations in modular spaces. Bull. Malays. Math. Sci. Soc., 2014. Vol. 37, No. 2. P. 333–344.
  23. Saha P., Samanta T.K., Mondal P., Choudhury B.S. Stability of two variable pexiderized quadratic functional equation in intuitionistic fuzzy Banach spaces. Proyecciones J. Math., 2019. Vol. 38, No. 3. P. 447–467. DOI: 10.22199/issn.0717-6279-2019-03-0029
  24. Saha P., Samanta T.K., Mondal P., Choudhury B.S. Stability of a two-variable pexiderized additive functional equation in intuitionistic fuzzy Banach spaces: A fixed point approach. Tamsui Oxf. J. Inf. Math. Sci., 2019. Vol. 33, No. 1. P. 30–46.
  25. Saha P., Samanta T.K., Mondal P., Choudhury B.S., Sen M.D.L. Applying fixed point techniques to stability problems in intuitionistic fuzzy Banach spaces. Mathematics, 2020. Vol. 8, No. 6. Art. no. 974. DOI: 10.3390/math8060974
  26. Tamilvanan K. et al. Ulam Stability results of functional equations in modular spaces and 2-Banach spaces. Mathematics, 2023. Vol. 11, No. 2. Art. no. 371. DOI: 10.3390/math11020371    
  27. Ulam S.M. Problems in Modern Mathematics. New York: J. Wiley & Sons, 1964. 150 p.
  28. Uthirasamy N., Tamilvanan K., Nashine H. K., George R. Solution and stability of quartic functional equations in modular spaces by using Fatou property. J. Funct. Spaces, 2022. Vol. 2022. Art. no. 5965628. DOI: 10.1155/2022/5965628
  29. Wongkum K., Kumam P., Cho Y.J., Thounthong Ph., Chaipunya P. On the generalized Ulam–Hyers–Rassias stability for quartic functional equation in modular spaces. J. Nonlinear Sci. Appl., 10 (2017), 1399–1406. DOI: 10.22436/jnsa.010.04.10
  30. Zivari-Kazempour A., Gordji M.E. Generalized Hyers-Ulam stabilities of an Euler–Lagrange–Rassias quadratic functional equation. Asian-Eur. J. Math., 2012. Vol. 5, No. 1. Art. no. 1250014. DOI: 10.1142/S1793557112500143




DOI: http://dx.doi.org/10.15826/umj.2025.1.008

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.