A PAIR OF FOUR-ELEMENT HORIZONTAL GENERATING SETS OF A PARTITION LATTICE

Gábor Czédli     (Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary)

Abstract


Let \(\lfloor x \rfloor\) and \(\lceil x\rceil \) denote the lower integer part and the upper integer part of a real number \(x\), respectively. Our main goal is to construct four partitions of a finite set \(A\) with \(n\geq 7\) elements such that each of the four partitions has exactly \(\lceil n/2\rceil \)  blocks and any other partition of \(A\) can be obtained from the given four by forming joins and meets in a finite number of steps. We do the same with \(\lceil n/2\rceil-1\) instead of \(\lceil n/2\rceil\), too. To situate the paper within lattice theory, recall that the partition lattice \(\mathrm{Eq}(A)\) of a set \(A\) consists of all partitions (equivalently, of all equivalence relations) of \(A\). For a natural number \(n\), \([n]\) and \(\mathrm{Eq}(n)\) will stand for \(\{1,2,\dots,n\}\) and \(\mathrm{Eq}([n])\), respectively. In 1975, Heinrich Strietz proved that, for any natural number \(n\geq 3\), \(\mathrm{Eq} (n)\) has a four-element generating set; half a dozen papers have been devoted to four-element generating sets of partition lattices since then. We give a simple proof of his just-mentioned result. We call a generating set \(X\) of \(\mathrm{Eq}(n)\) horizontal if each member of \(X\) has the same height, denoted by \(h(X)\), in \(\mathrm{Eq} (n)\); no such generating sets have been known previously. We prove that for each natural number \(n\ge 4\), \(\mathrm{Eq}(n)\) has two four-element horizontal generating sets \(X\) and \(Y\) such that \(h(Y)=h(X) +1\); for \(n\geq 7\), \(h(X)= \lfloor n/2 \rfloor\).


Keywords


Partition lattice, Equivalence lattice, Minimum-sized generating set, Horizontal generating set, Four-element generating set.

Full Text:

PDF

References


  1. Czédli G. Lattices embeddable in three-generated lattices. Acta Sci. Math. (Szeged), 2016. Vol. 82. P. 361–382. DOI: 10.14232/actasm-015-586-2
  2. Czédli G. Generating Boolean lattices by few elements and exchanging session keys. Novi Sad J. Math., 2025. Published online ahead of print October 8, 2024. DOI: 10.30755/NSJOM.16637
  3. Czédli G. Four generators of an equivalence lattice with consecutive block counts. In: Model Theory and Algebra 2024: collection of papers. M. Shahryari, S.V. Sudoplatov (eds.). Novosibirsk: Novosibirsk State Univ., 2024. P. 14–24. URL: https://erlagol.ru/wp-content/uploads/cbor/erlagol 2024.pdf
  4. Czédli G. Atoms in four-element generating sets of partition lattices. Math. Pannonica, 2025. Vol. 31 NS5, No. 1. P. 88–96. DOI: 10.1556/314.2025.00010
  5. Czédli G., Kurusa Á. A convex combinatorial property of compact sets in the plane and its roots in lattice theory. Categ. Gen. Algebr. Struct. Appl., 2019. Vol. 11. P 57–92. DOI: 10.29252/CGASA.11.1.57
  6.  Czédli G., Oluoch L. Four-element generating sets of partition lattices and their direct products. Acta Sci. Math. (Szeged), 2020. Vol. 86. P. 405–448. DOI: 10.14232/actasm-020-126-7
  7. Grätzer G. General Lattice Theory, 2nd. ed. Basel–Boston–Berlin: Birkhäuser, 1998. XX+663 p. ISBN: 978-3-7643-6996-5.
  8. Grätzer G. Lattice Theory: Foundation. Basel: Birkhäuser, 2011. XXX+614 p. DOI: 10.1007/978-3-0348-0018-1
  9. Pudlák P., Tůma J. Every finite lattice can be embedded in a finite partition lattice. Algebra Universalis, 1980. Vol. 10. P. 74–95. DOI: 10.1007/BF02482893
  10. Strietz H. Finite partition lattices are four-generated. In: Proc. Lattice Th. Conf. Ulm, 1975. P. 257–259.
  11. Strietz H. Über Erzeugendenmengen endlicher Partitionenverbände. Studia Sci. Math. Hungar., 1977. Vol. 12, No. 1–2. P. 1–17. (in German)
  12. Whitman P.M. Lattices, equivalence relations, and subgroups. Bull. Amer. Math. Soc., 1946. Vol. 52, No. 6. P. 507–522. DOI: 10.1090/S0002-9904-1946-08602-4
  13. Zádori L. Generation of finite partition lattices. In: Lectures in Universal Algebra: Proc. Colloq. (Szeged, 1983). Colloq. Math. Soc. János Bolyai, vol. 43. Amsterdam: North-Holland Publishing, 1986. P. 573–586.




DOI: http://dx.doi.org/10.15826/umj.2025.1.004

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.