STATISTICAL CONVERGENCE IN TOPOLOGICAL SPACE CONTROLLED BY MODULUS FUNCTION
Abstract
The notion of \(f\)-statistical convergence in topological space, which is actually a statistical convergence's generalization under the influence of unbounded modulus function is presented and explored in this paper. This provides as an intermediate between statistical and typical convergence. We also present many counterexamples to highlight the distinctions among several related topological features. Lastly, this paper is concerned with the notions of \(s^{f}\)-limit point and \(s^{f}\)-cluster point for a unbounded modulus function \(f\).
Keywords
Asymptotic density, \(f\)-statistical convergence, \(f\)-statistical limit point, \(f\)-statistical cluster point
Full Text:
PDFReferences
- Bal P., Rakshit D. A variation of the class of statistical \(\gamma\) covers. Topol. Algebra Appl., 2023. Vol. 11, No. 1. Art. no. 20230101. DOI: 10.1515/taa-2023-0101
- Bal P., Rakshit D., Sarkar S. Countable compactness modulo an ideal of natural numbers. Ural Math. J., 2023. Vol. 9, No. 2. P. 28–35. DOI: 10.15826/umj.2023.2.002
- Bal P., Rakshit D., Sarkar S. On strongly star semi-compactness of topological spaces. Khayyam J. Math., 2023. Vol. 9, No. 1. P. 54–60.
- Bal P. A countable intersection like characterization of Star-Lindelöf spaces. Researches in Math., 2023. Vol. 31, No. 2. P. 3–7.
- Bhardwaj B.K., Dhawan S. Korovkin type approximation theorems via \(f\)-statistical convergence. J. Math. Anal., 2018. Vol. 9., No. 2. P. 99–117.
- Bhunia S., Das P., Pal S.K. Restricting statistical convergence. Acta Math. Hung., 2012. Vol. 134, No. 1–2. P. 153–161. DOI: 10.1007/s10474-011-0122-2
- Çolak R. Statistical convergence of order α. In: Modern Methods in Analysis and Its Applications, M. Mursaleen, ed. New Delhi: Anamaya Publ., 2010. P. 121–129.
- Çolak R., Bektaş Ç.A. λ-statistical convergence of order α. Acta Math. Sci., Ser. B, Engl. Ed., 2011. Vol. 31, No. 3. P. 953–959. DOI: 10.1016/S0252-9602(11)60288-9
- Connor J.S. The statistical and strong \(p\)-Cesaro convergence of sequences. Analysis, 1988. Vol. 8, No. 1–2. P. 47–63. DOI: 10.1524/anly.1988.8.12.47
- Das P. Certain types of open covers and selection principles using ideals. Houston J. Math., 2013, Vol. 39, No. 2. P. 637–650.
- Engelking R. General Topology. Berlin: Heldermann Verlag, 1989. 529 p.
- Fast H. Sur la convergence statistique. Colloq. Math., 1951. Vol. 2, No. 3–4. P. 241–244. (in French)
- Fridy J.A. On statistical convergence. Analysis, 1985. Vol. 5, No. 4. P. 301–313. DOI: 10.1524/anly.1985.5.4.301
- Lahiri B.K., Das P. \(I\) and \(I^{\ast}\) convergence in topological spaces. Math. Bohem., 2005. Vol. 130, No. 2. P. 153–160. DOI: 10.21136/MB.2005.134133
- Maio G.D., Kočinac L.D.R. Statistical convergence in topology. Topology Appl., 2008. Vol. 156, No. 1. P. 28–45. DOI: 10.1016/j.topol.2008.01.015
- Salát T. On statistically convergent sequences of real numbers. Math. Slovaca, 1980. Vol. 30, No. 2. P. 139–150.
- Schoenberg I.J. The integrability of certain functions and related summability methods. Amer. Math. Monthly, 1959. Vol. 66, No. 5. P. 361–375. DOI: 10.2307/2308747
- Zygmund A. Trigonometrical Series. Monogr. Mat., Warszawa, vol. 5. Warszawa: PWN-Panstwowe Wydawnictwo Naukowe, 1935. 332 p.
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.