STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES IN NEUTROSOPHIC 2-NORMED SPACES
Abstract
In this paper, we have studied the notion of statistical convergence for double sequences in neutrosophic 2-normed spaces. Also, we have defined statistically Cauchy double sequences and statistically completeness for double sequences and investigated some interesting results in connection with neutrosophic 2-normed space.
Keywords
Neutrosophic 2-normed space, Double natural density, Statistically double convergent sequence, Statistically double Cauchy sequence.
Full Text:
PDFReferences
- Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986. Vol. 20, No. 1 P. 87–96. DOI: 10.1016/S0165-0114(86)80034-3
- Atanassov K.T., Gargov G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1989. Vol. 31, No. 3. P. 343–349. DOI: 10.1016/0165-0114(89)90205-4
- Bustince H., Burillo P. Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1996. Vol. 79, No. 3. P. 403–405. DOI: 10.1016/0165-0114(95)00154-9
- Barros L.C., Bassanezi R.C., Tonelli P.A. Fuzzy modelling in population dynamics. Ecological modelling, 2000. Vol. 128, No. 1. P. 27–33. DOI: 10.1016/S0304-3800(99)00223-9
- Bera T., Mahapatra N.K. On neutrosophic soft linear spaces. Fuzzy Inf. Eng., 2017. Vol. 9, No. 3. P. 299–324. DOI: 10.1016/j.fiae.2017.09.004
- Bera T., Mahapatra N.K. Neutrosophic soft normed linear space. Neutrosophic Sets Syst., 2018. Vol. 23. P. 52–71.
- Christopher J. The asymptotic density of some \(k\)-dimensional sets. Amer. Math. Monthly, 1956. Vol. 63, No. 6. P. 399–401. DOI: 10.2307/2309400
- Connor J.S. The statistical and strong p-Cesaro convergence of sequences. Analysis, 1988. Vol. 8, No. 1–2. P. 47–63. DOI: 10.1524/anly.1988.8.12.47
- Çakallı H., Sava¸ s E. Statistical convergence of double sequences in topological groups. J. Comput. Anal. Appl., 2010. Vol. 12, No. 1A. P. 421–426.
- Nuray F., Dündar E., Ulusu U. Wijsman statistical convergence of double sequences of sets. Iran. J. Math. Sci. Inform., 2021. Vol. 16, No. 1. P. 55–64.
- Debnath S., Debnath S., Choudhury C. On deferred statistical convergence of sequences in neutrosophic normed spaces. Sahand Commun. Math. Anal., 2022. Vol. 19, No. 4. P. 81–96. DOI: 10.22130/scma.2022.544537.1031
- Fast H. Sur la convergence statistique. Colloq. Math., 1951. Vol. 2, No. 3–4. P. 241–244. (in French)
- Fridy J.A. On statistical convergence. Analysis, 1985. Vol. 5, No. 4. P. 301–313. DOI: 10.1524/anly.1985.5.4.301
- Fridy J.A., Orhan C. Lacunary statistical convergence. Pacific J. Math., 1993. Vol. 160, No. 1. P. 43–51. DOI: 10.2140/pjm.1993.160.43
- Fradkov A.L., Evans R.J. Control of chaos: Methods and applications in engineering. Annu. Rev. Control, 2005. Vol. 29, No. 1. P. 33–56. DOI: 10.1016/j.arcontrol.2005.01.001
- Gähler S. 2-normed spaces. Math. Nachr., 1964. Vol. 28, No. 1–2. P. 1–43. DOI: 10.1002/mana.19640280102 (in German)
- Giles R. A computer program for fuzzy reasoning. Fuzzy Sets and Systems, 1980. Vol. 4, No. 3. P. 221–234. DOI: 10.1016/0165-0114(80)90012-3
- Granados C., Dhital A. Statistical convergence of double sequences in neutrosophic normed spaces. Neutrosophic Sets Syst., 2021. Vol. 42. P. 333–344.
- Hong L., Sun J.-Q. Bifurcations of fuzzy nonlinear dynamical systems. Commun. Nonlinear Sci. Numer. Simul., 2006. Vol. 11, No. 1. P. 1–12. DOI: 10.1016/j.cnsns.2004.11.001
- Klement E.P., Mesiar R., Pap E. Triangular norms. Position paper I: basic analytical and algebraic properties. Fuzzy Sets and Systems, 2004. Vol. 143, P. 5–26. DOI: 10.1016/j.fss.2003.06.007
- Kirişci M., Şimşek N. Neutrosophic normed spaces and statistical convergence. J. Anal., 2020. Vol. 28, P. 1059–1073. DOI: 10.1007/s41478-020-00234-0
- Kişi Ö. Ideal convergence of sequences in neutrosophic normed spaces. J. Intell. Fuzzy Syst., 2021. Vol. 41, No. 3. P. 2581–2590. DOI: 10.3233/JIFS-201568
- Khan V.A., Khan M.D., Ahmad M. Some new type of lacunary statistically convergent sequences in neutrosophic normed space. Neutrosophic Sets Syst., 2021. Vol. 42, No. 1. P. 241–252. URL: https://digitalrepository.unm.edu/nss journal/vol42/iss1/15
- Madore J. Fuzzy physics. Ann. Physics, 1992. Vol. 219, No. 1. P. 187–198. DOI: 10.1016/0003-4916(92)90316-E
- Mursaleen M. λ-statistical convergence. Math. Slovaca, 2000. Vol. 50, No. 1. P. 111–115. URL: https://dml.cz/handle/10338.dmlcz/136769
- Mursaleen M., Edely O.H.H. Statistical convergence of double sequences. J. Math. Anal. Appl., 2003. Vol. 288, No. 1. P. 223–231. DOI: 10.1016/j.jmaa.2003.08.004
- Murtaza S., Sharma A., Kumar V. Neutrosophic 2-normed spaces and generalized summability. Neutrosophic Sets Syst., 2023. Vol. 55, No. 1. Art. no. 25. P. 415–426. URL: https://digitalrepository.unm.edu/nss journal/vol55/iss1/25
- Nuray F., Savaş E. Statistical convergence of sequences of fuzzy numbers. Math. Slovaca, 1995. Vol. 45, No. 3. P. 269–273. URL: https://dml.cz/handle/10338.dmlcz/129143
- Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math., 1951. Vol. 2, No. 1. P. 73–74. (in French)
- Schweizer B., Sklar A. Statistical metric spaces. Pacific J. Math., 1960. Vol. 10, No. 1. P. 313–334. DOI: 10.2140/pjm.1960.10.313
- Šalát T. On statistically convergent sequences of real numbers. Math. Slovaca, 1980. Vol. 30, No. 2. P. 139–150. URL: https://dml.cz/handle/10338.dmlcz/136236
- Smarandache F. Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. Int. J. Pure. Appl. Math., 2005. Vol. 24, No. 3. P. 287–297. URL: https://www.ijpam.eu/contents/2005-24-3/1/1.pdf
- Saadati R., Park J.H. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals, 2006. Vol. 27, No. 2. P. 331–344. DOI: 10.1016/j.chaos.2005.03.019
- Şahiner A., Gürdal M., Saltan S., Gunawan H. Ideal convergence in 2-normed spaces. Taiwanese J. Math., 2007. Vol. 11, No. 5. P. 1477–1484. URL: https://www.jstor.org/stable/43834569
- Sarabadan S., Talebi S. Statistical convergence of double sequences in 2-normed spaces. Int. J. Contemp. Math. Sciences, 2011. Vol. 6, No. 8. P. 373–380.
- Turksen I.B. Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems, 1986. Vol. 20, No. 2. P. 191–210. DOI: 10.1016/0165-0114(86)90077-1
- Zadeh L.A. Fuzzy sets. Inform. Control, 1965. Vol. 8, No. 3. P. 338–353. DOI: 10.1016/S0019-9958(65)90241-X
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.