STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES IN NEUTROSOPHIC 2-NORMED SPACES

Rahul Mondal     (Department of Mathematics, Vivekananda Satavarshiki Mahavidyalaya, Vidyasagar University, Manikpara, Jhargram – 721513, West Bengal, India)
Nesar Hossain     (Department of Mathematics, University of Burdwan, Burdwan – 713104, West Bengal, India)

Abstract


In this paper, we have studied the notion of statistical convergence for double sequences in neutrosophic 2-normed spaces. Also, we have defined statistically Cauchy double sequences and statistically completeness for double sequences and investigated some interesting results in connection with neutrosophic 2-normed space.


Keywords


Neutrosophic 2-normed space, Double natural density, Statistically double convergent sequence, Statistically double Cauchy sequence.

Full Text:

PDF

References


  1. Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986. Vol. 20, No. 1 P. 87–96. DOI: 10.1016/S0165-0114(86)80034-3
  2. Atanassov K.T., Gargov G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1989. Vol. 31, No. 3. P. 343–349. DOI: 10.1016/0165-0114(89)90205-4
  3. Bustince H., Burillo P. Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1996. Vol. 79, No. 3. P. 403–405. DOI: 10.1016/0165-0114(95)00154-9
  4. Barros L.C., Bassanezi R.C., Tonelli P.A. Fuzzy modelling in population dynamics. Ecological modelling, 2000. Vol. 128, No. 1. P. 27–33. DOI: 10.1016/S0304-3800(99)00223-9
  5. Bera T., Mahapatra N.K. On neutrosophic soft linear spaces. Fuzzy Inf. Eng., 2017. Vol. 9, No. 3. P. 299–324. DOI: 10.1016/j.fiae.2017.09.004
  6. Bera T., Mahapatra N.K. Neutrosophic soft normed linear space. Neutrosophic Sets Syst., 2018. Vol. 23. P. 52–71.
  7. Christopher J. The asymptotic density of some \(k\)-dimensional sets. Amer. Math. Monthly, 1956. Vol. 63, No. 6. P. 399–401. DOI: 10.2307/2309400
  8. Connor J.S. The statistical and strong p-Cesaro convergence of sequences. Analysis, 1988. Vol. 8, No. 1–2. P. 47–63. DOI: 10.1524/anly.1988.8.12.47
  9. Çakallı H., Sava¸ s E. Statistical convergence of double sequences in topological groups. J. Comput. Anal. Appl., 2010. Vol. 12, No. 1A. P. 421–426.
  10. Nuray F., Dündar E., Ulusu U. Wijsman statistical convergence of double sequences of sets. Iran. J. Math. Sci. Inform., 2021. Vol. 16, No. 1. P. 55–64.
  11. Debnath S., Debnath S., Choudhury C. On deferred statistical convergence of sequences in neutrosophic normed spaces. Sahand Commun. Math. Anal., 2022. Vol. 19, No. 4. P. 81–96. DOI: 10.22130/scma.2022.544537.1031
  12. Fast H. Sur la convergence statistique. Colloq. Math., 1951. Vol. 2, No. 3–4. P. 241–244. (in French)
  13. Fridy J.A. On statistical convergence. Analysis, 1985. Vol. 5, No. 4. P. 301–313. DOI: 10.1524/anly.1985.5.4.301
  14. Fridy J.A., Orhan C. Lacunary statistical convergence. Pacific J. Math., 1993. Vol. 160, No. 1. P. 43–51. DOI: 10.2140/pjm.1993.160.43
  15. Fradkov A.L., Evans R.J. Control of chaos: Methods and applications in engineering. Annu. Rev. Control, 2005. Vol. 29, No. 1. P. 33–56. DOI: 10.1016/j.arcontrol.2005.01.001
  16. Gähler S. 2-normed spaces. Math. Nachr., 1964. Vol. 28, No. 1–2. P. 1–43. DOI: 10.1002/mana.19640280102 (in German)
  17. Giles R. A computer program for fuzzy reasoning. Fuzzy Sets and Systems, 1980. Vol. 4, No. 3. P. 221–234. DOI: 10.1016/0165-0114(80)90012-3
  18. Granados C., Dhital A. Statistical convergence of double sequences in neutrosophic normed spaces. Neutrosophic Sets Syst., 2021. Vol. 42. P. 333–344.
  19. Hong L., Sun J.-Q. Bifurcations of fuzzy nonlinear dynamical systems. Commun. Nonlinear Sci. Numer. Simul., 2006. Vol. 11, No. 1. P. 1–12. DOI: 10.1016/j.cnsns.2004.11.001
  20. Klement E.P., Mesiar R., Pap E. Triangular norms. Position paper I: basic analytical and algebraic properties. Fuzzy Sets and Systems, 2004. Vol. 143, P. 5–26. DOI: 10.1016/j.fss.2003.06.007
  21. Kirişci M., Şimşek N. Neutrosophic normed spaces and statistical convergence. J. Anal., 2020. Vol. 28, P. 1059–1073. DOI: 10.1007/s41478-020-00234-0
  22. Kişi Ö. Ideal convergence of sequences in neutrosophic normed spaces. J. Intell. Fuzzy Syst., 2021. Vol. 41, No. 3. P. 2581–2590. DOI: 10.3233/JIFS-201568
  23. Khan V.A., Khan M.D., Ahmad M. Some new type of lacunary statistically convergent sequences in neutrosophic normed space. Neutrosophic Sets Syst., 2021. Vol. 42, No. 1. P. 241–252. URL: https://digitalrepository.unm.edu/nss journal/vol42/iss1/15
  24. Madore J. Fuzzy physics. Ann. Physics, 1992. Vol. 219, No. 1. P. 187–198. DOI: 10.1016/0003-4916(92)90316-E
  25. Mursaleen M. λ-statistical convergence. Math. Slovaca, 2000. Vol. 50, No. 1. P. 111–115. URL: https://dml.cz/handle/10338.dmlcz/136769
  26. Mursaleen M., Edely O.H.H. Statistical convergence of double sequences. J. Math. Anal. Appl., 2003. Vol. 288, No. 1. P. 223–231. DOI: 10.1016/j.jmaa.2003.08.004
  27. Murtaza S., Sharma A., Kumar V. Neutrosophic 2-normed spaces and generalized summability. Neutrosophic Sets Syst., 2023. Vol. 55, No. 1. Art. no. 25. P. 415–426. URL: https://digitalrepository.unm.edu/nss journal/vol55/iss1/25
  28. Nuray F., Savaş E. Statistical convergence of sequences of fuzzy numbers. Math. Slovaca, 1995. Vol. 45, No. 3. P. 269–273. URL: https://dml.cz/handle/10338.dmlcz/129143
  29. Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math., 1951. Vol. 2, No. 1. P. 73–74. (in French)
  30. Schweizer B., Sklar A. Statistical metric spaces. Pacific J. Math., 1960. Vol. 10, No. 1. P. 313–334. DOI: 10.2140/pjm.1960.10.313
  31. Šalát T. On statistically convergent sequences of real numbers. Math. Slovaca, 1980. Vol. 30, No. 2. P. 139–150. URL: https://dml.cz/handle/10338.dmlcz/136236
  32. Smarandache F. Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. Int. J. Pure. Appl. Math., 2005. Vol. 24, No. 3. P. 287–297. URL: https://www.ijpam.eu/contents/2005-24-3/1/1.pdf
  33. Saadati R., Park J.H. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals, 2006. Vol. 27, No. 2. P. 331–344. DOI: 10.1016/j.chaos.2005.03.019
  34. Şahiner A., Gürdal M., Saltan S., Gunawan H. Ideal convergence in 2-normed spaces. Taiwanese J. Math., 2007. Vol. 11, No. 5. P. 1477–1484. URL: https://www.jstor.org/stable/43834569
  35. Sarabadan S., Talebi S. Statistical convergence of double sequences in 2-normed spaces. Int. J. Contemp. Math. Sciences, 2011. Vol. 6, No. 8. P. 373–380.
  36. Turksen I.B. Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems, 1986. Vol. 20, No. 2. P. 191–210. DOI: 10.1016/0165-0114(86)90077-1
  37. Zadeh L.A. Fuzzy sets. Inform. Control, 1965. Vol. 8, No. 3. P. 338–353. DOI: 10.1016/S0019-9958(65)90241-X




DOI: http://dx.doi.org/10.15826/umj.2024.1.009

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.