POLYNOMIALS LEAST DEVIATING FROM ZERO IN \(L^p(-1;1)\), \(0 \le p \le \infty \), WITH A CONSTRAINT ON THE LOCATION OF THEIR ROOTS

Alena E. Rokina     (Ural Federal University, 51 Lenin ave., Ekaterinburg, 620000, Russian Federation)

Abstract


We study Chebyshev's problem on polynomials that deviate least from zero with respect to \(L^p\)-means on the interval \([-1;1]\) with a constraint on the location of roots of polynomials. More precisely, we consider the problem on the set \(\mathcal{P}_n(D_R)\) of polynomials of degree \(n\) that have unit leading coefficient and do not vanish in an open disk of radius \(R \ge 1\). An exact solution is obtained for the geometric mean (for \(p=0\)) for all \(R \ge 1\); and for \(0<p<\infty\) for all \(R \ge 1\) in the case of polynomials of even degree. For \(0<p<\infty\) and \(R\ge 1\), we obtain two-sided estimates of the value of the least deviation.


Keywords


Algebraic polynomials, Chebyshev polynomials, Constraints on the roots of a polynomial

Full Text:

PDF

References


  1. Akhiezer N.I. Lekcii po teorii approksimacii [Lectures on Approximation Theory]. Moscow: Nauka, 1965. 408 p. (in Russian)
  2. Akopyan R.R. Turán’s inequality in \(H_2\) for algebraic polynomials with restrictions to their zeros. East J. Approx., 2000. Vol. 6, No. 1. P. 103–124.
  3. Akopyan R.R. Certain extremal problems for algebraic polynomials which do not vanish in a disk. East J. Approx., 2003. Vol. 9, No. 2. P. 139–150.
  4. Arestov V.V. Integral inequalities for algebraic polynomials with a restriction on their zeros. Anal. Math., 1991. Vol. 17, No. 1. P. 11–20. DOI: 10.1007/BF02055084
  5. Chebyshev P.L. Theory of the mechanisms known as parallelograms. In: Chebyshev P.L. Collected works. Vol. II: Mathematical Analysis. Moscow, Leningrad: Acad. Sci. USSR, 1947. P. 23–51. (in Russian)
  6. De Bruijn N.G. Inequalities concerning polynomials in the complex domain. Nederl. Akad. Watensh., Proc., 1947. Vol. 50. P. 1265–1272.
  7. Erdélyi T. Markov-type inequalities for constrained polynomials with complex coefficients. Illinois J. Math., 1998. Vol. 42, No. 4. P. 544–563. DOI: 10.1215/ijm/1255985460
  8. Glazyrina P.Yu. The Markov brothers inequality in \(L_0\)-space on an interval. Math. Notes, 2005. Vol. 78, No. 1. P. 53–58. DOI: 10.1007/s11006-005-0098-8
  9. Glazyrina P.Yu., Révész Sz.Gy. Turán type oscillation inequalities in \(L_q\) norm on the boundary of convex domains. Math. Inequal. Appl., 2017. Vol. 20, No. 1. P. 149–180. DOI: 10.7153/mia-20-11
  10. Glazyrina P.Yu., Révész Sz.Gy. Turán–Erőd type converse Markov inequalities on general convex domains of the plane in the boundary \(L^q\) norm. Proc. Steklov Inst. Math., 2018. Vol. 303. P. 78–104. DOI: 10.1134/S0081543818080084
  11. Goluzin G.M. Geometric Theory of Functions of a Complex Variable. Transl. Math. Monogr., vol. 26. Providence, R. I.: American Math. Soc., 1969. 676 p.
  12. Halász G. Markov-type inequalities for polynomials with restricted zeros. J. Approx. Theory, 1999. Vol. 101. P. 148–155.
  13. Hardy G.H., Littlewood J.E. Pólya G. Inequalities. Cambridge: Cambridge Univ. Press, 1934.
  14. Korneychuk N.P., Babenko V.F., Ligun A.A. Ekstremal’nye svojstva polinomov i splajnov [Extreme Properties of Polynomials and Splines]. Kyiv: Scientific Opinion, 1992. 304 p. (in Russian)
  15. Lax P.D. Proof of the conjecture of P. Erdős on the derivative of a polynomial. Bull. Amer. Math. Soc., 1947. Vol. 50. P. 509–513. DOI: 10.1090/S0002-9904-1944-08177-9
  16. Malik M.A. On the derivative of a polynomial. J. London Math. Soc., 1969. Vol. s2-1, No. 1. P. 57–60. DOI: 10.1112/jlms/s2-1.1.57
  17. Pestovskaya A.E. Polynomials least deviating from zero with a constraint on the location of roots. Trudy Inst. Mat. Mekh. UrO RAN, 2022. Vol. 28, No. 3. P. 166–175. DOI: 10.21538/0134-4889-2022-28-3-166-175
  18. Rahman Q.I., Schmeisser G. \(L^p\) inequalities for polynomials. J. Approx. Theory, 1988. Vol. 53, No. 1. P. 26–33. DOI: 10.1016/0021-9045(88)90073-1
  19. Smirnov V.I., Lebedev N.A. Functions of a Complex Variable (Constructive Theory). London: Iliffe Books Ltd., 1968. 488 p.
  20. Suetin P.K. Klassicheskie ortogonal’nye mnogochleny [The Classical Orthogonal Polynomials]. Moscow: Nauka, 1976. 327 p. (in Russian)
  21. Turán P. Über die Ableitung von Polynomen. Compos. Math., 1939. Vol. 7. P. 89–95. (in German)




DOI: http://dx.doi.org/10.15826/umj.2023.2.013

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.