CONTROL SYSTEM DEPENDING ON A PARAMETER

Vladimir N. Ushakov     (Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation)
Aleksandr A. Ershov     (Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation)
Andrey V. Ushakov     (Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation)
Oleg A. Kuvshinov     (Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation)

Abstract


A nonlinear control system depending on a parameter is considered in a finite-dimensional Euclidean space and on a finite time interval. The dependence on the parameter of the reachable sets and integral funnels of the corresponding differential inclusion system is studied. Under certain conditions on the control system, the degree of this dependence on the parameter is estimated. Problems of targeting integral funnels to a target set in the presence of an obstacle in strict and soft settings are considered. An algorithm for the numerical solution of this problem in the soft setting has been developed. An estimate of the error of the developed algorithm is obtained. An example of solving a specific problem for a control system in a two-dimensional phase space is given.


Keywords


Control system, Differential inclusion, Reachable set, Integral funnel, Parameter dependence, Approximation

Full Text:

PDF

References


  1. Anan’evskii I.M. Control of a nonlinear vibratory system of the fourth order with unknown parameters. Autom. Remote Control, 2001. Vol. 62, No. 3. P. 343–355. DOI: 10.1023/A:1002832924913
  2. Anan’evskii I.M. Control synthesis for linear systems by methods of stability theory of motion. Differential Equations, 2003. Vol. 39, No. 1. P. 1–10. DOI: 10.1023/A:1025170521270
  3. Beznos A.V., Grishin A.A., Lensky A.V., Okhotsimsky D.E., Formalsky A.M. Pendulum control using a flywheel. In: Spetspraktikum po teoreticheskoi i prikladnoi mehanike [Special workshop on theoretical and applied mechanics]. V.V. Aleksandrov, Yu.V. Bolotov (eds.). Moscow: MSU Press, 2019. P. 170–195.
  4. BogachevV.I., SmoljanovO.G. Deistvitel’nyi i funktsional’nyi analiz: universitetskii kurs [Real and Functional Analysis: University Course] Moscow-Izhevsk: Research Center “Regular and Chaotic Dynamics”, Institute for Computer Research, 2009. 724 p. (in Russian)
  5. Chernousko F.L. State Estimation for Dynamic Systems. CRC Press: Boca Raton, 1994. 320 p.
  6. Chernousko F.L., Melikyan A.A. Igrovye zadachi upravlenija i poiska [Game Control and Search Problems]. Moscow: Nauka, 1978. 270 p. (in Russian)
  7. Ershov A.A., Ushakov V.N. An approach problem for a control system with an unknown parameter. Sb. Math., 2017. Vol. 208. No. 9. P. 1312–1352. DOI: 10.1070/SM8761
  8. Filippova T.F. Construction of set-valued estimates of reachable sets for some nonlinear dynamical systems with impulsive control. Proc. Steklov Inst. Math., 2010. Vol. 269, Suppl. 1. P. S95–S102. DOI: 10.1134/S008154381006009X
  9. Gusev M.I. Estimates of reachable sets of multidimensional control systems with nonlinear interconnections. Proc. Steklov Inst. Math., 2010. Vol. 269, Suppl. 1. P. S134–S146. DOI: 10.1134/S008154381006012X
  10. Krasovsky N.N. Upravlenie dinamicheskoi sistemoi: Zadacha o minimume garantirovannogo rezul’tata [Control of a Dynamical System: Problem on the Minimum of Guaranteed Result]. Moscow: Nauka, 1985. 520 p. (in Russian)
  11. Krasovsky N.N., Subbotin A.I. Pozitsionnye differentsial’nye igry [Positional Differential Games]. Moscow: Fizmatlit, 1974. 456 p. (in Russian)
  12. Kurzhansky A.B. Izbrannye trudy [Selected Works]. Moscow: MSU Press, 2009. 756 p. (in Russian)
  13. Kurzhanski A.B., Valyi I. Ellipsoidal Calculus for Estimation and Control. Systems Control Found. Appl. Basel: Birkhäuser, 1997. 321 p.
  14. Lee E.B., Markus L. Foundation of Optimal Control Theory. New York–London–Sydney: John Wiley & Sons, 1967. 576 p.
  15. Leichtweiß K. Konvexe Mengen. Hochschultext. Berlin: Springer-Verlag, 1979. 330 p. (in German)
  16. Lempio F., Veliov V.M. Discrete approximation of differential inclusions. Bayreuth. Math. Schr., 1998. Vol. 54. P. 149–232.
  17. Nikol’skii M.S. On the approximation of the reachable set of a differential inclusion. Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet., 1987. No. 4. P. 31–34.
  18. Nikol’skii M.S. An inner estimate of the attainability set of Brockett’s nonlinear integrator. Differential Equations, 2000. Vol. 36, No. 11. P. 1647–1651. DOI: 10.1007/BF02757366
  19. Polyak B.T., Khlebnikov M.V., Shcherbakov P.S. Upravleniye lineynymi sistemami pri vneshnih vozmushcheniyah: Tehnika lineynyh matrichnyh neravenstv [Control of linear systems under external disturbances: Technique of linear matrix inequalities]. Moscow: LENAND, 2014. 560 p. (in Russian)
  20. Ushakov V.N., Matviychuk A.R., Ushakov A.V. Approximations of attainability sets and of integral funnels of differential inclusions. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011. No. 4. P. 23–39. (in Russian) URL: http://vst.ics.org.ru/journal/article/1816/
  21. Vdovin S.A., Taras’yev A.M., Ushakov V.N. Construction of the attainability set of a Brockett integrator. J. Appl. Math. Mech., 2004. Vol. 68, No. 5. P. 631–646. DOI: 10.1016/j.jappmathmech.2004.09.001




DOI: http://dx.doi.org/10.15826/umj.2021.1.011

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.