ON THE COMPLETENESS PROPERTIES OF THE C-COMPACT-OPEN TOPOLOGY ON C(X)

Alexander V. Osipov     (Krasovski Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Russian Federation)

Abstract


This is a study of the completeness properties of the space Crc(X) of continuous real-valued functions on a Tychonov space X, where the function space has the C-compact-open topology. Investigate the properties such as completely metrizable, Čech-complete, pseudocomplete and almost Čech-complete.


Keywords


C-compact-open topology; Set-open topology, Čech-complete; Baire space; Function space

Full Text:

PDF

References


  1. Nokhrin S.E., Osipov A.V. On the coincidence of the set-open and uniform topologies // Proceedings of the Steklov Institute of Mathematics. 2010. Vol. 266, no. 1. P. 184–191.
  2. Osipov A.V. Weakly set-open topology // Trudy Inst. Mat. i Mekh. UrO RAN. 2010. Vol. 16, no. 2. P. 167–176. (in Russian).
  3. Osipov A.V. Properties of the C-compact-open topology on a function space // Trudy Inst. Mat. i Mekh. UrO RAN. 2011. Vol. 17, no. 4. P. 258–277. (in Russian).
  4. Osipov A.V., Kosolobov D.A. On sequentially compact-open topology // Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki. 2011. No. 3. P. 75-84. (in Russian).
  5. Engelking R. General Topology. PWN, Warsaw. 1977. Mir, Moscow. 1986. 752 p.
  6. Aarts J.M., Lutzer D.J. Pseudo-completeness and the product of Baire spaces // Pacific. J. Math. 1973. No. 48. P. 1–10.
  7. Arens R., Dugundji J. Topologies for function spaces // Pacific J. Math. 1951. Vol. 1, no. 1. P. 5–31.
  8. Arhangel’skii A.V., Tkachenko M. Topological group and related structures. Ser.: Atlantis Stud. Math. Vol. 1. Paris: Atlantis Press, 2008. 800 p.
  9. Aull C.E. Sequences in topological spaces // Prace MaT. 1968. Vol. 11. P. 329–336.
  10. Buhagiar D., Yoshioka I. Sieves and completeness properties // Questions Answers Gen. Topology. 2000. No. 18. P. 143–162.
  11. Frolík Z. Generalizations of the (G_{delta})-property of complete metric spaces // Czech. Math. J. 1960. No. 10. P. 359–379.
  12. Gillman L., Jerison M. Rings of continuous functions. The University Series in Higher Mathematics. Princeton, New Jersey: D. Van Nostrand Co., Inc. 1960. 300 p.
  13. Kundu S., Garg P. The pseudocompact-open topology on C(X) // Topology Proceedings. 2006. Vol. 30. P. 279–299.
  14. Kundu S., Raha A.B. The bounded-open topology and its relatives // Rend. Istit. Mat. Univ. Trieste. 1995. Vol. 27. P. 61–77.
  15. Kundu S., Garg P. Completeness properties of the pseudocompact-open topology on C(X) // Math. Slovaca. 2008. Vol. 58. no. 3. P. 325–338.
  16. Michael E. Almost complete spaces, hypercomplete spaces and related mapping theorems // Topology Appl. 1991. No. 41. P. 113–130.
  17. Michael E. Partition-complete spaces are preserved by tri-quotient maps // Topology Appl. 1992. No. 44. P. 235–240.
  18. Osipov A.V. The Set-open topology // Top. Proc. 2011. No. 37. P. 205–217.
  19. Osipov A.V. Topological-algebraic properties of function spaces with set-open topologies // Topology and its Applications. 2012. No. 159, issue 3. P. 800–805.
  20. Oxtoby J.C. Cartesian products of Baire spaces // Fund. Math. 1961. No. 49. P. 157–166.
  21. Taylor A.E., Lay D.C. Introduction to functional analysis. 2nd ed. New York: John Wiley & Sons. 1980. 244 p.



DOI: http://dx.doi.org/10.15826/umj.2015.1.006

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.