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Abstract: In this article, we investigate the oscillation behavior of the solutions of the third-order nonlinear
differential equation with neural type of the form

(

a1(t)
(

a2(t)Z
′(t)

)

′

)

′

+ q(t)f
(

x(σ(t))
)

= 0, t ≥ t0 > 0,

where Z(t) := x(t) + p(t)xα(τ(t)). Some new oscillation results are presented that extend those results given in
the literature.
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1. Introduction

Consider the third order non-linear neutral delay differential equation

(

a1(t)
(

a2(t)Z
′(t)
)′
)′

+ q(t)f(x(σ(t))) = 0, t ≥ t0 > 0, (E)

where Z(t) := x(t) + p(t)xα(τ(t)) and 0 < α ≤ 1 is a ratio of odd positive integers. Throughout
this paper, without further mention, let

(A1) ai(t) ∈ C([t0,+∞)), ai(t) > 0 for i = 1, 2 and p(t), q(t) ∈ C([t0,+∞)), q(t) > 0;

(A2) τ(t) ∈ C([t0,+∞)), τ(t) ≤ t, σ(t) ∈ C([t0,+∞)), σ(t) ≤ t;

(A3) f is nondecreasing and uf(u) ≥ k > 0 for u 6= 0 and lim
t→+∞

τ(t) = lim
t→+∞

σ(t) = ∞.

By a solution of equation (E) we mean a nontrivial real valued function x(t) ∈ C([Tx,∞)), Tx ≥
t0, which has the property Z ′(t) ∈ C1([Tx,∞)), a2(t)Z

′(t) ∈ C1([Tx,∞)), a1(t)(a2(t)Z
′(t))′ ∈

C1([Tx,∞)) and satisfies (E) on [Tx,∞). We consider only those solutions x(t) of (E) which
satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. A solution of (E) is called oscillatory if it has
arbitrarily large zeros on [Tx,∞) and otherwise, it is said to be non-oscillatory. Equation (E) is
called almost oscillatory if all its solutions are oscillatory or convergent to zero asymptotically.

In the last years, a great deal of interest in oscillatory properties of neutral functional differential
equations has been shown, we refer the reader to [1–8] and the references cited therein. A number
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of authors including B. Bacuĺıková and J. Džurina [10], T. Candan and Dahiya [11, 12], Graef
et al. [7], and E. Thandapani and Li [8] have studied the oscillatory behavior of solutions of third
order neutral differential equations in the form of equation (E) when α = 1.

Recently, Lin and Tang [13] explored the oscillation of first-order neutral differential equation
with a super-linear neutral term

[x(t)− p(xα(t− τ)]′ + q(t)

m
∏

j=1

|x(t− σj)|
βj sgn[x(t− σj)] = 0,

where α > 1. Ravi P. Agarwal et al. [14] concerned with oscillation of a certain class of second-order
differential equations with a sub-linear neutral term

(

a(t) [x(t) + p(t)xα(τ(t))]′
)′
+ q(t)x(σ(t)) = 0, t ≥ t0 > 0,

where 0 < α ≤ 1 is a ratio of odd positive integers and E. Thandapani et al. [9] established sufficient
conditions for the oscillation of all solutions of a nonlinear differential equation

(

a(t) [x(t) + p(t)xα(τ(t))]′
)′
+ q(t)xβ(σ(t)) = 0, t ≥ t0 > 0,

where α and β are ratio of odd positive integers. The above observation shows that this paper
extend the results in third order.

This article presents the further investigation of the oscillations of (E). The following two cases:

∫ ∞

t0

1

a1(t)
dt = ∞,

∫ ∞

t0

1

a2(t)
dt = ∞, (1.1)

∫ ∞

t0

1

a1(t)
dt < ∞,

∫ ∞

t0

1

a2(t)
dt = ∞, (1.2)

are studied.
The paper is organized as follows. In Section 2, we present sufficient conditions for the oscillation

of all solutions of (E) and in Section 3, we provide some examples to illustrate the main results.
In the following, all functional inequalities considered in this paper are assumed to hold even-

tually, that is, they are satisfied for all t large enough. Without loss of generality, we can deal only
with the positive solutions of (E).

2. Main result

In this section, we state and prove our main results for the equation (E). For convenience, we
use the notations

p∗(t) =

(

1−
p(σ(t))

M1−α

)

, Θ(t) =

∫ σ(t)

t2

(

1

a2(s)

∫ s

t1

du

a1(u)

)

ds

∫ t

t1

du

a1(u)

(2.1)

Theorem 1. Let 0 ≤ p(t) ≤ p1 ≤ 1. If (1.1) holds and it there exists a positive function

φ ∈ C1([t0,∞),R), such that for all sufficiently large t3 > t2 > t1 ≥ t0 we have

lim sup
t→∞

∫ t

t3

(

φ(s)kq(s)p∗(s)Θ(s)−
a1(s)(φ

′(s))2

4φ(s)

)

ds = ∞ (2.2)
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and

∫ ∞

t0

1

a2(v)

∫ ∞

v

1

a1(u)

[
∫ ∞

u
q(s)ds

]

du dv = ∞ (2.3)

holds for all constants M > 0, then (E) is almost oscillatory.

P r o o f. Suppose that x(t) is a positive solution of (E). By condition (1.1), there exist two
possible cases:

(1) Z(t) > 0, Z ′(t) > 0, (a2(t)Z
′(t))′ > 0, (a1(t)(a2(t)Z

′(t))′)′ < 0,

(2) Z(t) > 0, Z ′(t) < 0, (a2(t)Z
′(t))′ > 0, (a1(t)(a2(t)Z

′(t))′)′ < 0, for t ≥ t1, t1 is large enough.

Assume Z(t) satisfying property (1), then

(

a1(t)
(

a2(t)Z
′(t)
)′
)′

= −q(t)f(x(σ(t))) ≤ −kq(t)x(σ(t)) < 0.

If there exists t ≥ t1 such that Z(t) > 0, Z(σ(t)) > 0, Z ′(t) > 0, then Z(t) is monotonically
increasing, there exists a constant M > 0 such that Z(t) ≥ M and by the definition of Z we have

x(t) = Z(t)− p(t)xα(σ(t)) ≥ Z(t)− p(t)Zα(σ(t)) ≥

(

1−
p(σ(t))

M1−α

)

Z(t) = p∗(t)Z(t), (2.4)

where p∗(t) is defined in (2.1). Let

ω(t) = φ(t)
a1(t)(a2(t)Z

′(t))′

a2(t)Z ′(t)
, (2.5)

ω(t) > 0 for t ≥ t1. Differentiating (2.5), we obtain

ω′(t) = φ′(t)
a1(t)(a2(t)Z

′(t))′

a2(t)Z ′(t)
+ φ(t)

(a1(t)(a2(t)Z
′(t))′)′

a2(t)Z ′(t)

−φ(t)
a1(t)(a1(t)(a2(t)Z

′(t))′)(a2(t)Z
′(t))′

(a2(t)Z ′(t))2
.

Since (a1(t)(a2(t)Z
′(t))′)′ < 0, then a1(t)(a2(t)Z

′(t))′ is decreasing, so

a2(t)Z
′(t) ≥

∫ t

t1

a1(s)(a2(s)Z
′(s))′

a1(s)
ds ≥ a1(t)(a2(t)Z

′(t))′
∫ t

t1

ds

a1(s)
,

which implies that

(

a2(t)Z
′(t)

∫ t
t1
ds/a1(s)

)′

≤ 0. (2.6)

Thus,

Z(t) = Z(t2) +

∫ t

t2

a2(s)Z
′(s)

∫ s

t1

du

a1(u)

∫ s

t1

du

a1(u)

a2(s)
ds ≥

a2(t)Z
′(t)

∫ t

t1

du

a1(u)

∫ t

t2

∫ s

t1

du

a1(u)

a2(s)
ds, (2.7)
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for t ≥ t2 ≥ t1.
It follows from (E), (2.4), and (2.5) that

ω′(t) ≤
φ′(t)

φ(t)
ω(t)−

ω2(t)

φ(t)a1(t)
− φ(t)kq(t)p∗(t)

Z(σ(t))

a2(t)Z ′(t)
,

that is,

ω′(t) ≤
φ′(t)

φ(t)
ω(t)−

ω2(t)

φ(t)a1(t)
− φ(t)kq(t)p∗(t)

Z(σ(t))

a2(σ(t))Z ′(σ(t))

a2(σ(t))Z
′(σ(t))

a2(t)Z ′(t)
.

From (2.6) and (2.7) follows

ω′(t) ≤
φ′(t)

φ(t)
ω(t)−

ω2(t)

φ(t)a1(t)
− φ(t)kq(t)p∗(t)

∫ σ(t)

t2

(

1

a2(s)

∫ s

t1

du

a1(u)

)

ds

∫ σ(t)

t1

du

a1(u)

∫ σ(t)

t1

du

a1(u)
∫ t

t1

du

a1(u)

=
φ′(t)

φ(t)
ω(t)−

ω2(t)

φ(t)a1(t)
− φ(t)kq(t)p∗(t)

∫ σ(t)

t2

(

1

a2(s)

∫ s

t1

du

a1(u)

)

ds

∫ t

t1

du

a1(u)

≤ −

[

ω(t)
√

φ(t)a1(t)
−

1

2

√

a1(t)

φ(t)
φ′(t)

]2

− φ(t)q(t)kp∗(t)Θ(t) +
a1(t)(φ

′(t))2

4φ(t)
,

which implies

ω′(t) ≤ −φ(t)q(t)kp∗(t)Θ(t) +
a1(t)(φ

′(t))2

4φ(t)
.

Integrating the last inequality from t3 (> t2) to t we obtain

∫ t

t3

(

φ(s)q(s)kp∗(s)Θ(s)−
a1(s)(φ

′(s))2

4φ(s)

)

ds ≤ ω(t3).

Letting t → ∞, it contradicts to (2.2).

Assume the case (2) holds. Using the similar proof of [10, Lemma 2], we can get limt→∞ x(t) = 0
due to condition (2.3). �

Theorem 2. Let 0 ≤ p(t) ≤ p1 ≤ 1. If (1.2) holds and there exists a positive function

ϕ ∈ C1([t0,∞),R), such that for all sufficiently large t3 > t2 > t1 ≥ t0, one has (2.2) and (2.3). If

lim sup
t→∞

∫ t

t2

(

δ(s)q(s)kp∗(s)

(

∫ σ(s)

t1

dv

a2(v)

)

−
1

4δ(s)a1(s)

)

ds = ∞, (2.8)

where

δ(t) :=

∫ ∞

t

1

a1(s)
ds,

holds for all constants M > 0, then (E) is almost oscillatory.
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P r o o f. Suppose that x(t) is a positive solution of (E). By condition (1.2), there exist three
possible cases:

(1) Z(t) > 0, Z ′(t) > 0, (a2(t)Z
′(t))′ > 0, (a1(t)(a2(t)Z

′(t))′)′ < 0,

(2) Z(t) > 0, Z ′(t) < 0, (a2(t)Z
′(t))′ > 0, (a1(t)(a2(t)Z

′(t))′)′ < 0, and

(3) Z(t) > 0, Z ′(t) > 0, (a2(t)Z
′(t))′ < 0, (a1(t)(a2(t)Z

′(t))′)′ < 0, for t ≥ t1, t1 is large enough.

In cases (1) and (2) we can obtain the conclusion of Theorem 2 by applying the proof of Theorem 1.
Assume that case (3) holds, (a1(t)(a2(t)Z

′(t))′)′ < 0 and a1(t)(a2(t)Z
′(t))′ is nonincreasing. Thus,

we get

a1(s)(a2(s)Z
′(s))′ ≤ a1(t)(a2(t)Z

′(t))′, s ≥ t ≥ t1.

Dividing the above inequality by a1(s) and integrating from t to l, we obtain

a2(l)Z
′(l) ≤ a2(t)Z

′(t) + a1(t)(a2(t)Z
′(t))′

∫ l

t

ds

a1(s)
.

Letting l → ∞, we have

0 ≤ a2(t)Z
′(t) + a1(t)(a2(t)Z

′(t))′
∫ ∞

t

ds

a1(s)
,

that is,

−
a1(t)(a2(t)Z

′(t))′

a2(t)Z ′(t)

∫ ∞

t

ds

a1(s)
≤ 1. (2.9)

Now define ϕ as

ϕ(t) :=
a1(t)(a2(t)Z

′(t))′

a2(t)Z ′(t)
, t ≥ t1. (2.10)

Then ϕ(t) < 0 for t ≥ t1. Therefore, by (2.9) and (2.10), we obtain

−δ(t)ϕ(t) ≤ 1. (2.11)

Differentiating (2.10) gives

ϕ′(t) =
(a1(t)(a2(t)Z

′(t))′)′

a2(t)Z ′(t)
−

a1(t)a1(t)(a2(t)Z
′(t))′(a2(t)Z

′(t))′

(a2(t)Z ′(t))2
.

Now Z ′(t) > 0, so from (E) and (2.4) we have

ϕ′(t) ≤ −q(t)kp∗(t)
Z(σ(t))

a2(t)Z ′(t)
−

a1(t)a1(t)(a2(t)Z
′)′(a2(t)Z

′(t))′

(a2(t)Z ′(t))2
. (2.12)

In view of case (3), we see that

Z(t) ≥ a2(t)

∫ t

t1

ds

a2(s)
Z ′(t). (2.13)
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Thus,

(

Z(t)
∫ t
t1
ds/a2(s)

)′

≤ 0 implies

Z(σ(t))

Z(t)
≥

∫ σ(t)

t1

ds

a2(s)
∫ t

t1

ds

a2(s)

. (2.14)

From (2.10) and (2.12)–(2.14) we have

ϕ′(t) ≤ −q(t)kp∗(t)

∫ σ(t)

t1

ds

a2(s)
−

ϕ2(t)

a1(t)
.

Multiplying the above inequality by δ(t) and integrating it from t2 (> t1) to t, we have

ϕ(t)δ(t) − ϕ(t2)δ(t2) +

∫ t

t2

δ(s)kq(s)p∗(s)
(

∫ σ(s)

t1

dv

a2(v)

)

ds

+

∫ t

t2

ϕ2(s)δ(s)

a1(s)
ds+

∫ t

t2

ϕ(s)

a1(s)
ds ≤ 0,

ϕ(t)δ(t) − ϕ(t2)δ(t2) +

∫ t

t2

δ(s)kq(s)p∗(s)
(

∫ σ(s)

t1

dv

a2(v)

)

ds−

∫ t

t2

ds

4δ(s)a1(s)

+

∫ t

t2

[
√

δ(s)

a1(s)
ϕ(s) +

1

2

1
√

a1(s)δ(s)

]2

ds ≤ 0,

from which it follows that

∫ t

t2

(

δ(s)q(s)kp∗(s)

(

∫ σ(s)

t1

dv

a2(v)

)

−
1

4δ(s)a1(s)

)

ds ≤ 1 + ϕ(t2)δ(t2)

due to (2.11). Letting t → ∞, we come to the contradiction (2.8). Then the result of the Theorem
follows. �

3. Examples

In this section we will present some examples to illustrate the main results.

Example 1. Consider a third-order neutral differential equation

(

t−1/2

(

t1/2
[

x(t) +
1

4
x3/5(t− 1)

]′)′
)′

+
λ

t1/2
x(t− 2) = 0, t ≥ 1, (3.1)

where λ > 0 is a constant. Let α = 3/5, a1(t) = t−1/2, a2(t) = t1/2, p(t) = 1/4, q(t) =
λ

t1/2
,

τ(t) = t− 1, and σ(t) = t− 2. We obtain p∗(t) = 1−
1/4

M2/5
,

∫ ∞

t0

1

a2(v)

∫ ∞

v

1

a1(u)

[
∫ ∞

u

λ

s1/2
ds

]

du dv = ∞.
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and

Θ(t) =

∫ σ(t)

t2

(

1

a2(s)

∫ s

t1

du

a1(u)

)

ds

∫ t

t1

du

a1(u)

=
(t− 2)3 + 6(t− 2)1/2t

1/2
1 − 3c

t3/2 − t
3/2
1

,

where c = t32/3 + 2t
3/2
1 t

1/2
2 . Pick φ(t) = 1, then

∫ ∞

t3

q(s)p∗(s)Θ(s)ds =
λ

3

(

1−
1/4

M2/5

)

∫ ∞

t3

(s− 2)3 + 6(s − 2)1/2t
1/2
1 − 3c

s2 − s1/2t
3/2
1

= ∞,

if 1/4 < M2/5. Hence, by Theorem 1, every solution of equation (3.1) is either oscillatory or
converges to zero as t → ∞ when 1/4 < M2/5.

Example 2. Consider a third-order neutral differential equation

(

t2
[

x(t) +
1

2
x1/3(t/8)

]′′)′

+
1

t

(

1 +
2

27
t2/3
)

x(t/2) = 0, t ≥ 1. (3.2)

Let α = 1/3, a1(t) = t2, a2(t) = 1, p(t) = 1/2, q(t) = 1/t
(

1+2/27 t2/3
)

, τ(t) = t/8 and σ(t) = t/2.

We obtain

p∗(t) = 1−
1/2

M2/3
, δ(t) =

∫ ∞

t

ds

s2
=

1

t

and
∫ t/2

t1

ds

a2(s)
=

1

2
(t− 2t1),

then

∫ ∞

t2

(

δ(s)q(s)p∗(s)

(

∫ σ(s)

t1

dv

a2(v)

)

−
1

4δ(s)a1(s)

)

ds

=

∫ ∞

t2

(

(

1− 0.5M−2/3
)[ 1

2s
+

1

27
s−1/3 −

t1
s2

−
2t1
27

s−4/3
]

−
1

4s

)

ds = ∞,

if 0.5 < M2/3. Hence, by Theorem 2, every solution of equation (3.2) is either oscillatory or
converges to zero as t → ∞ when 0.5 < M2/3 and x(t) = t−1 is such a solution of (3.2).
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