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Abstract: The existence and uniqueness of an interpolating periodic spline defined on an equidistant mesh
by the linear differential operator L2n+2(D) = D2(D2 + 12)(D2 + 22) · · · (D2 + n2) with n ∈ N are reproved
under the final restriction on the step of the mesh. Under the same restriction, sharp estimates of the error of
approximation by such interpolating periodic splines are obtained.
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Introduction

Let D = d/dx, n ∈ N, and let

L2n+2(D) = D2(D2 + 12)(D2 + 22) · · · (D2 + n2) (0.1)

be the (2n + 2)th-order linear differential operator with constant real coefficients. We denote the
characteristic polynomial of L2n+2(D) by p2n+2, and let T2n+2 = {0, 0,±i, . . . ,±in} be the set
of its zeros, with each zero repeated according to its multiplicity, where i is the imaginary unit.
The kernel of the differential operator (0.1) is the linear space spanned by the system of functions
{1, x, sin x, cos x, . . . , sinnx, cosnx}.

Denote by T the circumference considered as the interval [0, 2π] with identified ends, and let
‖ · ‖Lp(T) = ‖ · ‖p (1 ≤ p ≤ ∞) with the usual modification in the case p = ∞.

We associate with the differential operator L2n+2(D) the standard class of differentiable func-
tions

W∞(L2n+2) = {f ∈ C(2n+1)(T) : f (2n+1) is abs. cont., ‖L2n+2(D)f‖∞ ≤ 1}.

Let N ∈ N and h = π/N . Denote by ∆N = {jh : j = 0, 1, . . . , 2N − 1} the uniform mesh on
[0, 2π) which can be extended on R if required; h is the step of the mesh.

We say that a 2π-periodic function s2n+2 is a periodic almost trigonometric spline with knots
at the points of ∆N if s2n+2 satisfies the following conditions:

1) s2n+2 ∈ C(2n)(T),

2) L2n+2(D)s2n+2(x) = 0 ∀x ∈ (jh, (j + 1)h), j ∈ Z.

The set of all almost trigonometric splines is denoted by S(L2n+2,∆N ).
Almost trigonometric splines are a special case of the large family of L-splines defined by linear

differential operators (see [2], [3], [8], and others).

The term “almost trigonometric spline” is explained by the fact that such a spline is formed
by functions which differ from trigonometric polynomials for only one addend ax, where a is some
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constant. This term is not standard, and we use it only not to specify every time by what differential
operator the considered splines are defined.

We interpolate at the knots of the mesh ∆N by elements from S(L2n+2,∆N ); i.e., for every
bounded 2N -periodic sequence y = {yν : ν ∈ Z}, yν = yν+2N , we consider the interpolation
problem: to find s ∈ S(L2n+2,∆N ) such that s(νh) = yν , ν ∈ Z.

For interpolation by polynomial splines, the existence, uniqueness and estimates of the error of
approximation in many classes of functions are well-known (see, for instance, [1, Ch. V], [11], [12],
[13], and references therein).

The existence and uniqueness of periodic interpolating L-splines corresponding to an arbitrary
linear differential operator with constant real coefficients were established in [10]. As far as almost
trigonometric splines are concerned the result in [10] means that if N > n, then for every bounded
2N -periodic interpolated sequence, there exists a unique interpolating almost trigonometric spline.

In the present paper, we give another proof of this result and observe such an important feature
that the inequality N > n cannot be replaced by a weaker one (Theorem 1). After this, for N > n,
we obtain a sharp estimate of the error of pointwise approximation by periodic interpolating almost
trigonometric splines in the class of functions W∞(L2n+2) (Theorem 2).

Theorem 1. If N > n, then, for every bounded 2N -periodic sequence {yν}ν∈Z, yν = yν+2N ,

there exists a unique s ∈ S(L2n+2,∆N ) such that s(νh) = yν , ν ∈ Z.

If N ≤ n, then periodic interpolating almost trigonometric spline cannot exist.

Let N > n. We set

An(x) =
x(x− h)

4(n!)2
+ 2

n
∑

ν=1

(−1)ν sin
νx

2
sin

ν(x− h)

2

ν2 (n− ν)! (n+ ν)! cos
νh

2

(0.2)

for 0 ≤ x ≤ h and extend An(x) to the whole real line by the equality An(x + h) = −An(x) for
x ∈ R\[0, h].

We show that An ∈ C(2n+1)(T). In the class W∞(L2n+2), the deviation from the periodic
interpolating almost trigonometric splines is estimated by this function.

Theorem 2. If N > n, then, for every function f ∈ W∞(L2n+2), the inequality

|f(x)− s(f)(x)| ≤ 2|An(x)| (0.3)

holds at any point x ∈ R. The inequality turns into an equality for f(x) = 2An(x).

For interpolation by periodic polynomial splines, inequality (0.3) was proved by Tikhomirov [12].
For N > 3n−1n, inequality (0.3) is a particular case of the author’s result [3]. For periodic trigono-
metric splines, the corresponding result was established by Nguen [5], [6, Ch. 2, §6].

1. Auxiliary results

First, we study the properties of the function An(x).

Lemma 1. If N > n, then

A(j)
n (x) |x=h= −A(j)

n (x) |x=0, j = 1, 3, . . . , 2n+ 1,

and

A(j)
n (x) |x=h= A(j)

n (x) |x=0= 0, j = 0, 2, . . . , 2n.
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P r o o f. By easy calculations, we verify that An(h) = An(0) = 0 and A′
n(x) |x=h=

−A′
n(x) |x=0. Further,

A′′
n(x) |x=h = A′′

n(x) |x=0 =
1

2(n!)2
−

n
∑

ν=1

(−1)ν−1

(n − ν)! (n+ ν)!
.

Using the known identity [7, Ch.IV, § 4.2.1, eq. 4], we obtain

n
∑

ν=1

(−1)ν−1

(n− ν)! (n + ν)!
=

n−1
∑

m=0

(−1)m+n−1

m! (2n −m)!
=

(−1)n−1

(2n)!

n−1
∑

m=0

(−1)m
(

2n

m

)

=
1

2(n!)2
.

From this, it follows that A′′
n(x) |x=h= A′′

n(x) |x=0= 0.
For j = 3, 4, . . . , 2n + 1, we have

A(j)
n (x) =

n
∑

ν=1

(−1)ν−1νj−2 cos(ν(x− h/2) + πj/2)

(n− ν)! (n+ ν)! cos(νh/2)
.

For j = 2k + 1 (k = 1, 2, . . . , n), easy calculations yield

A(2k+1)
n (x) |x=h= −A(2k+1)

n (x) |x=0 = (−1)k
n
∑

ν=1

(−1)ν−1 ν2k−1 tan(νh/2)

(n− ν)! (n + ν)!
.

For j = 2k (k = 2, 3, . . . , n), we obtain

A(2k)
n (x) |x=h = A(2k)

n (x) |x=0 = (−1)k
n
∑

ν=1

(−1)ν−1 ν2k−2

(n− ν)! (n+ ν)!

=
(−1)n+k

(2n)!

n−1
∑

m=0

(−1)m(n−m)2k−2

(

2n

m

)

= 0.

Here, we used the identity [7, Ch.IV, § 4.2.2, eq. 34]. The lemma is proved. �

We now extend the function An(x) from [0, h] to the whole real line by setting An(x + h) =
−An(x). Lemma 1 gives that An belongs to C(2n+1)(R) and is 2π-periodic.

Lemma 2. If N > n, then L2n+2(D)(2An(x)) = sign sinNx, x ∈ R.

P r o o f. Let 0 ≤ x ≤ h. Since

sin
νx

2
sin

ν(x− h)

2
= Aν cos νx+Bν sin νx+ Cν , ν = 1, 2, . . . , n,

where Aν , Bν and Cν are independent of x, the sum on the right-hand side of (0.2) vanishes by the
differential operator D(D2 + 12)(D2 + 22) · · · (D2 + n2). Taking into account that the factors on
the right-hand side of (0.1) can be rearranged, we obtain

D2(D2 + 12) · · · (D2 + n2)

(

x(x− h)

2(n!)2

)

=
1

2(n!)2
(D2 + 12) · · · (D2 + n2)(x(x− h))′′ = 1.

For x ∈ R\[0, h], we use the equality An(x+ h) = −An(x). �

The next statement is a special case of a result proved in [9] for an arbitrary linear differential
operator with constant real coefficients.
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Lemma 3. If N > n, then x = 0 is the unique zero of An(x) in [0, h) and this zero is simple.

P r o o f. By Lemma 1, An(0) = 0. Moreover, the function An(x) coincides, up to a nonzero
constant, with some function Pn(x) introduced in [9]. It was proved in [9] that if N > n, then
Pn(x) has a unique zero in [0, h) and this zero is simple. Therefore, An(x) has the same property. �

To prove our two theorems, we also need the periodic analog of the Rolle theorem on the
relation between the number of zeros of a smooth function ϕ(x) and the number of sign changes of
D(D2 + 12)(D2 + 22) · · · (D2 + n2)ϕ(x) on T.

We say that a continuous function f changes sign at some point t0 if the inequality
f(t0 − ε)f(t0 + ε) < 0 holds for all sufficiently small ε > 0. If f has a jump at the point t0,
then, instead of f(t0 − ε) and f(t0 + ε), we write lim

t→t0−0
f(t) and lim

t→t0+0
f(t), respectively. Denote

by Z(f,T) the number of zeros of the function f on T, and by ν(f,T) the number of sign changes
of f 6≡ 0 on T (the number of sign changes of f ≡ 0 is not defined). The number ν(f,T) is always
even. We denote by G(T) the set of 2π-functions of bounded variation with a finite number of
jumps on the period and absolutely continuous on all intervals of continuity. We also denote by
Gm(T) the set of 2π-periodic functions whose derivatives of order m− 2 are absolutely continuous
on T and f (m−1) ∈ G(T). Let Tn be the set of trigonometric polynomials of order at most n.

Lemma 4. For every function f ∈ G2n+1(T)\Tn, the following inequality holds:

ν
(

D(D2 + 12)(D2 + 22) · · · (D2 + n2)f,T
)

≥ Z(f,T).

This result was established by Nguen [5] (see also [6]) and is the periodic analog of the Rolle
theorem for the trigonometric differential operator.

Note that the periodic analog of the Rolle theorem in the form of Lemma 4 exists not for any
linear differential operator. More detailed information on some results and open problems in this
area can be found in [4] and references therein.

2. Proofs of Theorems

We now pass directly to the proofs of Theorems 1 and 2.

P r o o f of Theorem 1. Let N > n. We prove that if s ∈ S(L2n+2,∆N ) and s(jh) = 0
∀j ∈ Z, then s ≡ 0. After this, the existence and uniqueness of the interpolating periodic almost
trigonometric spline for every interpolated periodic sequence is a simple consequence of the Kramer
theorem for the corresponding system of linear algebraic equations.

Suppose that there exist s1, s2 ∈ S(L2n+2,∆N ) such that sk(jh) = 0 ∀j ∈ Z (k = 1, 2) and
s1 6≡ s2. This means that there is a point x∗ 6∈ ∆N such that s1(x∗) 6= s2(x∗). Let s1(x∗) 6= 0 and
C = s2(x∗)/s1(x∗). Then the function ϕ(x) = Cs1(x)− s2(x) has the following properties:

1) ϕ ∈ S(L2n+2,∆N );
2) ϕ(jh) = 0, j = 0, 1, . . . , 2N − 1;
3) ϕ(x∗) = 0.

Thus, ϕ(x) has at least 2N + 1 zeros on the period. From Lemma 4, we have

ν(D(D2 + 12)(D2 + 22) · · · (D2 + n2)ϕ,T) ≥ 2N + 1.

But D(D2 +12)(D2 +22) · · · (D2 +n2)ϕ(x) is a piecewise constant function with possible jumps at
the points of the mesh ∆N . Therefore, this function cannot change sign more than 2N times on T.
We have a contradiction from which it easily follows that s1 ≡ s2 ≡ 0.
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The inequality N > n cannot be replaced by a weaker one. Indeed, if N = n, then the function
sinnx interpolates the sequence y ≡ 0 at the points of ∆N . This function lies in the kernel of the
linear differential operator (0.1) and can be interpreted as an element of the space S(L2n+2,∆N ).
Theorem 1 is proved. �

P r o o f of Theorem 2 is based on the ideas of [12]. Let N > n. Suppose that (0.3) fails; i.e.,
there exist a point x∗ ∈ [0, 2π) and a function f ∈ W∞(L2n+2) such that the inequality

|f(x∗)− s(f)(x∗)| > 2|An(x∗)|

holds. Define δ(x) = f(x)−s(f)(x). This function is zero at the points of the mesh ∆N . According
to Lemma 3, the function An(x) vanishes at the same points. From these facts, we have x∗ 6∈ ∆N .
Therefore, there is a number λ, 0 < |λ| < 1, such that λδ(x∗) = 2An(x∗).

We now introduce the function ∆(x) = λδ(x) − 2An(x). It is zero at all points of the set
∆N ∪{x∗} and possibly also at some other points. Therefore Z(∆(x),T) ≥ 2N +1. It is clear that
∆ ∈ G2n+1(T)\Tn. We denote L2n+1(D) = D(D2 + 12)(D2 + 22) · · · (D2 + n2), apply Lemma 4,
and obtain

ν (L2n+1(D)∆(x),T) ≥ 2N + 1. (2.1)

From (0.1) and the definition of almost trigonometric splines, we have the equalities L2n+1(D)δ(x) =
L2n+1(D)f(x) − cj on every interval [jh, (j + 1)h), j = 0, 1, . . . , 2N − 1, where cj are constants.
Using the Lagrange finite increments formula and the inequality |λ| < 1, we obtain

|L2n+1(D)(λδ(t′))− L2n+1(D)(λδ(t′′))| < |L2n+1(D)f(t′)− L2n+1(D)f(t′′)|

= |L2n+2(D)f(ξ)| · |t′ − t′′| ≤ |t′ − t′′|

on an arbitrary subinterval [t′, t′′] ⊂ [jh, (j + 1)h) for every interpolated function of our class.
From (0.2), it follows that L2n+1(D)(2An(x)) = x − h/2 ∀x ∈ [0, h). Hence, |t′ − t′′| =
|L2n+1(D)(2An(t

′))− L2n+1(D)(2An(t
′′))|. Thus,

|L2n+1(D)(λδ(t′))−L2n+1(D)(λδ(t′′))| < |L2n+1(D)(2An(t
′))− L2n+1(D)(2An(t

′′))|.

It is easy to see that if |a| < |b|, then sign(b − a) = sign b. Applying this fact, we come to
the conclusion that the function L2n+1(D)∆(x) changes sign no more than once in every interval
[jh, (j + 1)h). If L2n+1(D)∆(x) changes sign at the point jh (this is possible if the function is
discontinuous at jh), then L2n+1(D)∆(x) preserves sign in one of two adjacent intervals ((j−1)h, jh)
or (jh, (j + 1)h). Thus, we arrive at the inequality

ν (L2n+1(D)∆(x),T) ≤ 2N.

The obtained inequality contradicts to (2.1). The simple observation that inequality (0.3) turns
into an equality for f = 2An completes the proof. �

Corollary 1. If N > n, then

sup
f∈W∞(L2n+2)

‖f − s(f)‖p = 2‖An‖p, 1 ≤ p < ∞,

and

sup
f∈W∞(L2n+2)

‖f − s(f)‖∞ =

∣

∣

∣

∣

∣

∣

∣

h2

8(n!)2
+ 4

n
∑

ν=1

(−1)ν sin2
νh

4

ν2 (n − ν)! (n+ ν)! cos
νh

2

∣

∣

∣

∣

∣

∣

∣

.
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We now consider separately the case n = 1, i.e., the case of L-splines corresponding to the dif-
ferential operator L4(D) = D2(D2 + 1). They belong piecewise to the space span{1, t, sin t, cos t}.
These splines generalize the well-known cubic splines and have many applications in numerical
analysis for the shape preserving approximation, the description of curves and their parametriza-
tion, and other problems (see, for instance, [14], [15], [16], and references therein). In particular
(see [15]) these splines are attractive from a geometrical point of view, because they are able to
provide parameterizations of conic sections with respect to the arc length so that equally spaced
points in the parameter domain correspond to equally spaced points on the described curve.

The restriction on the grid step is the least strong here: h ≤ π/2, and the ”minimal” equidistant
grid on the period is {0, π/2, π, 3π/2}. Theorem 1 gives the existence and uniqueness of spline
interpolants for N ≥ 2. According to Corollary 1, the error of approximation in the class W∞(L4)
is

sup
f∈W∞(L4)

‖f − s(f)‖∞ =

∣

∣

∣

∣

∣

∣

1 +
π2

8N2
−

1

cos
π

2N

∣

∣

∣

∣

∣

∣

.

3. Conclusion

We established that, for 2π-periodic L-splines corresponding to the differential operator (0.1)
on the equidistant mesh with the step h = π/N , the restriction N > n provides the existence and
uniqueness of the L-spline interpolant as well as the exact estimates of the error of approximation.
This restriction is final, i.e., cannot be replaced by a weaker one.
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