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Abstract: We consider finite deterministic automata such that their alphabets consist of exactly one letter
of defect 1 and a set of permutations of the state set. We study under which conditions such an automaton is
completely reachable. We focus our attention on the case when the set of permutations generates a transitive
imprimitive group.
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1. Introduction

A deterministic finite automaton is said to be completely reachable if every non-empty subset
of states is the image of the whole state set by the action of some word. Such automata appeared
in the study of descriptional complexity of formal languages [11] and in relation to the Černý
conjecture [8]. A systematic study of completely reachable automata was initiated in [5] and [6],
and continued in [4]; in these papers Bondar and Volkov developed a characterization of completely
reachable automata that relied on the construction of a series of digraphs.

One of the main results by Ferens and Szyku la [9] was an algorithm of polynomial time com-
plexity, with respect to the number of states and letters, to decide whether a given automaton was
completely reachable. This seemed to solve the complexity problem for this kind of automata. A
different approach was proposed by Volkov and the author [7] for the special case of automata with
two letters. There the characterization relied on whether one of the letters acted as a complete
cyclic permutation of the states and how the other letter acted on certain subsets of states.

In this paper we give an approach to the generalization of the result in [7] by allowing that
all the letters except one act as permutations of the set state and studying how the additional
non-permutation letter acts on non-trivial blocks of imprimitivity if there are any.

The study of automata where all letters but one are permutations is by no means new. This
kind of automata is presented with different names. In [1], they are called almost-permutation
automata and are used to present an example of a series of slowly synchronzing automata with a
sink state. In [2], automata are under the disguise of transformation semigroups and are called near
permutation. In [3], they are called almost-group automata; there it is proved that these automata
synchronize with high probability. Finally, in [12], the non-permutation letters are the identity ex-
cept in a subset of states where they have the same image. There, it is proved that if no equivalence
relation is preserved under the action of the letters, then the automaton is synchronizing. Among
these papers, we would like to highlight the work done in [10] where the primitivity of a group of
permutations of a state set has been tightly related to the complete reachability of the automata

1This work was supported by the Ministry of Science and Higher Education of the Russian Federation
(project FEUZ-2023-0022).

https://doi.org/10.15826/umj.2024.2.004
mailto:dkasastorres@urfu.ru


38 David Casas

generated by adding a non permutation letter. Thus, the result presented here approaches this the-
ory from the other side where the group is transitive but not primitive and we suggest a condition
to ensure that the automaton generated is completely reachable.

In Section 2 we present the definitions and notation used in this paper. Then in Section 3 we
present and prove a necessary condition for almost group automata to be completely reachable. In
Section 4 we describe a set of directed graphs useful in the discussion of complete reachability and
prove a partial sufficient condition related with the one discussed in the Section 3.

2. Preliminaries

A deterministic finite automaton, or simply an automaton, is usually defined as a triple

A = 〈Q,Σ, δ〉,

where Q, the states, and Σ, the alphabet, are finite sets and δ : Q×Σ → Q is the transition function.
For each letter in alphabet of the automaton a ∈ Σ we can define the function δa : Q → Q where
δa(q) = δ(q, a), hence each letter can be considered individually as a function of Q on itself or a
transformation over Q. This observation makes reasonable for us to use the following notation:
for every q ∈ Q and a ∈ Σ we will denote δ(q, a) := q · a. Derived from this we can say that an
automaton can be specified using just its set of states and the action of each letter in this set; that
is why from now on we will define automata as pairs of the state set and the alphabet.

A word of an automaton is a finite sequence of letters over its alphabet; this includes the empty
word. The set of all words over the alphabet Σ is denoted by Σ∗. We can extend the action of
letters to words recursively in the following way: if w ∈ Σ∗, a ∈ Σ and q ∈ Q, then q ·wa := (q ·w)·a,
and the action of the empty word is the identity function. Furthermore, the action of words can
be applied to subsets of states: if P ⊆ Q and w ∈ Σ∗, then

P · w := {p · w | for every p ∈ P}.

A subset of states P ⊆ Q is called reachable if there is a word w ∈ Σ∗ such that its image is
exactly P , that is, Q · w = P . An automaton is said to be synchronizing if at least one singleton
is reachable, i.e., there is a state q ∈ Q and a word w ∈ Σ∗ such that Q · w = {q}. An automaton
is completely reachable if every non-empty subset of states is reachable.

Let A = 〈Q,Σ〉 be an automaton and w ∈ Σ∗ an arbitrary word. The excluded set of w
denoted by excl(w) is the set of states that have no preimages by w. The defect of w is the size
of its excluded set. In the case the defect is 0, the word w represents a permutation of the set of
states. Since a word is a total function, if the defect of w is bigger than 0, then there must be
states with the same image. These images are the duplicated states of the word; the set of these
states will be denoted by dupl(w). When any of these sets, excl() or dupl(), is a singleton we will
make no distinction between the set and the state inside it. Additionally, for the case of words of
defect 1 we know that exactly two states must have the same image; we will call this pair of states
the collapsed set of the word, denoted by coll().

Some transformations over a set of states Q can be bijective, thus permutations. Thanks to
this we can use some terminology of the theory of permutation groups. Recall that the set of all
the bijective transformations of a finite set Q on itself is denoted by SQ, also called the symmetric
group. Let G ⊆ SQ be a group of permutations of Q. This group is said to be transitive if for
every pair of states q, p ∈ Q there is a permutation σ ∈ G such that p · σ = q. Our main subject
of study are automata and their words, thus, except when specified, when we talk about arbitrary
permutations of the set of states we assume that there is allways a word that produces it. This is,
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if we mention the permutation g ∈ SQ, we assume that there is a word w such that q ·w = q · g for
every q ∈ Q.

A non-empty subset B ⊆ Q is said to be a block of the group if and only if for every σ ∈ G
either B · σ = B or B · σ ∩ B = ∅. The singletons and Q itself are, always, blocks, these are
called trivial. A permutation group G ⊆ SQ is said to be primitive if it is transitive and the only
blocks are the trivial ones; otherwise the group is said to be imprimitive. In this article when we
talk about a block of imprimitivity, unless stated the contrary, it will always be non-trivial. If a
transitive group G ⊂ SQ has a block of imprimitivity B ⊆ Q, all the images of B by elements of
G are also blocks of imprimitivity and form a partition of Q. This partition of subsets is called a
system of imprimitivity of the group G over Q.

A directed graph Γ is a pair (V (Γ), E(Γ)), where V (Γ) is the vertex set and E(Γ) ⊆ V (Γ)×V (Γ)
is the set of directed edges. To each edge we can assign one or more labels from some set L. We will
denote an edge (s, t) ∈ E(Γ) labelled with w as s

w
−→ t. Since in this paper we consider only directed

graphs, from now we omit the word “directed”. For reference, the first and second components
of an edge will be called the source and tail respectively. A path of a graph is a set of edges
e1, e2, . . . , em, m ≥ 1, such that for every 1 ≤ i < m, the tail of ei is the same as the source of ei+1.
Vertices p, q ∈ V (Γ) are strongly connected if there is a path from p to q and from q to p. Also we
consider each vertex as strongly connected with itself. A strongly connected component of a graph
is a maximal subset of vertices such that all its vertices are strongly connected to each other.

An automaton can be represented as a labelled graph, where the vertex set is the states set and
for each state p and letter a, there is a labelled edge p

a
−→ p · a. This is the underlying graph of the

automaton.
As we mentioned in the introduction, in [10] the following characterization of primitive permu-

tation groups is given. Here [n] := {1, 2 . . . , n} and if S is a set of transformations, then 〈S〉 is the
transformation semigroup generated by S. Recall that a transformation f is idempotent if f2 = f .

Theorem 1 [10, Theorem 3.1]. Let G be a permutation group on [n] with n ≥ 3. Then G
is primitive if and only if for each [idempotent] transformation f : [n] → [n] of defect 1 every
non-empty subset A ⊆ [n] is reachable in 〈G ∪ {f}〉.

This theorem presents a characterization of primitive groups. In the language of automata it
states that in the presence of a set of permutation letters that generates a primitive group, the
addition of any transformation of defect 1 suffices to obtain a completely reachable automaton.
Here we study a related case. We would like to know what happens when the group generated by
the permutation letters is transitive but not primitive. We will see how this situation is not that
forgiving and it requires a more complex relation between the group generated by the permutations
and the transformation of defect 1. The results proved in this article are closely related to the ones
presented in [7] for automata with just one permutation letter and one with defect 1. The work
presented in this article and in [7] is based on the work made in [6]; there the main actor is a graph
constructed in several steps. We will briefly explain the construction in Section 4.

For the rest of this paper we will consider automata A = 〈Q,Σ〉, where Σ = Σ0 ∪ {a} and:

• the set of letters Σ0 ⊂ SQ, are all permutations of Q,
• the generated subgroup G = 〈Σ0〉 is transitive,
• the letter a has defect 1.

The excluded state of the only letter of defect 1 will be denoted by e, i.e., excl(a) = e. Unless
specified otherwise, the group generated by all permutation letters is denoted as G. We will call
automata with these characteristics almost group automata.

Let r ∈ coll(a) be one of the two states collapsed by a. There is a permutation that sends e to
r; call it σ ∈ G. The transformation σa has defect 1, e = excl(σa), and e ∈ coll(σa). Consider the
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automaton A = 〈Q,Σ0 ∪{σa}〉. Note that A is completely reachable if and only if A is completely
reachable. Therefore, there is no loss of generality when we add the condition that e ∈ coll(a) from
the beginning. When this happens we call the automaton standardized. This change will simplify
the arguments we use for the rest of the article.

For any automaton a subset of states, P ⊆ Q is invariant by a transformation w ∈ Σ∗, or
w-invariant, if P · w ⊆ P . The condition to get complete reachability in the binary case is that
no subset of states that represents a subgroup of the cyclic group is invariant by letter of defect 1.
The cosets of any subgroup generate a partition of the group that contains this subgroup. There is
a parallel situation in the case of blocks of imprimitivity, they form a partition of the set of states.
There are subgroups for each of these blocks of imprimitivity that let them invariant2. This is
the main reason to consider systems of imprimitivity. These partitions of the set of states are the
closest to represent subgroups of the group acting on the states.

3. A necessary condition

First, we begin by proving that complete reachability implies that some blocks can not be
a-invariant.

Proposition 1. Let A be a standardized almost group automaton. If A is completely reachable,
then G is transitive and if there is at least one block of imprimitivity then no block of imprimitivity
that contains e = excl(a) is invariant by a.

P r o o f. First, let us prove that the condition for the group generated by the set of permuta-
tions to be transitive is necessary. For every word w ∈ Σ∗ it is true that e ∈ excl(wa); furthermore,

|excl(w)| ≤ |excl(wa)| ≤ |excl(w)| + 1.

This is, the action of adding a to a word either increases by one or keeps the defect of the resulting
word. Note that adding a permutation does not modify the defect of any word. Hence, in order to
reach the subsets Q \ {q} for every q ∈ Q, it is necessary that there exists a permutation σq ∈ G
such that e · σq = q. Let p, q ∈ Q be an arbitrary pair of states. By the previously said, if A is
completely reachable, then there are two permutations σp, σq ∈ G such that e ·σp = p and e ·σq = q.
Finally, note that p · σ−1

p σq = q. Thus, G is transitive.

For a subset of states S ⊂ Q, we denote by S its complement, i.e., Q \ S.
The proof that no block of imprimitivity is a-invariant will be by contradiction. Suppose that

B is a block of imprimitivity that contains e and is a-invariant. This block belongs to a system
of imprimitivity. Let w ∈ Σ∗ be the shortest word that reaches the complement of a block of this
system, say C. If w = w′ b with b ∈ Σ0, then Q · w′ = C · b−1, the complement of a block of
imprimitivity. This contradicts the condition of w being the shortest word. Hence, w can not end
in a permutation.

As a consequence, the word w ends with the letter a, i.e., w = w′ a. Recall that Q ·w′a ⊂ Q · a
and e /∈ Q · a, thus e /∈ Q · w and we conclude that Q · w = B.

Since B is a-invariant, we can conclude that its complement is also a-invariant. And since
every q ∈ B has a preimage by a then this letter acts as a permutation of B. Therefore
Q ·w′ = Q ·w′a = B what, again, contradicts the supposition of w being the shortest. There is no
other type of letter in which the word w could finish, then we end with an absurd. This situation
came from supposing that B is a-invariant, thus we have our proposition. �

By the preceding proof we have:

2Considerations of this are treated ahead in the paper.
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Corollary 1. If there is a block of imprimitivity that contains e and is invariant by a, then its
complement is not reachable.

4. Rystsov graphs of almost group automata

4.1. The structure of Rystsov graphs

In [6] and [4] Bondar and Volkov presented a characterization of completely reachable automata.
The characterization relies on the construction of a graph that can be constructed from an arbitrary
automaton. This graph is a generalization of the ideas presented by Igor Rystsov in [13]. That is
why we will call these graphs as Rystsov graphs of the automata.

The Rystsov graph of an automaton A, denoted by Γ(A), is constructed in an inductive way.
This means that in order to construct Γ(A) we first assemble a graph called Γ1(A), verify if we
can continue and if that is the case from Γ1(A) we continue with the construction of Γ2(A) and so
on. This series of graphs is guaranteed to always finish, the final graph is the Rystsov graph of A.
For the construction of the partial graphs we make use of the sets of words Wk(A) ⊂ Σ∗, defined
as the subset of all words of defect k for k ≥ 1.

The first step is to construct the graph Γ1(A) where its vertex set is Q1 := Q and its edge set
is defined as:

E1(A) := {excl(w)
w
−→ dupl(w) ∈ Q1 ×Q1 | w ∈ W1(A)}.

Example 1. Consider the automaton E18 := 〈{1, 2, . . . , 18}, {a, b, c}〉, where b and c are permu-
tations with the following cyclic representation:

b :=(1, 11, 13, 5, 7, 17)(2, 10, 14, 4, 8, 16)(3, 12, 15, 6, 9, 18),

c :=(1, 3, 2)(4, 5, 6)(7, 13)(8, 16)(9, 15)(10, 14)(11, 17)(12, 18),

and the transformation a has defect 1. The following representation of a puts the respective image
under each state and omits the states that do not change:

(

1 2 5 6 8

6 8 6 5 2

)

.

Note that the excl(a) = 1, dupl(a) = 6 and coll(a) = {1, 5}. The group generated by {b, c} is
transitive and the blocks of imprimitivity that contain the state 1 are the sets

{1, 5}, {1, 2, 3, 4, 5, 6}.

We can see 1
a
−→ 6, 2

ac2
−−→ 5 and 1

ab3a
−−−→ 3 are edges in E1(E18).

We continue the definitions. For any automaton A consider the following subset of states:

D1(A) := {p ∈ Q1 | p = dupl(w) & e = excl(w) for w ∈ W1(A)}.

These are the states directly connected to e in Γ1(A), that is, tails of the edges with e as source.
The following lemma states that all the edges in Γ1(A) are images by G of these initial edges.

Lemma 1. If q → p ∈ E(Γ1(A)), then there are σq ∈ G and d ∈ D1(A) such that e · σq = q
and d · σq = p. Or, what is equivalent, there is a permutation σq ∈ G such that p · σ−1

q ∈ D1(A).
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P r o o f. If q → p is an edge of Γ1(A), then there is a word of defect 1, call it w ∈ W1(A) such
that excl(w) = q and dupl(w) = p; this happens due to the definition of Γ1(A). Remember that G
is transitive, thus there is a permutation σq ∈ G such that e · σq = q.

The word wσ−1
q has defect 1 and excl(wσ−1

q ) = excl(w) · σ−1
q , at the same time

dupl(wσ−1
q ) = dupl(w) · σ−1

q . Thus excl(wσ−1
q ) = q · σ−1

q = e and p · σ−1
q ∈ D1(A). �

This lemma also tell us that in order to compute Γ1(A) it is sufficient to calculate D1(A),
and then apply to the generated edges permutations that send e to each of the different states of
the automaton. In our running example the initial edges of Γ1(E18) are shown in Figure 1. The

1

6

5

3

a

a2

ab 3a

Figure 1. The initial edges of Γ1(E18).

strongly connected component that contains 1 is shown in Figure 2 (we omitted the labels to avoid
confusion).

1

23

4

5 6

Figure 2. A strongly connected component of Γ1(E18).

Now, let Ce
[1] ⊆ Q1 be the vertex set of the strongly connected component of Γ1(A) that

contains e.

Lemma 2. The set C
[1]
e is a block of imprimitivity.

P r o o f. If Γ1(A) is strongly connected then C
[1]
e = Q and the proposition is true. Then let

us assume Γ1(A) is not strongly connected and C
[1]
e is a proper subset of Q.

Let σ ∈ G be a permutation such that e · σ = dupl(a) = d, then the edge

d
aσ
−→ d · σ ∈ E1.
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If we repeat the application of σ, the produced words have all defect 1, and there is an i ≥ 1 such

that d · σi = e. Then, C
[1]
e is not a singleton since at least e, d ∈ C

[1]
e .

Considering this we will prove first that for any ρ ∈ G, the subset Ce
[1] · ρ is also a strongly

connected component.
Let p, q ∈ Ce

[1] be two arbitrary states. In Γ1(A) there is a path:

p
w1−→ t1

w2−→ t2 . . . tk−1
wk−−→ q

where every wi is a word of defect 1. Since permutations act well on excluded and duplicated states,
then:

p · ρ
w1ρ
−−→ t1 · ρ

w2ρ
−−→ t2 · ρ . . . tk−1 · ρ

wkρ−−→ q · ρ

is a path in Ce
[1] · ρ; in the same way we can prove the existence of a path connecting q · ρ with

p · ρ, making Ce
[1] · ρ a strongly connected component.

What is left is to prove that Ce
[1] and its images by permutations of G are blocks of imprimitivity.

Let ρ ∈ G be an arbitrary permutation. Suppose x ∈ Ce
[1]∩Ce

[1] ·ρ and let y ∈ Ce
[1] and z ∈ Ce

[1] ·ρ
be two different states. By the definition of strongly connected component there are paths from y
to x, from x to z and, going back, from z to x, and from x to y. Then

Ce
[1] = Ce

[1] · ρ.

This makes Ce
[1] a block of imprimitivity. �

We continue the inductive construction of the graph Γ(A). Once we get Γk(A), k ≥ 1, if one
of the following alternatives happens then the construction will be stopped and Γ(A) := Γk(A):
either the graph is strongly connected, or all the strongly connected components are not big enough
(we will address the meaning of this in a moment). If none of these two possibilities happen, then
we proceed to construct Γk+1(A). The new vertex set Qk+1 will consists of the strongly connected
components of Γk(A); thus, each vertex is a collection of vertices of the set Qk.

In order to define the edges of this new graph, we need to properly define when a strongly
connected component is big enough. For this note that each vertex of Γ2(A) is a subset of states
(even considering singletons) and the vertices of Γ3(A) would be collections of subsets of states and
so on. With this in mind for k ≥ 2 let V ∈ Qk be a vertex of Γk(A), define the foliage of V , and
denote it by leaf(V ), as follows: for V ∈ Q2, its foliage is the set itself, i.e., leaf(V ) := V , and for
k > 2,

leaf(V ) :=
⋃

x∈V

leaf(x).

At the end leaf(V ) is a subset of states. A vertex V of Γk+1(A), or, what is the same, a strongly
connected component of Γk(A), is big enough if |leaf(V )| ≥ k + 1. Thus, we stop the construction
if none of the would be vertices of Γk+1(A) have more of k + 1 states in their foliages. (The term
“foliage” is borrowed from [4], where the definition of the vertex sets of the graphs Γ takes form
of a rooted tree.) Suppose that this is not the case and we can continue the process, then we can
define a new set of edges:

Ek+1 := {C
w
−→ D ∈ Qk+1 ×Qk+1 | C 6= D, there is a w ∈ Wk+1(A),

excl(w) ⊆ leaf(C), dupl(w) ∩ leaf(D) 6= ∅}.

The edge set of Γk+1(A) will be the edges of Γk(A) that connect different vertices of Qk+1 to-
gether with the set Ek+1. For a more detailed discussion of the construction of Γ(A) we recommend
the reader [4, Section 3].

We have the following theorem that characterizes completely reachable automata:
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Theorem 2. [6] If an automaton A = 〈Q,Σ〉 is such that the graph Γ(A) is strongly connected
and Γ(A) = Γk(A), then A is completely reachable; more precisely, for every non-empty subset
P ⊆ Q, there is a product w of words of defect at most k such that P = Q · w.

In the case that the group G is primitive over Q, from Lemma 2 we can see that Γ1(A) will be
strongly connected and by Theorem 2 it immediately follows that A is completely reachable. That
is why, from now on the group G will, besides being transitive, have at least a block of imprimitivity.

Example 2. Recall the automaton E18 presented in Example 1. We have seen that C
[1]
e =

{1, 2, 3, 4, 5, 6}, and the other strongly connected components are the sets B2 = {7, 8, 9, 10, 11, 12}
and B3 = {13, 14, 15, 16, 17, 18}. Since these sets have more than two elements, we can continue
the construction of Γ(E18). Accordingly to the previously said, the vertex set of Γ2(E18) is Q2 =

{C
[1]
e , B2, B3}. Consider the word w := ab3aca, note that excl(w) = {1, 3} and dupl(w) = {8, 6},

hence the edge C
[1]
e

w
−→ B2 ∈ E2. If we add b twice more we have:

excl(wb) = {11, 12}, dupl(wb) = {9, 16}

excl(wbb) = {13, 15}, dupl(wbb) = {18, 2}.

Thus adding the edges B2
wb
−→ B3 and B3

wbb
−−→ C

[1]
e to E2. These are enough to conclude, thanks

to Theorem 2, that E18 is completely reachable.

We will extend the results given by Lemma 1 and Lemma 2. Following the previous notation

denote the strongly connected component that contains e in the graph Γk(A) as C
[k]
e .

Lemma 3. If the foliages of the vertices in Γk(A) form a system of imprimitivity of G over Q,
then Y → Z ∈ Ek+1 if and only if there is a permutation σ ∈ G and a set X ∈ Qk such that
leaf(Y ) = leaf(Ce

[k]) · σ; leaf(X) · σ = leaf(Z) and Ce
[k] → X ∈ Ek+1.

P r o o f. Since permutations respect the defect of any word and act well on excluded and
duplicated sets, the converse is easy to see.

Now, if Y
w
−→ Z ∈ Ek+1, with w ∈ Wk+1(A), then excl(w) ⊂ leaf(Y ) and dupl(w)∩ leaf(Z) 6= ∅.

Let w = uaσ with σ ∈ Σ∗ as a permutation, this is, σ is the longest word generating a permutation
after the last appearance of the letter a in w. Since permutations do not increase the defect of a
word, then ua ∈ Wk+1(A) and excl(wσ−1) = excl(ua). From the last affirmation we can conclude
that excl(ua) ⊆ leaf(Y ) · σ−1.

Since, by hypothesis, leaf(Y ) is a block of imprimitivity then also it is leaf(Y ) · σ−1. Recall
that e ∈ excl(ua) thus excl(ua) ⊆ Ce

[k] = leaf(Y ) · σ−1. Using the same argument we can conclude
that leaf(X) = leaf(Z) · σ−1. �

Lemma 4. If the foliages of the vertices in Γk(A) form a system of imprimitivity, then the
foliage of Ce

[k+1] is a block of imprimitivity of G over Q.

P r o o f. If each of the foliages of the vertices of Γk(A) forms a system of imprimitivity, then
the foliage of Ce

[k+1] is just the union of blocks of imprimitivity.
We can use an argument similar to the one used in the proof of Lemma 2 to prove that the image
by any σ ∈ G of the foliage of Ce

[k+1] is also a strongly connected component and a block of
imprimitivity. �

Lemma 3 and Lemma 4 form the proof by induction the following result.
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Proposition 2. For any k ≥ 1, the foliages of the vertices of each Γk(A) form a system of
imprimitivity.

Note that for any k ≥ 1 if it happens that leaf(Ce
[k]) = Q then Γk(A) is strongly connected

and A is completely reachable. Now we will prove that if this is not the case for any k, then some
block of imprimitivity that contains e is invariant by a. We will use the following set:

Dk(A) := {p ∈ Q | p ∈ dupl(w) for some w ∈ Σ∗

such that |excl(w)| ≤ k and e ∈ excl(w) ⊆ leaf(Ce
[k−1])}.

The set of states duplicated by words of defect less than k such that their excluded set is contained

in C
[k]
e .

4.2. Intermezzo

Before we continue, it is necessary to present some definitions and results related to the theory
of permutation groups that are used in the rest of this section. Let Q be a finite set and G ⊆ SQ be a
subgroup of permutations of Q. For any non-empty subset P ⊂ Q consider the set of permutations:

StG(P ) := {σ ∈ G | P · σ = P},

that is, the set of permutations of G that preserve P set-wise. It can be easily proved that StG(P )
is a subgroup of G. Let us call it the stabilizer of the subset P .

Now consider an arbitrary but fixed system of imprimitivity of G over Q, call it B. The
following fact is well known and we will omit the proof.

Proposition 3. Let G be a group of permutations of a finite set Q. Suppose that G is transitive
and B is a system of imprimitivity. If B,C ∈ B are two different blocks of imprimitivity then
StG(B) and StG(C) are conjugate subgroups of G.

For a subgroup H of a group G, the core of H, denoted by Cr(H), is the intersection of all the
conjugates of H in G, i.e.,

Cr(H) :=
⋂

σ∈G

σ−1Hσ.

Note that this subgroup is normal for G.
Resuming with the transitive group G of permutations of Q, Proposition 3 tells us that for

every system of imprimitivity B of Q all the stabilizers of the blocks are conjugate. Hence, the
following definition makes sense.

Definition 1. Let G be a subgroup of permutations of Q and B be a system of imprimitivity
of Q. The core of B, denoted by Cr(B), is the intersection of all the stabilizers of the blocks in B.

In some occasions it is more convenient to work with blocks of imprimitivity, hence to talk
about the core of a block of imprimitivity. If B is a system of imprimitivity and B ∈ B is a block,
we denote Cr(B) := Cr(B). For our purposes we look for the core of certain blocks of imprimitivity
to act in a transitive way on said blocks. We can ensure this if said core acts transitively on at
least one of the blocks.

Proposition 4. Let G be a group of permutations of the finite set Q. Suppose that G is
transitive and B is a system of imprimitivity. If B ∈ B is a block and Cr(B) acts transitively on
B, then this core is also transitive on all the blocks of B.
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P r o o f. Let C ∈ B be a different block of B, besides let p, q ∈ C be two different states. We
aim to prove that there is a permutation σ ∈ Cr(B) such that p · σ = q. Being G transitive, there
is a permutation τ ∈ G such that C · τ = B. Let r, s ∈ B be such that p · τ = r and q · τ = s. By
hypothesis, there is a permutation ρ ∈ Cr(B) such that r · ρ = s. Thus

p · τρτ−1 = q.

Since the core is normal in G we can conclude that τρτ−1 ∈ Cr(B). �

4.3. Non-reachability and invariance

In this part we see that for some almost-group automata not being completely reachable implies
there is at least one block of imprimitivity invariant by the letter of defect 1.

Before the main proposition we present a technical lemma. Since in the following lemma k is

arbitrary but fixed, C
[k]
e will be referred just as Ce.

Lemma 5. Let A = 〈Q,Σ0 ∪{a}〉 be an almost-group automaton. If in Γk(A) there is an edge
Ce → X and Cr(leaf(Ce)) is transitive for Ce, then for every state q ∈ leaf(X), there exists a word
v of defect k such that excl(v) ⊂ leaf(Ce) and q ∈ dupl(v).

P r o o f. The edge Ce → X is produced by a word w such that excl(w) ⊂ leaf(Ce) and
dupl(w) ∩ leaf(X) 6= ∅. Let p ∈ dupl(w) ∩ leaf(X) be arbitrary. Since Cr(Ce) is transitive, by
Proposition 4 there is a permutation σ ∈ Cr(Ce) such that p · σ = q. At the same time it is true
that Ce ·σ = Ce, since the core is a subset of StG(Ce). Therefore we have that excl(wσ) ⊂ leaf(Ce)
and q ∈ dupl(wσ). �

Using the Lemma 3 we also can conclude:

Corollary 2. If in Γk(A) there is an edge X
w
−→ Y and Cr(leaf(Ce)) is transitive for Ce. Then

for every state q ∈ leaf(Y ), there exists a word v of defect k such that excl(v) ⊆ leaf(X) and
q ∈ dupl(v).

With these two lemmas, we are ready for the main result of this part:

Theorem 3. Let A = 〈Q,Σ0 ∪ {a}〉 be an almost-group automaton. Suppose Γ(A) is not
strongly connected. This means for some k ≥ 1 it happens that Γ(A) = Γk(A); and Ce

[k] = Ce
[j]

for every j ≥ k. Besides this, suppose that for every ℓ ≤ k the cores Cr(Ce
[ℓ]) are transitive on

Ce
[ℓ]. Then leaf(Ce

[k]) is invariant by a.

P r o o f. We will use a, structurally, similar proof of the same fact for binary automata
presented in [7]. Suppose that Ce

[k] = Ce
[k+1]. By induction on 0 ≤ ℓ ≤ k we will prove that

leaf(Ce
[ℓ]) · a ⊆ leaf(Ce

[k]).

For ℓ = 0 take Ce
[0] = {e} hence the proposition is true in this case.

Our first induction hypothesis is that leaf(Ce
[ℓ])·a ⊆ leaf(Ce

[k]). By the construction of Γℓ+1(A),
for any p ∈ leaf(Ce

[ℓ+1]) there is a Xm ∈ Qℓ such that p ∈ leaf(Xm) and there is a path:

Ce
[ℓ] → X1 → X2 → · · · → Xm
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in Γℓ(A).
Now, by induction on the length of the path (the number m > 1) the idea is to prove that

leaf(Xm) · a ⊆ leaf(Ce
[k]).

If m = 1, since there is an edge Ce
[ℓ] → X1 we use Lemma 5 to ensure that for p ∈ leaf(X1)

there is a word w ∈ Wℓ(A) such that excl(w) ⊆ leaf(Ce
[ℓ]) and p ∈ dupl(w) ∩ leaf(X1). The defect

of wa is at most ℓ + 1 ≤ k + 1 and by the first induction hypothesis excl(wa) ⊆ leaf(Ce
[k]) and

p · a ∈ dupl(wa) ⊆ Dk+1(A) ⊆ Ce
[k+1] = Ce

[k],

proving what we wanted.
Now suppose that m > 1 and leaf(Xm−1) · a ⊆ leaf(Ce

[k]), i.e., the second induction hypothesis.
By the Corollary 2 for p ∈ leaf(Xm) there is a word w ∈ Wℓ(A) such that excl(w) ⊆ leaf(Xm−1)
and p ∈ dupl(w). If we apply the same argument as before, but this time using the second induction
hypothesis we can conclude that

p · a ∈ dupl(wa) ⊆ Dk+1(A) ⊆ Ce
[k+1] = Ce

[k],

again, as intended.
Since Ce

[ℓ+1] is a strongly connected component of Γℓ(A), thus its foliage is the union of the
respective foliages of its vertices. We have proved that

leaf(Ce
[ℓ+1]) · a ⊆ leaf(Ce

[k+1]) = leaf(Ce
[k]).

�

The previous theorem proves that for certain almost group automata not being completely
reachable is equivalent to having a non-trivial imprimitivity block that is invariant under the letter
of defect 1.

5. Conclusion

We considered automata with an alphabet such that there is exactly one letter of defect 1 and
the other letters are permutations over the state set. We found a necessary and sufficient condition
to decide whether these automata are completely reachable. We saw that if the group generated
by the permutations is primitive, then the automaton is completely reachable. On the other case,
if the group is transitive and it has non trivial blocks of imprimitivity the condition depends on
the behaviour of the letter of defect one over certain blocks of imprimitivity. The author believes
that the additional condition stated in Theorem 3, the one stating the transitivity of the cores on
the blocks of imprimitivity, can be omitted but more work on this direction must be done. In any
case these results generalize what was presented in [7] where the alphabet was binary since the
automata presented in that article are almost group and the group generated by the permutation
letter is the cyclic one, which is abelian and thus the additional condition is given. Once decided
whether or not an automaton is completely reachable, the next interesting question is to find a
bound to the shortest word required to reach subsets of size 1 ≤ k < n. In [9] it is stated that
this bound is at most 2n(n − k); but we believe that due to the strict structure of the considered
automata the bound can be improved. Nevertheless this problem is open by the moment.
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