
URAL MATHEMATICAL JOURNAL, Vol. 10, No. 2, 2024, pp. 157–173

DOI: 10.15826/umj.2024.2.014

PROPERTIES OF SOLUTIONS
IN THE DUBINS CAR CONTROL PROBLEM1

Artem A. Zimovets

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences,

16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation

aazimovets@gmail.com

Abstract: This paper addresses the time-optimal control problem of the Dubins car, which is closely
related to the problem of constructing the shortest curve with bounded curvature between two points in a
plane. This connection allows researchers to apply both geometric methods and control theory techniques
during their investigations. It is established that the time-optimal control for the Dubins car is a piecewise
constant function with no more than two switchings. This characteristic enables the categorization of all such
controls into several types, facilitating the examination of the solutions to the control problem for each type
individually. The paper derives explicit formulas for determining the switching times of the control signal. In
each case, necessary and sufficient conditions for the existence of solutions are obtained. For certain control
types, the uniqueness of optimal solutions is established. Additionally, the dependence of the movement time
on the initial and terminal conditions is studied.
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1. Introduction

The Dubins car is a simple mathematical model of a car-like vehicle that moves in a plane at a
constant speed and is capable of making left and right turns with a bounded turning radius. The
time-optimal control problem of the Dubins car is closely related to the problem of constructing
the shortest curve with bounded curvature between two points in a plane. One of the first studies
on this subject was by Markov [11], in which he considered the shortest curves with a prescribed
tangent at one of the endpoints. The problem of constructing the shortest curve with a constraint
on average curvature and with prescribed tangents at both endpoints was later investigated by
Dubins [7]. This problem later became known as the Markov–Dubins problem or simply as the
Dubins problem, and the solution to this problem was referred to as the Dubins path. Moreover,
as demonstrated in [8], not only geometric methods but also control theory methods can be used
to study plane curves. Significant results in this direction were obtained in [5, 9, 19].

The Markov–Dubins problem and its variations have been extensively studied over the past
several decades. We mention in particular the construction of the shortest bounded-curvature paths
in 3-dimensional space [18], the investigation of homotopy classes of bounded-curvature paths [1],
and the description of the reachable sets for the Dubins car [13, 14]. Reeds and Shepp [16] notably
extended Dubins’ original work by considering a vehicle capable of both forward and reverse motion,
resulting in the formulation of the Reeds–Shepp car model. Numerous other extended models can
also be found in [3, 4, 12]. The practical applications of the Markov–Dubins problem are widespread,
impacting fields such as railroad construction [11], air traffic control [15], robotics [2], and many
other domains.
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It was shown in [7] that the shortest path with bounded curvature between two points in a
plane consists of no more than three segments, each of which is either an arc of a circle or a straight
line segment. The same result was obtained for the trajectories of the Dubins car [5, 19]. As
a consequence, the Markov–Dubins problem can be reduced to finding the shortest path among
several candidate paths. In [15], the parameters of the candidate paths were found for a fixed
terminal position. The case of a moving target was investigated in [6]. Paper [17] considers the
case where the starting and ending points are far apart, and provides a decision table for finding
the shortest path. In [10], the endpoints of the curve segments were found by a geometric approach.

In this paper, we investigate the properties of the candidate paths and the corresponding
controls in the time-optimal control problem of the Dubins car. The paper is organized as follows.
Section 2 outlines the time-optimal control problem for the Dubins car and categorizes the control
set into three distinct types. In Section 3, we derive formulas for calculating the switching times
associated with each type of control. Section 4 identifies key properties for each control type.
Finally, Section 5 illustrates how these properties can be used to solve the time-optimal control
problem for the Dubins car.

2. Problem statement

Consider a vehicle that moves in a horizontal plane at a constant speed, capable of making
left and right turns. The motion of the vehicle is governed by the system of ordinary differential
equations







ẋ = v cosϕ,
ẏ = v sinϕ,
ϕ̇ = u,

(2.1)

where x and y are the Cartesian coordinates of the vehicle in the xy-plane, ϕ is the orientation of
the velocity vector, v is the speed, and u is the control variable. It is assumed that the angle ϕ is
measured counterclockwise from the positive x axis and can take any real values. An admissible
control is a Lebesgue measurable function u(t) that satisfies the constraint |u(t)| 6 um, um > 0, on
any finite time interval. The mathematical model described by (2.1) is called the “Dubins car”.

In this model, any two orientation angles ϕ∗ and ϕ∗ such that ϕ∗ − ϕ∗ = 2πk, k ∈ Z, are
considered equivalent. Z denotes the set of integers. We should note that the coefficient k will
be used in this paper to define various sets. In this regard, all these coefficients should be treated
independently of each other.

The time-optimal control problem of the Dubins car can be described as follows. Suppose we
are given a vector of boundary conditions w = (x0, y0, ϕ0, xf , yf , ϕf ), where (x0, y0) and (xf , yf )
are the initial and terminal positions of the vehicle, and ϕ0 and ϕf are the initial and terminal
orientations, respectively. It is required to find an admissible control that transfers system (2.1)
from the initial state (x0, y0, ϕ0) to one of the terminal states {(xf , yf , ϕf + 2πk) | k ∈ Z} in the
minimum possible time. Since system (2.1) is time-invariant, the initial time t0 can be chosen
arbitrarily.

In [5, 13, 19], it is shown that the time-optimal control for the Dubins car is a piecewise
constant function having no more than three segments with lengths ∆t1, ∆t2, and ∆t3 and values
u1, u2, and u3, respectively, where u1 ∈ {−um, um}, u2 ∈ {−um, 0, um}, and u3 ∈ {−um, um}. Let
u∗ ∈ {−um, um}. Then all such controls can be divided into the following types:

1. Control of the type (u∗,−u∗, u∗), where u1 = u∗, u2 = −u∗, and u3 = u∗.
2. Control of the type (u∗, 0, u∗), where u1 = u∗, u2 = 0, and u3 = u∗.
3. Control of the type (u∗, 0,−u∗), where u1 = u∗, u2 = 0, and u3 = −u∗.
Thus, the time-optimal control problem of the Dubins car can be solved by testing the optimal

controls of several specific types. Accordingly, the purpose of this paper is to study the properties
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of each of these types of control. Specifically, we aim to investigate the necessary and sufficient
conditions for the existence of solutions, the uniqueness of optimal solutions, and the dependence
of the movement time on the initial and terminal conditions.

3. Switching times

This section provides a solution to the time-optimal control problem of the Dubins car for
controls of the types (u∗,−u∗, u∗), (u∗, 0, u∗), and (u∗, 0,−u∗). In each case, we derive explicit
formulas for determining the optimal time intervals ∆t1, ∆t2, and ∆t3. The lengths of the intervals
are assumed to be nonnegative. This condition, called a nonnegativity condition, can be written as







∆t1 > 0,
∆t2 > 0,
∆t3 > 0.

(3.1)

Note that the intervals are allowed to be degenerate. Knowing ∆t1, ∆t2, and ∆t3, we can find the
switching times t1 and t2 and the terminal time tf by the simple relations

t1 = t0 +∆t1, t2 = t1 +∆t2, tf = t2 +∆t3.

Before proceeding to specific types of control, we introduce some notation and definitions.

Definition 1. Denote by sgn (x) the function of a real variable x defined by

sgn (x) =

{

1, x > 0,
−1, x < 0.

If x 6= 0, the function sgn (x) can be written as sgn (x) = |x|/x.

Definition 2. The modulo operation amod b is the binary operation that associates with each
pair of real numbers a and b 6= 0 the nonnegative remainder after dividing a by b, that is, a number
r ∈ [0, |b|) such that a = qb+ r, where q ∈ Z.

Definition 3. By a multivalued function F : X → P(Y ) we mean a function that maps ele-
ments of X to subsets of Y.

We extend standard binary operations that take two single-valued arguments to binary operations
that take one single-valued argument and one multivalued argument as follows.

Definition 4. Let ∗ : X ×X → X be a binary operation. For each x ∈ X and σ ⊂ X, define
x ∗ σ = {x ∗ y | y ∈ σ} and σ ∗ x = {y ∗ x | y ∈ σ}.

Next, we proceed to prove a preliminary lemma.

Lemma 1. Let F be a multivalued real function of the form F (x) = f(x) + G, where f is a
continuous single-valued function, G = {ka | k ∈ Z}, and a is a positive constant. Let a multivalued
function H be defined as H(x) = F (x)mod a, and let a single-valued function h be defined as

h(x) = min{y ∈ F (x) | y > 0}.

Then H(x) = {h(x)}. Moreover, if f(x∗) 6= ma, m ∈ Z, then h is continuous at x∗.
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P r o o f. Let x∗ be an arbitrary point in domH. We first show that H(x∗) cannot contain two
different elements. Suppose there are h1 ∈ H(x∗) and h2 ∈ H(x∗) such that h1 6= h2. Then h1 and
h2 must satisfy the system

{

f(x∗) + k1a = q1a+ h1, h1 ∈ [0, a), k1 ∈ Z, q1 ∈ Z,
f(x∗) + k2a = q2a+ h2, h2 ∈ [0, a), k2 ∈ Z, q2 ∈ Z.

(3.2)

Subtracting the second equation from the first and collecting the terms that involve a factor of a
on the left-hand side, we obtain

(k1 − k2 − q1 + q2)a = h1 − h2. (3.3)

Since h1 ∈ [0, a) and h2 ∈ [0, a), we have −a < h1 − h2 < a. Hence, equality (3.3) holds only when
k1 − k2 − q1 + q2 = 0 and h1 = h2. This is a contradiction.

From (3.2), it follows that h1 ∈ F (x∗). We claim that h(x∗) = h1. Suppose there is h3 ∈ F (x∗)
such that 0 6 h3 < h1. By definition, h3 = f(x∗) + k3a, where k3 ∈ Z. Then

h1 − h3 = (k1 − q1 − k3)a.

However, 0 < h1 − h3 < a. This results in a contradiction. Hence, h(x∗) = h1.
Next, we show that the function h is continuous at x∗ if f(x∗) 6= ma, m ∈ Z. Pick any ε > 0.

Since f is continuous, it follows that

∃δ > 0: ‖x− x∗‖ < δ ⇒ |f(x)− f(x∗)| < ε.

Let
εm = min

m∈Z

|f(x∗)−ma|.

Then we get
∃δm > 0: ‖x− x∗‖ < δm ⇒ |f(x)− f(x∗)| < εm.

Let δ∗ = min{δ, δm}. Then we find that

‖x− x∗‖ < δ∗ ⇒ |f(x)− f(x∗)| < ε.

Furthermore, if ‖x− x∗‖ < δ∗, then there exists p ∈ Z such that

f(x) = pa+ h(x), f(x∗) = pa+ h(x∗).

Finally, we obtain
‖x− x∗‖ < δ∗ ⇒ |h(x)− h(x∗)| = |f(x)− f(x∗)| < ε.

Since ε was chosen arbitrarily, we conclude that the function h is continuous at x∗. �

3.1. Controls of the type (u∗,−u∗, u∗)

Given a vector of boundary conditions w = (x0, y0, ϕ0, xf , yf , ϕf ), the goal is to find a control
of the type (u∗,−u∗, u∗) that transfers system (2.1) from the initial state (x0, y0, ϕ0) to one of the
terminal states {(xf , yf , ϕf + 2πk) | k ∈ Z} in minimum time.

For this type of control, the function ϕ(t) on the time interval [t0, tf ] can be expressed as

ϕ(t) =







ϕ0 + u∗(t− t0), t ∈ [t0, t1),
ϕ0 + u∗∆t1 − u∗(t− t1), t ∈ [t1, t2),
ϕ0 + u∗∆t1 − u∗∆t2 + u∗(t− t2), t ∈ [t2, tf ].

(3.4)
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Substituting (3.4) into (2.1) gives

x(tf ) = x0 +

∫ ∆t1

0
v cos(ϕ0 + u∗τ) dτ +

∫ ∆t2

0
v cos(ϕ0 + u∗∆t1 − u∗τ) dτ

+

∫ ∆t3

0
v cos(ϕ0 + u∗∆t1 − u∗∆t2 + u∗τ) dτ

= x0 +
v

u∗

(

2 sin(ϕ0 + u∗∆t1)− 2 sin(ϕ0 + u∗∆t1 − u∗∆t2) + sin(ϕ(tf ))− sin(ϕ0)
)

,

(3.5)

y(tf ) = y0 +

∫ ∆t1

0
v sin(ϕ0 + u∗τ) dτ +

∫ ∆t2

0
v sin(ϕ0 + u∗∆t1 − u∗τ) dτ

+

∫ ∆t3

0
v sin(ϕ0 + u∗∆t1 − u∗∆t2 + u∗τ) dτ

= y0 −
v

u∗

(

2 cos(ϕ0 + u∗∆t1)− 2 cos(ϕ0 + u∗∆t1 − u∗∆t2) + cos(ϕ(tf ))− cos(ϕ0)
)

.

(3.6)

Combining (3.4), (3.5), and (3.6) with the terminal condition, we obtain the system














x0 +
v

u∗

(

2 sin(ϕ0 + u∗∆t1)− 2 sin(ϕ0 + u∗∆t1 − u∗∆t2) + sin(ϕf )− sin(ϕ0)
)

= xf ,

y0 −
v

u∗

(

2 cos(ϕ0 + u∗∆t1)− 2 cos(ϕ0 + u∗∆t1 − u∗∆t2) + cos(ϕf )− cos(ϕ0)
)

= yf ,

ϕ0 + u∗∆t1 − u∗∆t2 + u∗∆t3 = ϕf + 2πk, k ∈ Z,

(3.7)

where ∆t1, ∆t2, and ∆t3 are unknowns.
Thus, the problem can be formulated as follows: find a solution to system (3.7) that satisfies

the nonnegativity condition (3.1) and minimizes the performance index

T1 = ∆t1 +∆t2 +∆t3.

Introduce the notation

α = ϕ0 + u∗∆t1, β = u∗∆t2, γ = u∗∆t3, (3.8)

a1 =
u∗
v
(xf − x0)− sin(ϕf ) + sin(ϕ0), (3.9)

b1 =
u∗
v
(yf − y0) + cos(ϕf )− cos(ϕ0). (3.10)

With this notation, system (3.7) may be written as






2 sin(α)− 2 sin(α− β) = a1,
−2 cos(α) + 2 cos(α− β) = b1,
α− β + γ = ϕf + 2πk, k ∈ Z.

(3.11)

1. Suppose that a21 + b21 = 0. Then the set of solutions to (3.7) can be expressed as










∆t1 +∆t3 =
1

u∗
(ϕf − ϕ0 + 2πk), k ∈ Z,

∆t2 =
1

u∗
2πk, k ∈ Z.

(3.12)

Applying the modulo operation to (3.12) and resolving the ambiguity, we obtain














∆t1 =
1

|u∗|

(

(sgn (u∗)(ϕf − ϕ0)) mod 2π
)

,

∆t2 = 0,
∆t3 = 0.

(3.13)
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Thus, solution (3.13) defines the constant control u(t) ≡ u∗ over the entire time interval [t0, tf ].
The trajectory of the vehicle in this case is just an arc of a circle.

2. Suppose now that a21 + b21 6= 0. Squaring both sides of the first and second equations of
system (3.11) and adding the resulting equations together, we get

8− 8 cos(α) cos(α− β)− 8 sin(α) sin(α− β) = a21 + b21,

8− 8 cos(β) = a21 + b21,

cos(β) = −
a21 + b21 − 8

8
. (3.14)

Let us assume that a solution to (3.14) exists. Then we can write this solution in the form

β1 = arccos

(

−
a21 + b21 − 8

8

)

+ 2πk, k ∈ Z, (3.15)

β2 = − arccos

(

−
a21 + b21 − 8

8

)

+ 2πk, k ∈ Z. (3.16)

So, we have expressed β in terms of a1 and b1. Now let us express α in terms of β. Applying
the appropriate trigonometric identities to (3.11), we have

{

2 sin(α) − 2 sin(α) cos(β) + 2 cos(α) sin(β) = a1,
−2 cos(α) + 2 cos(α) cos(β) + 2 sin(α) sin(β) = b1;

{

2
(

1− cos(β)
)

sin(α) + 2 sin(β) cos(α) = a1,
2 sin(β) sin(α)− 2

(

1− cos(β)
)

cos(α) = b1.
(3.17)

Since a21 + b21 6= 0, then cos(β) 6= 1 and sin(β) 6= 0. Solving (3.17) for cos(α) and sin(α) yields



















cos(α) =
a1 sin(β)− b1

(

1− cos(β)
)

2
(

1− cos(β)
)2

+ 2 sin2(β)
,

sin(α) =
a1
(

1− cos(β)
)

+ b1 sin(β)

2
(

1− cos(β)
)2

+ 2 sin2(β)
.

(3.18)

Let us assume that a solution to (3.18) exists. Then we can write this solution in the form

α = sgn

(

a1
(

1− cos(β)
)

+ b1 sin(β)

2
(

1− cos(β)
)2

+ 2 sin2(β)

)

arccos

(

a1 sin(β)− b1
(

1− cos(β)
)

2
(

1− cos(β)
)2

+ 2 sin2(β)

)

+ 2πk, (3.19)

k ∈ Z.

Next, let us express γ in terms of α and β. From the third equation of system (3.11), we find

γ = ϕf − α+ β + 2πk, k ∈ Z. (3.20)

Solving (3.8) for ∆t1, ∆t2, and ∆t3, and then using the modulo operation, we obtain the
following result:



























∆t1 =
1

|u∗|

(

(sgn (u∗)(α− ϕ0)) mod 2π
)

,

∆t2 =
1

|u∗|

(

(sgn (u∗)β) mod 2π
)

,

∆t3 =
1

|u∗|

(

(sgn (u∗)γ) mod 2π
)

,

(3.21)
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where α, β, and γ are defined by (3.19), (3.15), (3.16), and (3.20), respectively. Formula (3.21)
gives us two solutions: the first solution corresponds to β = β1, and the second solution corresponds
to β = β2. It is clear that both solutions satisfy the nonnegativity condition (3.1). Therefore, to
find the minimum of the performance index, it remains necessary to compare these two solutions.

Remark 1. When substituting (3.19), (3.15), (3.16), and (3.20) into (3.21), one can assume
k = 0 in all these formulas.

Remark 2. From [5, Theorem 12], it follows that if the time-optimal control of the Dubins car is
of the type (u∗,−u∗, u∗) with nondegenerate ∆t1, ∆t2, and ∆t3, then ∆t2 > π/|u∗|. This condition
implies that

β = −sgn (u∗) arccos

(

−
a21 + b21 − 8

8

)

+ 2πk, k ∈ Z. (3.22)

When substituting (3.22) into (3.21), one can assume k = 0.

3.2. Controls of the type (u∗, 0, u∗)

Given a vector of boundary conditions w = (x0, y0, ϕ0, xf , yf , ϕf ), the goal is to find a control
of the type (u∗, 0, u∗) that transfers system (2.1) from the initial state (x0, y0, ϕ0) to one of the
terminal states {(xf , yf , ϕf + 2πk) | k ∈ Z} in minimum time.

For this type of control, the function ϕ(t) on the time interval [t0, tf ] can be expressed as

ϕ(t) =







ϕ0 + u∗(t− t0), t ∈ [t0, t1),
ϕ0 + u∗∆t1, t ∈ [t1, t2),
ϕ0 + u∗∆t1 + u∗(t− t2), t ∈ [t2, tf ].

(3.23)

Substituting (3.23) into (2.1) gives

x(tf ) = x0 +

∫ ∆t1

0
v cos

(

ϕ0 + u∗τ
)

dτ +

∫ ∆t2

0
v cos

(

ϕ0 + u∗∆t1
)

dτ

+

∫ ∆t3

0
v cos

(

ϕ0 + u∗∆t1 + u∗τ
)

dτ

= x0 +
v

u∗

(

sin
(

ϕ(tf )
)

− sin
(

ϕ0

)

)

+ v∆t2 cos
(

ϕ0 + u∗∆t1
)

,

(3.24)

y(tf ) = y0 +

∫ ∆t1

0
v sin

(

ϕ0 + u∗τ
)

dτ +

∫ ∆t2

0
v sin

(

ϕ0 + u∗∆t1
)

dτ

+

∫ ∆t3

0
v sin

(

ϕ0 + u∗∆t1 + u∗τ
)

dτ

= y0 −
v

u∗

(

cos
(

ϕ(tf )
)

− cos
(

ϕ0

)

)

+ v∆t2 sin
(

ϕ0 + u∗∆t1
)

.

(3.25)

Combining (3.23), (3.24), and (3.25) with the terminal condition, we obtain the system















x0 +
v

u∗

(

sin(ϕf )− sin(ϕ0)
)

+ v∆t2 cos(ϕ0 + u∗∆t1) = xf ,

y0 −
v

u∗

(

cos(ϕf )− cos(ϕ0)
)

+ v∆t2 sin(ϕ0 + u∗∆t1) = yf ,

ϕ0 + u∗∆t1 + u∗∆t3 = ϕf + 2πk, k ∈ Z,

(3.26)

where ∆t1, ∆t2, and ∆t3 are unknowns.
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Thus, the problem can be formulated as follows: find a solution to system (3.26) that satisfies
the nonnegativity condition (3.1) and minimizes the performance index

T2 = ∆t1 +∆t2 +∆t3.

Introduce the notation

α = ϕ0 + u∗∆t1, γ = u∗∆t3, (3.27)

a1 =
u∗
v
(xf − x0)− sin(ϕf ) + sin(ϕ0),

b1 =
u∗
v
(yf − y0) + cos(ϕf )− cos(ϕ0).

With this notation, system (3.26) may be written as







u∗∆t2 cos(α) = a1,
u∗∆t2 sin(α) = b1,
α+ γ = ϕf + 2πk, k ∈ Z.

(3.28)

1. Suppose that a21 + b21 = 0. It is easy to show that, in this case, the solution is (3.13).

2. Suppose now that a21 + b21 6= 0. Squaring both sides of the first and second equations of
system (3.28) and adding the resulting equations together, we get

u2
∗
∆t22 = a21 + b21,

∆t2 =
1

|u∗|

√

a21 + b21. (3.29)

So, we have expressed ∆t2 in terms of a1 and b1. Now we can find α by substituting (3.29)
into (3.28). We have

α = sgn

(

|u∗|b1

u∗
√

a21 + b21

)

arccos

(

|u∗|a1

u∗
√

a21 + b21

)

+ 2πk, k ∈ Z. (3.30)

Next, let us express γ in terms of α. From the third equation of system (3.28), we find

γ = ϕf − α+ 2πk, k ∈ Z. (3.31)

Solving (3.27) for ∆t1 and ∆t3, and then using the modulo operation, we obtain the following
result:



























∆t1 =
1

|u∗|

(

(sgn (u∗)(α− ϕ0)) mod 2π
)

,

∆t2 =
1

|u∗|

√

a21 + b21,

∆t3 =
1

|u∗|

(

(sgn (u∗)γ) mod 2π
)

,

(3.32)

where α and γ are defined by (3.30) and (3.31), respectively.

Remark 3. When substituting (3.30) and (3.31) into (3.32), one can assume k = 0 in all these
formulas.
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3.3. Controls of the type (u∗, 0,−u∗)

Given a vector of boundary conditions w = (x0, y0, ϕ0, xf , yf , ϕf ), the goal is to find a control
of the type (u∗, 0,−u∗) that transfers system (2.1) from the initial state (x0, y0, ϕ0) to one of the
terminal states {(xf , yf , ϕf + 2πk) | k ∈ Z} in minimum time.

For this type of control, the function ϕ(t) on the time interval [t0, tf ] can be expressed as

ϕ(t) =







ϕ0 + u∗(t− t0), t ∈ [t0, t1),
ϕ0 + u∗∆t1, t ∈ [t1, t2),
ϕ0 + u∗∆t1 − u∗(t− t2), t ∈ [t2, tf ].

(3.33)

Substituting (3.33) into (2.1) gives

x(tf ) = x0 +

∫ ∆t1

0
v cos(ϕ0 + u∗τ) dτ +

∫ ∆t2

0
v cos(ϕ0 + u∗∆t1) dτ

+

∫ ∆t3

0
v cos(ϕ0 + u∗∆t1 − u∗τ) dτ

= x0 +
v

u∗

(

2 sin(ϕ0 + u∗∆t1)− sin(ϕ(tf ))− sin(ϕ0)
)

+ v∆t2 cos(ϕ0 + u∗∆t1),

(3.34)

y(tf ) = y0 +

∫ ∆t1

0
v sin(ϕ0 + u∗τ) dτ +

∫ ∆t2

0
v sin(ϕ0 + u∗∆t1) dτ

+

∫ ∆t3

0
v sin(ϕ0 + u∗∆t1 − u∗τ) dτ

= y0 −
v

u∗

(

2 cos(ϕ0 + u∗∆t1)− cos(ϕ(tf ))− cos(ϕ0)
)

+ v∆t2 sin(ϕ0 + u∗∆t1).

(3.35)

Combining (3.33), (3.34), and (3.35) with the terminal condition, we obtain the system















x0 +
v

u∗

(

2 sin(ϕ0 + u∗∆t1)− sin(ϕf )− sin(ϕ0)
)

+ v∆t2 cos(ϕ0 + u∗∆t1) = xf ,

y0 −
v

u∗

(

2 cos(ϕ0 + u∗∆t1)− cos(ϕf )− cos(ϕ0)
)

+ v∆t2 sin(ϕ0 + u∗∆t1) = yf ,

ϕ0 + u∗∆t1 − u∗∆t3 = ϕf + 2πk, k ∈ Z,

(3.36)

where ∆t1, ∆t2, and ∆t3 are unknowns.
Thus, the problem can be formulated as follows: find a solution to system (3.36) that satisfies

the nonnegativity condition (3.1) and minimizes the performance index

T3 = ∆t1 +∆t2 +∆t3.

Introduce the notation

α = ϕ0 + u∗∆t1, γ = u∗∆t3, (3.37)

a2 =
u∗
v
(xf − x0) + sin(ϕf ) + sin(ϕ0),

b2 =
u∗
v
(yf − y0)− cos(ϕf )− cos(ϕ0).

With this notation, system (3.7) may be written as







2 sin(α) + u∗∆t2 cos(α) = a2,
−2 cos(α) + u∗∆t2 sin(α) = b2,
α− γ = ϕf + 2πk, k ∈ Z.

(3.38)
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Squaring both sides of the first and second equations of system (3.38) and adding the resulting
equations together, we get

4 + u2
∗
∆t22 = a22 + b22. (3.39)

Let us assume that a solution to (3.39) exists. Then, we have

∆t2 =
1

|u∗|

√

a22 + b22 − 4. (3.40)

So, we have expressed ∆t2 in terms of a2 and b2. Now let us express α in terms of ∆t2. Solving
the first two equations of system (3.38) for cos(α) and sin(α) yields















cos(α) =
a2u∗∆t2 − 2b2
4 + u2

∗
∆t22

,

sin(α) =
b2u∗∆t2 + 2a2
4 + u2

∗
∆t22

.
(3.41)

Let us assume that a solution to (3.41) exists. Then, after substituting (3.40) into (3.41), we
can write this solution in the form

α = sgn

(

(b2u∗/|u∗|)
√

a22 + b22 − 4 + 2a2
a22 + b22

)

× arccos

(

(a2u∗/|u∗|)
√

a22 + b22 − 4− 2b2
a22 + b22

)

+ 2πk, k ∈ Z,

(3.42)

where (3.40) guarantees that a22 + b22 6= 0.
Next, let us express γ in terms of α. From the third equation of system (3.38), we find

γ = α− ϕf + 2πk, k ∈ Z. (3.43)

Solving (3.37) for ∆t1 and ∆t3, and then using the modulo operation, we obtain the following
result:



























∆t1 =
1

|u∗|

(

(sgn (u∗)(α− ϕ0)r) mod 2π
)

,

∆t2 =
1

|u∗|

√

a22 + b22 − 4,

∆t3 =
1

|u∗|

(

(sgn (u∗)γ) mod 2π
)

,

(3.44)

where α and γ are defined by (3.42) and (3.43), respectively.

Remark 4. When substituting (3.42) and (3.43) into (3.44), one can assume k = 0 in all these
formulas.

4. Analysis of solutions

Let us introduce some additional definitions.

Definition 5. An open (closed) disc of radius r and center (x∗, y∗) is the set of points (x, y)
such that

(x− x∗)
2 + (y − y∗)

2 < r2 ((x− x∗)
2 + (y − y∗)

2
6 r2).

Definition 6. We say that a vector of boundary conditions w = (x0, y0, ϕ0, xf , yf , ϕf ) is fea-
sible for controls of the type (u1, u2, u3) if there exists a control of the type (u1, u2, u3) that transfers
system (2.1) from the initial state (x0, y0, ϕ0) to one of the terminal states

{

(xf , yf , ϕf + 2πk) | k ∈ Z
}

.

We now proceed to investigate the properties of solutions.
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4.1. Controls of the type (u∗,−u∗, u∗)

Let the notation be as in Section 3.1.

We first obtain necessary and sufficient conditions for the existence of a solution to the time-
optimal control problem of the Dubins car for controls of the type (u∗,−u∗, u∗). To do this, we
prove the following proposition.

Proposition 1. System (2.1) can be transferred from the initial state (x0, y0, ϕ0) to one of the
terminal states {(xf , yf , ϕf + 2πk) | k ∈ Z} by a control of the type (u∗,−u∗, u∗) if and only if the
point (xf , yf ) belongs to a closed disc B1 of radius 4v/|u∗| centered at the point (x∗, y∗) defined by

(x∗, y∗) =
(

x0 +
v

u∗
sin(ϕf )−

v

u∗
sin(ϕ0), y0 −

v

u∗
cos(ϕf ) +

v

u∗
cos(ϕ0)

)

.

P r o o f. 1. First, we show that if (xf , yf ) ∈ B1, then there exists a control of the type
(u∗,−u∗, u∗) that transfers system (2.1) from the initial state (x0, y0, ϕ0) to one of the terminal
states {(xf , yf , ϕf + 2πk) | k ∈ Z}.

It is easy to see that (xf , yf ) is the center of the closed disc B1 if and only if a21 + b21 = 0. This
follows immediately from (3.9) and (3.10). In this case, system (3.7) has solution (3.13).

Let the point (xf , yf ) belong to the closed disc B1, but it is not the center of this disc. In this
case, equation (3.14) has a solution if and only if

−1 6 −
a21 + b21 − 8

8
< 1. (4.1)

We write (4.1) as

0 < a21 + b21 6 16. (4.2)

Multiplying all parts of (4.2) by (v/u∗)
2 gives

0 <

(

v

u∗
a1

)2

+

(

v

u∗
b1

)2

6

(

4
v

u∗

)2

. (4.3)

Thinking of xf and yf as variables, it is easy to see that expression (4.3) defines all the points
of the closed disc B1 except for the center point. Since we assumed that (xf , yf ) belongs to the
closed disc B1, but it is not the center of this disc, conditions (4.1)–(4.3) are met, which implies
that a solution to equation (3.14) exists. Let us check that a solution to system (3.18) also exists.
For this, we find the sum of the squares of the right-hand sides of the equations of this system.
Substituting (3.14) into (3.18), we have

a21 sin
2(β)− 2a1b1 sin(β)(1 − cos(β)) + b21(1− cos(β))2

4
(

(1− cos(β))2 + sin2(β)
)2

+
a21(1− cos(β))2 + 2a1b1 sin(β)(1 − cos(β)) + b21 sin

2(β)

4
(

(1− cos(β))2 + sin2(β)
)2 =

(a21 + b21)
(

(1− cos(β))2 + sin2(β)
)

4
(

(1− cos(β))2 + sin2(β)
)2

=
a21 + b21

4− 8 cos(β) + 4 cos2(β) + 4 sin2(β)
=

a21 + b21
8− 8 cos(β)

= 1.

Thus, we see that, for any β satisfying (3.14), under the condition a21 + b21 6= 0, the equations of
system (3.18) indeed represent the sine and cosine of some angle α. Consequently, system (3.7) has
solution (3.21).
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2. Now we show that if there exists a control of the type (u∗,−u∗, u∗) that transfers system (2.1)
from the initial state (x0, y0, ϕ0) to one of the terminal states {(xf , yf , ϕf + 2πk) | k ∈ Z}, then
(xf , yf ) ∈ B1.

Suppose that (xf , yf ) /∈ B1. Then (4.1)–(4.3) are not met. Hence, equation (3.14) has no
solution, and therefore system (3.7) also has no solution. This is a contradiction. �

Corollary 1. System (2.1) can be transferred from the initial state (x0, y0, ϕ0) to one of the
terminal states {(xf , yf , ϕf + 2πk) | k ∈ Z} by a control of the type (u∗,−u∗, u∗) if and only if the
point (x0, y0) belongs to a closed disc B

∗

1 of radius 4v/|u∗| centered at the point (x∗, y∗) defined by

(x∗, y∗) =
(

xf −
v

u∗
sin(ϕf ) +

v

u∗
sin(ϕ0), yf +

v

u∗
cos(ϕf )−

v

u∗
cos(ϕ0)

)

.

Corollary 2. If the point (xf , yf ) belongs to the closed disc B1, but it is not the center of
this disc, then solutions to equations (3.14) and (3.18) exist. In this case, system (3.7) will have
solution (3.21).

Corollary 3. If the point (xf , yf ) is the center of the closed disc B1, then system (3.7) will
have solution (3.13).

Next, we turn to the question of the uniqueness of the time-optimal control.

Proposition 2. Let W1 be the set of all feasible vectors of boundary conditions for controls of
the type (u∗,−u∗, u∗). For any w ∈ W1, there are at most two different time-optimal controls of the
type (u∗,−u∗, u∗).

P r o o f. 1. Assume that a21 + b21 = 0. Then the set of all solutions to system (3.7) will be
determined by expression (3.12). The right-hand sides of the equations of (3.12) can be expressed
in the form λ

(

f(x) + G
)

, where λ is a positive real number, f(x) is a constant function, and
G = {2πk | k ∈ Z}. By the first part of Lemma 1, it follows that the modulo operation allows
us to extract the smallest nonnegative value from this sets of values. After doing this, we can see
that the middle segment of the optimal control is degenerate, and since u1 = u3, we infer that all
optimal solutions to system (3.7) generate the same optimal control. So, in this case, the optimal
control is unique.

2. Assume that a21 + b21 6= 0. Using Lemma 1, we see that expression (3.21) determines at most
two different solutions to system (3.7). The first of them corresponds to the case β = β1, and the
second corresponds to the case β = β2, where β1 and β2 are defined by (3.15) and (3.16). It also
follows from Lemma 1 that one of these solutions will be optimal. If the values of the performance
index are the same for both the solutions, then both the solutions will be optimal. �

Corollary 4. Under condition (3.22), expression (3.21) defines the unique control that trans-
fers system (2.1) from the initial state (x0, y0, ϕ0) to one of the terminal states

{(xf , yf , ϕf + 2πk) | k ∈ Z}.

Finally, we study the dependence of the movement time on the initial and terminal conditions.
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Proposition 3. Let W1 be the set of all feasible vectors of boundary conditions for controls
of the type (u∗,−u∗, u∗), and let T opt

1 be a function that assigns to each w = (x0, y0, ϕ0, xf , yf , ϕf )
in W1 the minimum time required to transfer system (2.1) from the initial state (x0, y0, ϕ0) to
one of the terminal states {(xf , yf , ϕf + 2πk) | k ∈ Z} by a control of the type (u∗,−u∗, u∗)
under condition (3.22). If w∗ is a point of discontinuity of T opt

1 , then at least one of the following
conditions holds at w∗:

1. a21 + b21 = 0;
2. ∆t1 = 0;
3. ∆t3 = 0.

P r o o f. We will prove this proposition by contradiction. Suppose that none of conditions 1–3
holds at w∗. Observe that T opt

1 (w), w ∈ W1, represents the optimal value of the performance index
T1 for w under condition (3.22). Therefore, according to Corollaries 2 and 3, the value of T opt

1 (w),
w ∈ W1, is determined by either (3.13) or (3.21). Since we assumed that condition 1 does not
hold at w∗, (3.13) can be ruled out. So, it remains to consider only (3.21). By Corollary 4, under
condition (3.22), the value of T opt

1 (w∗) is unique. We need to prove that T opt
1 is continuous at w∗.

To do this, we will consider ∆t1, ∆t2, ∆t3, α, β, γ, a1, and b1 as functions of the vector of boundary
conditions w.

It is obvious that a1 and b1 are continuous on W1.
Let us consider expression (3.22). We see that the function β is of the form β(w) = fβ(w)+G,

where fβ is a continuous single-valued function and G = {2πk | k ∈ Z}. Since we assumed that
condition 1 does not hold at w∗, we have fβ(w∗) 6= 2πk, k ∈ Z. Hence, by Lemma 1, the function
∆t2 is continuous at w∗.

Let us consider expression (3.19). This expression is a solution of system (3.18). The values of
the numerators and denominators of the fractions in this expression continuously depend on w, and
the denominators cannot vanish unless a21(w)+b21(w) 6= 0. Consequently, cos

(

α(w)
)

and sin
(

α(w)
)

are continuous at w∗. It can be shown that, in a neighborhood of w∗, the function α is of the form
α(w) = fα(w) + G, where fα is a continuous single-valued function. Therefore, the expression
sgn (u∗)(α − ϕ0) in the first equation of formula (3.21) can also be represented in the same form.
Since we assumed that condition 2 does not hold at w∗, we have

sgn (u∗)
(

α(w∗)− ϕ0

)

6= 2πk, k ∈ Z.

Hence, by Lemma 1, the function ∆t1 is continuous at w∗.
Let us consider expression (3.20). It can be shown that, in a neighborhood of w∗, the function

γ is of the form γ(w) = fγ(w) + G, where fγ is a continuous single-valued function. Since we
assumed that condition 3 does not hold at w∗, we have fγ(w∗) 6= 2πk, k ∈ Z. Hence, by Lemma 1,
the function ∆t3 is continuous at w∗.

Thus, we have shown that each of the functions ∆t1, ∆t2, and ∆t3 is continuous at w∗. So,
T opt
1 is also continuous at w∗. �

4.2. Controls of the type (u∗, 0, u∗)

Let the notation be as in Section 3.2.
We first obtain necessary and sufficient conditions for the existence of a solution to the time-

optimal control problem of the Dubins car for controls of the type (u∗, 0, u∗). To do this, we prove
the following proposition.

Proposition 4. For any vector of boundary conditions w = (x0, y0, ϕ0, xf , yf , ϕf ), sys-
tem (2.1) can be transferred from the initial state (x0, y0, ϕ0) to one of the terminal states
{(xf , yf , ϕf + 2πk) | k ∈ Z} by a control of the type (u∗, 0, u∗).
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P r o o f. It is obvious that system (3.28) is solvable for any a1, b1, and ϕf ; so, the switching
times can be easily found by using (3.13) and (3.32). �

Corollary 5. If the point (xf , yf ) is not the center of the closed disc B1 defined in Proposition 1,
then system (3.26) will have solution (3.32).

Corollary 6. If the point (xf , yf ) is the center of the closed disc B1 defined in Proposition 1,
then system (3.26) will have solution (3.13).

Next, we turn to the question of the uniqueness of the time-optimal control.

Proposition 5. For any vector of boundary conditions, the time-optimal control of the type
(u∗, 0, u∗) is unique.

P r o o f is similar to that of Proposition 2. �

Finally, we study the dependence of the movement time on the initial and terminal conditions.

Proposition 6. Let T opt
2 be a function that assigns to each w = (x0, y0, ϕ0, xf , yf , ϕf ) in R

6

the minimum time required to transfer system (2.1) from the initial state (x0, y0, ϕ0) to one of the
terminal states {(xf , yf , ϕf + 2πk) | k ∈ Z} by a control of the type (u∗, 0, u∗). If w∗ is a point of
discontinuity of T opt

2 , then at least one of the following conditions holds at w∗:
1. a21 + b21 = 0;
2. ∆t1 = 0;
3. ∆t3 = 0.

P r o o f is similar to that of Proposition 3. �

4.3. Controls of the type (u∗, 0,−u∗)

Let the notation be as in Section 3.3.
We first obtain necessary and sufficient conditions for the existence of a solution to the time-

optimal control problem of the Dubins car for controls of the type (u∗, 0,−u∗). To do this, we prove
the following proposition.

Proposition 7. System (2.1) can be transferred from the initial state (x0, y0, ϕ0) to one of the
terminal states {(xf , yf , ϕf + 2πk) | k ∈ Z} by a control of the type (u∗, 0,−u∗) if and only if the
point (xf , yf ) does not belong to an open disc B2 of radius 2v/|u∗| centered at the point (x∗, y∗)
defined by

(x∗, y∗) =
(

x0 −
v

u∗
sin(ϕf )−

v

u∗
sin(ϕ0), y0 +

v

u∗
cos(ϕf ) +

v

u∗
cos(ϕ0)

)

.

P r o o f. 1. First, we show that if (xf , yf ) /∈ B2, then there exists a control of the type
(u∗, 0,−u∗) that transfers system (2.1) from the initial state (x0, y0, ϕ0) to one of the terminal
states {(xf , yf , ϕf + 2πk) | k ∈ Z}.

Observe that equation (3.39) has a solution if and only if

a22 + b22 > 4. (4.4)
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Multiplying both sides of (4.4) by (v/u∗)
2 gives

(

v

u∗
a2

)2

+

(

v

u∗
b2

)2

>

(

2
v

u∗

)2

. (4.5)

Thinking of xf and yf as variables, it is easy to see that expression (4.5) defines the points that
do not belong to the open disc B2. Since we assumed that (xf , yf ) does not belong to the open
disc B2, conditions (4.4) and (4.5) are met, which implies that a solution to equation (3.39) exists.
Let us check that a solution to system (3.41) also exists. For this, we find the sum of the squares
of the right-hand sides of the equations of this system. Substituting (3.39) into (3.41), we have

a22u
2
∗
∆t22 − 4a2b2u∗∆t2 + 4b22

(

4 + u2
∗
∆t22

)2 +
b22u

2
∗
∆t22 + 4a2b2u∗∆t2 + 4a22

(

4 + u2
∗
∆t22

)2

=
a22u

2
∗
∆t22 + 4b22 + b22u

2
∗
∆t22 + 4a22

(

4 + u2
∗
∆t22

)2 =

(

a22 + b22
)(

4 + u2
∗
∆t22

)

(

4 + u2
∗
∆t22

)2 =
a22 + b22

4 + u2
∗
∆t22

= 1.

Thus, we see that, for any ∆t2 satisfying (3.39), the equations of system (3.41) indeed represent
the sine and cosine of some angle α. Consequently, system (3.36) has solution (3.44).

2. Now we show that if there exists a control of the type (u∗, 0,−u∗) that transfers the sys-
tem (2.1) from the initial state (x0, y0, ϕ0) to one of the terminal states {(xf , yf , ϕf +2πk) | k ∈ Z},
then (xf , yf ) /∈ B2.

Suppose that (xf , yf ) ∈ B2. Then (4.4), (4.5) are not met. Hence, equation (3.39) has no
solution, and therefore system (3.36) also has no solution. This is a contradiction. �

Corollary 7. System (2.1) can be transferred from the initial state (x0, y0, ϕ0) to one of the
terminal states {(xf , yf , ϕf + 2πk) | k ∈ Z} by a control of the type (u∗, 0,−u∗) if and only if the
point (x0, y0) does not belong to an open disc B

∗

2 of radius 2v/|u∗| centered at the point (x∗, y∗)
defined by

(x∗, y∗) =
(

xf +
v

u∗
sin(ϕf ) +

v

u∗
sin(ϕ0), yf −

v

u∗
cos(ϕf )−

v

u∗
cos(ϕ0)

)

.

Corollary 8. If the point (xf , yf ) does not belong to the open disc B2, then solutions to equa-
tions (3.39) and (3.41) exist. In this case, system (3.36) will have solution (3.44).

Next, we turn to the question of the uniqueness of the time-optimal control.

Proposition 8. Let W3 be the set of all feasible vectors of boundary conditions for controls of
the type (u∗, 0,−u∗). For any w ∈ W3, the time-optimal control of the type (u∗, 0,−u∗) is unique.

P r o o f is similar to that of Proposition 2. �

Finally, we study the dependence of the movement time on the initial and terminal conditions.

Proposition 9. Let W3 be the set of all feasible vectors of boundary conditions for controls of
the type (u∗, 0,−u∗), and let T opt

3 be a function that assigns to each w = (x0, y0, ϕ0, xf , yf , ϕf ) in
W3 the minimum time required to transfer system (2.1) from the initial state (x0, y0, ϕ0) to one of
the terminal states {(xf , yf , ϕf +2πk) | k ∈ Z} by a control of the type (u∗, 0,−u∗). If w∗ is a point
of discontinuity of T opt

3 , then at least one of the following conditions holds at w∗:
1. ∆t1 = 0;
2. ∆t3 = 0.

P r o o f is similar to that of Proposition 3. �
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5. Example

As an example, we will demonstrate how the properties of solutions deduced in Section 4 can
reduce the computational effort required to solve the time-optimal control problem of the Dubins
car. This issue was previously addressed in [17] for scenarios where the starting and ending points
are far apart. However, the results from Section 4 are applicable to any configuration of the points.

Suppose that

x0 = 0, y0 = 0, ϕ0 = π/2, xf = 3, yf = 0, ϕf = 3π/2, um = 1, v = 1,

and it is desired to find a control that transfers system (2.1) from the initial state (x0, y0, ϕ0) to
one of the terminal states {(xf , yf , ϕf + 2πk) | k ∈ Z} in minimum time.

To solve this problem, we must find the values of ∆t1, ∆t2, and ∆t3 for controls of the types
(1,−1, 1), (−1, 1,−1), (1, 0, 1), (−1, 0,−1), (1, 0,−1), (−1, 0, 1) using the corresponding formulas
from Section 3, and then choose the one of these controls that transfers system (2.1) from the initial
state to the terminal state in minimum time. Observe that Propositions 1 and 7 allow us to rule
out some cases. Namely, we can exclude controls of the type (1,−1, 1) since the point (3, 0) does
not belong to a closed disc of radius 4 centered at (−2, 0). Let us calculate the values of ∆t1, ∆t2,
and ∆t3 for the remaining types of controls. Calculations for controls of the type (−1, 1,−1) will
be carried out taking into account Remark 2. The results of these calculations are given in Table 1,
where T = ∆t1 +∆t2 +∆t3.

Table 1. Time intervals for different control types.

Control types ∆t1 ∆t2 ∆t3 T

(−1, 1,−1) 4.46 5.78 4.46 14.7
(1, 0, 1) 4.71 5.0 4.71 14.42

(−1, 0,−1) 1.57 1.0 1.57 4.14
(1, 0,−1) 5.44 2.24 2.3 9.98
(−1, 0, 1) 2.3 2.24 5.44 9.98

Comparing the total movement times T of each type of control, we see that the time-optimal
control is a control of the type (−1, 0,−1). Figure 1 shows the trajectory of the vehicle in the
xy-plane, generated by this control. The arrow indicates the direction of the movement.

X

Y

0

1

1

ϕ0 = π/2 ϕf = 3π/2

Figure 1. The optimal trajectory of the vehicle in the xy-plane.
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6. Conclusion

In this paper, we have developed several fundamental properties for each type of controls in
the time-optimal control problem of the Dubins car. The necessary and sufficient conditions for
the existence of solutions determine the shape of the regions in the plane to which the vehicle
can be driven by a control of the corresponding type. Since the regions are circular in shape,
checking whether points belong to these regions can be done quite simply, and so this reduces the
computational effort in solving the Dubins car control problem.
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