AUTOMORPHISMS OF DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY {25, 16, 1; 1, 8, 25} 1

Konstantin S. Efimov

Ural Federal University, Ekaterinburg, Russia, Ural State University of Economics, Ekaterinburg, Russia konstantin.s.efimov@gmail.com

Alexander A. Makhnev

N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Ekaterinburg, Russia, Ural Federal University, Ekaterinburg, Russia makhnev@imm.uran.ru

Abstract: Makhnev and Samoilenko have found parameters of strongly regular graphs with no more than 1000 vertices, which may be neighborhoods of vertices in antipodal distance-regular graph of diameter 3 and with $\lambda = \mu$. They proposed the program of investigation vertex-symmetric antipodal distance-regular graphs of diameter 3 with $\lambda = \mu$, in which neighborhoods of vertices are strongly regular. In this paper we consider neighborhoods of vertices with parameters (25, 8, 3, 2).

Key words: Strongly regular graph, Distance-regular graph.

Introduction

We consider undirected graphs without loops and multiple edges. Given a vertex a in a graph Γ , we denote by $\Gamma_i(a)$ the subgraph induced by Γ on the set of all vertices, that are at the distance i from a. The subgraph $[a] = \Gamma_1(a)$ is called the *neighborhood of the vertex* a. Let $\Gamma(a) = \Gamma_1(a)$, $a^{\perp} = \{a\} \cup \Gamma(a)$. If graph Γ is fixed, then instead of $\Gamma(a)$ we write [a]. For the set of vertices X of graph Γ through X^{\perp} denote $\bigcap_{x \in X} x^{\perp}$.

Let Γ be an antipodal distance-regular graph of diameter 3 and $\lambda = \mu$, in which neighborhoods of vertices are strongly-regular graphs. Then Γ has intersection array $\{k, \mu(r-1), 1; 1, \mu, k\}$, and spectrum $k^1, \sqrt{k}^f, -1^k, -\sqrt{k}^f$, where f = (k+1)(r-1)/2. In the case r = 2 we obtain Taylor's graph, in which $k' = 2\mu'$. Conversely, for any strongly regular graph with parameters $(v', 2\mu', \lambda', \mu')$ there exists a Taylor's graph, in which neighborhoods of vertices are strongly regular with relevant parameters.

In [1]there were chosen strongly-regular graphs with no more than 1000 vertices, which may be neighborhoods of vertices of antipodal distance-regular graph of diameter 3 and $\lambda = \mu$. There is provided a research program of the study of vertex-symmetric antipodal distance-regular graphs of diameter 3 with $\lambda = \mu$, in which neighborhoods of vertices are strongly regular with parameters from Proposition 1.

Proposition 1. Let Δ be a strongly-regular graph with parameters (v, k, λ, μ) . If (r-1)k = v-k-1, $v \leq 1000$ and number (v+1)(r-1) is even, then either r = 2, or parameters (v, k, λ, μ, r) belong to the following list:

¹This work is partially supported by RSF, project 14-11-00061-P (Theorem 1) and by the program of the government support of leading universities of Russian Federation, agreement 02.A03.21.0006 from 27.08.2013 (Corollary 1).

- $\begin{array}{l} (3) \ (400,57,20,6,7), \ (400,133,48,42,3), \ (441,40,19,2,11), \ (441,88,7,20,5), \ (441,110,19,30,4), \\ (484,161,48,56,3), \ (495,38,1,3,13), \ (505,84,3,16,6), \ (507,46,5,4,11), \ (512,73,12,10,7), \\ (529,44,21,2,12), \ (529,66,23,6,8), \ (529,88,27,12,6), \ (529,132,41,30,4), \ (529,176,63,56,3), \\ (540,49,8,4,11), \ (576,115,18,24,5); \end{array}$
- (4) (625, 48, 23, 2, 13), (625, 156, 29, 42, 4), (625, 208, 63, 72, 3), (640, 71, 6, 8, 9), (649, 72, 15, 7, 9),(676, 75, 26, 6, 9),(649, 216, 63, 76, 3),(676, 135, 14, 30, 5),(704, 37, 0, 2, 19),(729, 52, 25, 2, 14),(729, 104, 31, 12, 7),(729, 182, 55, 42, 4),(736, 105, 20, 14, 7),(768, 59, 10, 4, 13), (784, 261, 80, 90, 3);(5) (837, 76, 15, 6, 11),(841, 56, 27, 2, 15),(841, 84, 29, 6, 10),(841, 140, 39, 20, 6),(847, 94, 21, 9, 9),(841, 168, 47, 30, 5),(841, 210, 41, 56, 4),(841, 280, 99, 90, 3),

Graphs with local subgraphs having parameters (64, 21, 8, 6), (81, 16, 7, 2), (85, 14, 3, 2) and (99, 14, 1, 2) were investigated in [2], [3], [4] and [5]. In this article we investigate parameters (25, 8, 3, 2, 3), i.e. this graph is locally 5×5 -grid. In [6] it is proved that distance-regular locally 5×5 -grid of diameter more then 2 is either isomorphic to the Johnson's graph J(10, 5) or has an intersection array $\{25, 16, 1; 1, 8, 25\}$.

Theorem 1. Let Γ be a distance-regular graph with intersection array $\{25, 16, 1; 1, 8, 25\}$, $G = \operatorname{Aut}(\Gamma)$, g is an element of prime order p in G and $\Omega = \operatorname{Fix}(g)$ contains exactly s vertices in t antipodal classes. Then $\pi(G) \subseteq \{2, 3, 5, 13\}$ and one of the following assertions holds:

(1) Ω is empty graph and $p \in \{2, 3, 13\}$;

(2) $p = 5, t = 1, \alpha_3(g) = 0, \alpha_1(g) = 50l + 25 \text{ and } \alpha_2(g) = 50 - 50l;$

(3) p = 3, s = 3, t = 2, 5, 8, $\alpha_3(g) = 0$, $\alpha_1(g) = 30l + 16 - 11t$ and $\alpha_2(g) = 62 - 30l + 8t$;

(4) p = 2, and either s = 1, Ω is t-clique, t = 2, 4, 6, $\alpha_3(g) = 2t$, $\alpha_1(g) = 20l - t + 6$ and $\alpha_2(g) = 72 - 20l - 2t$, or s = 3, $t \le 8$, t is even, $\alpha_3(g) = 0$, $\alpha_1(g) = 20l - 11t + 6$ and $\alpha_2(g) = 72 - 20l + 8t$.

Corollary 1. Let Γ be a distance-regular graph with intersection array $\{25, 16, 1; 1, 8, 25\}$ and a group $G = \operatorname{Aut}(\Gamma)$ acts transitively on the set of vertices of Γ . Then one of the following assertions holds:

(1) Γ is a Cayley graph, G is the a Frobenius group with the kernel of order 13 and with the complement of order 6;

(2) Γ is a arc-transitive Maton's graph and the socle of G is isomorphic to $L_2(25)$;

(3) G is an extension of a group Q of order 2^{12} by the group $T = L_3(3)$, $|Q:Q_{\{F\}}| = 2$, $T_{\{F\}}$ is an extension of group E_9 by $SL_2(3)$, T acts irreducibly on Q and for an element f of order 13 in G we have $C_Q(f) = 1$.

1. Proof of the Theorem

Note that there is Delsarte boundary (proposition 4.4.6 from [7]) of maximum order of clique in distance-regular graph with intersection array $\{25, 16, 1; 1, 8, 25\}$ and spectrum $25^1, 5^{26}, -1^{25}, -5^{26}$ no more than $1 - k/\theta_d = 1 + 25/5 = 6$. If C is 6-clique in Γ , then each vertex not in C is adjacent to 0 or to $b_1/(\theta_d + 1) + 1 - k/\theta_d = 2$ vertices in C.

Lemma 1. Let Γ be a distance-regular graph with intersection array $\{25, 16, 1; 1, 8, 25\}$, $G = \operatorname{Aut}(\Gamma)$ and $g \in G$. If ψ is the monomial representation of a group G in $GL(78, \mathbb{C})$, χ_1 is the character of the representation ψ on subspace of eigenvectors of dimension 26, corresponding to the eigenvalue 5, χ_2 is the character of the representation ψ on subspace of dimension 25, then $\chi_1(g) = (10\alpha_0(g) + 2\alpha_1(g) - \alpha_2(g) - 5\alpha_3(g))/30$, $\chi_2(g) = (\alpha_0(g) + \alpha_3(g))/3 - 1$. If |g| = p is prime, then $\chi_1(g) - 26$ and $\chi_2(g) - 25$ are divided by p.

Proof. We have

$$Q = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 26 & 26/5 & -13/5 & -13 \\ 25 & -1 & -1 & 25 \\ 26 & -26/5 & 13/5 & -13 \end{pmatrix}.$$

Therefore $\chi_1(g) = (10\alpha_0(g) + 2\alpha_1(g) - \alpha_2(g) - 5\alpha_3(g))/30$. Substituting $\alpha_2(g) = 78 - \alpha_0(g) - \alpha_1(g) - \alpha_3(g)$, we obtain $\chi_1(g) = (11\alpha_0(g) + 3\alpha_1(g) - 4\alpha_3(g))/30 - 13/5$.

Similarly, $\chi_2(g) = (25\alpha_0(g) - \alpha_1(g) - \alpha_2(g) + 25\alpha_3(g))/78$. Substituting $\alpha_1(g) + \alpha_2(g) = 78 - \alpha_0(g) - \alpha_3(g)$, we obtain $\chi_2(g) = (\alpha_0(g) + \alpha_3(g))/3 - 1$.

The remaining assertions follow from Lemma 1 in [8]. The proof is complete.

Let further in the paper Γ be a distance-regular graph with intersection array $\{25, 16, 1; 1, 8, 25\}$, $G = \operatorname{Aut}(\Gamma)$, g is an element of prime order p in G and $\Omega = \operatorname{Fix}(g)$.

Lemma 2. If Ω is an empty graph, then either p = 13, $\alpha_1(g) = 26$ and $\alpha_2(g) = 52$, or p = 3, $\alpha_3(g) = 9s + 6$, s < 8, $\alpha_1(g) = 54 + 12s - 30l$ and $\alpha_2(g) = 18 - 21s + 30l$, $l \le 5$, or p = 2, $\alpha_3(g) = 0$, $\alpha_1(g) = 20l + 6$ and $\alpha_2(g) = 72 - 20l$, $l \le 3$.

P r o o f. Let Ω be an empty graph and $\alpha_i(g) = pw_i$ for i > 0. Since v = 78, we have $p \in \{2, 3, 13\}$.

Let p = 13. Then $\alpha_3(g) = 0$, $\alpha_1(g) + \alpha_2(g) = 78$ and $\chi_1(g) = (2\alpha_1(g) - \alpha_2(g))/30 = 13(w_1 - 2)/10$. This implies $\alpha_1(g) = 26$ and $\alpha_2(g) = 52$.

Let p = 3. Then $\chi_2(g) - 25 = \alpha_3(g)/3 - 26$ is divided by 3, $\alpha_3(g) = 9s + 6$, $s \le 8$ and $\alpha_2(g) = 72 - 9s - \alpha_1(g)$. Furthermore, the number $\chi_1(g) = (2\alpha_1(g) - \alpha_2(g) - 45s - 30)/30 = (3w_1 - 12s - 34)/10$ is congruent to 2 modulo 3. This implies $\alpha_1(g) = 54 + 12s - 30l$ and $\alpha_2(g) = 18 - 21s + 30l$, $l \le 5$. In case s = 8 we have $\alpha_3(g) = 78$ and $\langle g \rangle$ acts regularly on each antipodal class. By lemma 4 in [9] 3 must divide k + 1 = 26, we have a contradiction.

Let p = 2. Then $\alpha_3(g) = 0$, $\alpha_1(g) + \alpha_2(g) = 78$, the number $\chi_1(g) = (\alpha_1(g) - 26)/10$ is even, $\alpha_1(g) = 20l + 6$ and $\alpha_2(g) = 72 - 20l$, $l \leq 3$.

In Lemmas 3–6 it is assumed that there are t antipodal classes intersecting the Ω on s vertices. Then p divides 26 - t and 3 - s. Let F be an antipodal class, containing the vertex $a \in \Omega$, $F \cap \Omega = \{a, a_2, ..., a_s\}, b \in \Omega(a)$. By F(x) we denote an antipodal class containing vertex x.

Lemma 3. The following assertions hold:

(1) if t = 1, then p = 5, $\alpha_3(g) = 0$, $\alpha_1(g) = 50l + 25$ and $\alpha_2(g) = 50 - 50l$;

(2) if p more than 3, then p = 5 and t = 1;

(3) if s = 1, then p = 2, t = 2, 4, 6, $\alpha_3(g) = 2t$, $\alpha_1(g) = 20l - t + 6$ and $\alpha_2(g) = 72 - 20l - 2t$.

P r o o f. If s = 3, then each vertex from $\Gamma - \Omega$ is adjacent to t vertices in Ω , so $t \leq 8$.

Let t = 1. As p divides 26 - t, then p = 5, s = 3, $\alpha_2(g) = 75 - \alpha_1(g)$, the number $\chi_1(g) = (\alpha_1(g) - 15)/10$ is congruent to 1 modulo 5. This implies $\alpha_1(g) = 50l + 25$.

Let p > 3, $\alpha_1(g) = pw_1$. Then s = 3, $|\Omega| = 3t$, Ω is a regular graph by degree t - 1 and p divides 26 - t.

If p > 7, then Ω is a distance-regular graph with intersection array $\{t - 1, 16, 1; 1, 8, t - 1\}$, we come to a contradiction.

Let p = 7. As p divides 26 - t, then t = 5, the subgraph $\Omega(b)$ contains 2 vertices in a^{\perp} and a vertex from $[a_2]$ and from $[a_3]$, so Ω is a distance-regular graph with intersection array $\{4, 1, 1; 1, 1, 4\}$, it is a contradiction with the fact that r = 3.

Let p = 5. As p divides 26 - t, then t = 1, 6. If t = 6, then the subgraph $\Omega(b)$ contains a vertex in a^{\perp} , 3 vertices from $[a_2]$ and 3 vertices from $[a_3]$, we come to a contradiction.

Let s = 1. Then $p = 2, t \le 6, \alpha_3(g) = 2t, \alpha_2(g) = 78 - \alpha_1(g) - 3t$, and $\chi_1(g) = (\alpha_1(g) + t - 26)/10$ is even. This implies that $\alpha_1(g) = 20l - t + 6$.

Lemma 4. If p = 3, then s = 3, t = 2, 5, 8, $\alpha_3(g) = 0$, $\alpha_1(g) = 30l + 16 - 11t$ and $\alpha_2(g) = 62 - 30l + 8t$.

P r o o f. Let p = 3. Then s = 3, t = 2, 5, 8, $\alpha_2(g) = 78 - \alpha_1(g) - 3t$, and the number $\chi_1(g) = (11t + \alpha_1(g) - 26)/10$ is congruent to 2 modulo 3. This implies that $\alpha_1(g) = 30l + 16 - 11t$. In the case t = 2 graph Ω is a union of 3 isolated edges.

Lemma 5. If p = 2, s = 3, then t is even, $t \le 8$, $\alpha_3(g) = 0$, $\alpha_1(g) = 20l - 11t + 6$ and $\alpha_2(g) = 72 - 20l + 8t$.

P r o o f. Let p = 2, s = 3. Then t is even, $t \le 8$, $\alpha_3(g) = 0$, $\alpha_2(g) = 78 - 3t - \alpha_1(g)$. The number $\chi_1(g) = (11t + \alpha_1(g) - 26)/10$ is even, so $\alpha_1(g) = 20l - 11t + 6$.

Lemmas 2–5 imply the proof of the Theorem.

2. Proof of Corollary

Let the group G acts transitively on the set of vertices of the graph Γ . Then for a vertex $a \in \Gamma$ subgroup $H = G_a$ has index 78 in G. By Theorem we have $\{2, 3, 13\} \subseteq \pi(G) \subseteq \{2, 3, 5, 13\}$.

Lemma 6. Let f be an element of order 13 in G. Then Fix(f) is an empty graph, $\alpha_1(f) = 26$ and the following assertions hold:

(1) if g is an element of prime order $p \neq 13$ in $C_G(f)$, then p = 2, Ω is an empty graph, $\alpha_1(g) = 26$ and $|C_G(f)|$ is not divided by 4;

(2) either |G| = 78 or $F(G) = O_2(G)$;

(3) if G is nonsolvable group, then the socle \overline{T} of the group $\overline{G} = G/F(G)$ is isomorphic to $L_2(25), L_3(3), U_3(4), L_4(3)$ or ${}^2F_4(2)'$.

P r o o f. By Lemma 2 Fix(f) is an empty graph and $\alpha_1(f) = 26$.

Suppose that g is an element of prime order $p \neq 13$ in $C_G(f)$. As f acts without fixed points on Ω then by Theorem Ω is an empty graph, p = 2 and $\alpha_1(g) = 20l + 6$ divided by 13. This implies that $\alpha_1(g) = 26$ and $|C_G(f)|$ is not divided by 4.

Let $Q = O_p(G) \neq 1$. If p = 13, then |G| divides $26 \cdot 12$. In this case $C_G(f) = \langle f \rangle$, otherwise for an involution g of $C_G(f)$ we obtain a contradiction with the action of element of order 3 of G on $\{u \mid d(u, u^g) = 1\}$. Let the involution g inverts f, h is an element of order 3 in $C_G(g)$. From action h on $\{u \mid d(u, u^g) = 1\}$ it follows that $\alpha_1(g) = 20l + 6$ is divided by 3. In each case $\alpha_1(g)$ is not divided by 4 and |G| = 78.

If p = 3, then Q fixes some antipodal class. This implies that Q fixes each antipodal class. By Lemma 3 in [9] G does not contain subgroups of order 3, which are regular on each antipodal class, we come to a contradiction. So, if $|G| \neq 78$ we have $F(G) = O_2(G)$.

Let \overline{T} be the socle of the group $\overline{G} = G/F(G)$. Note that 13 divides $|\overline{T}|$ and by Theorem 1 in [10] group \overline{T} is isomorphic to $L_2(25)$, $L_3(3)$, $U_3(4)$, $L_4(3)$, ${}^2F_4(2)'$.

Let us to prove the Corollary. As \overline{T} contains a subgroup of index dividing 26, then the group \overline{T} is isomorphic to $L_2(25)$ (and $\overline{T}_{\{F\}}$ is the extension of a group of order 25 by group of order 12) or $L_3(3)$ (and $\overline{T}_{\{F\}}$ is the extension of a group of order 9 by SL(2,3)).

In the first case F(G) fixes each antipodal class and F(G) = 1. This implies that Γ is the arc-transitiv Maton's graph.

In the second case for Q = F(G) we have $|Q: Q_{\{F\}}| = 2$ and \overline{T} acts irreducibly on Q. Further, for the element f of order 13 of G by Lemma 6 the number $|C_Q(f)|$ divides 2. As Q is either 12-dimensional module over F_2 , or 16-dimensional module over F_{16} , or 26-dimensional module over F_2 , then $|Q| = 2^{12}$ and $C_Q(f) = 1$. The Corollary is proved.

3. Conclusion

We found possible automorphisms of a distance regular graph with intersection array {25, 16, 1; 1, 8, 25}. This completes the research program of vertex-symmetric antipodal distance-regular graphs of diameter 3 with $\lambda = \mu$, in which neighborhoods of vertices are strongly regular with parameters from Proposition 1.

REFERENCES

- Makhnev A.A., Samoilenko M.S. Automorphisms of distance-regular graph with intersection array {121, 100, 1; 1, 20, 121} // Proc. of the 47-th International Youth School-conference, Ekaterinburg, Russia, 2016, P. S21–S25.
- Isakova M.M., Makhnev A.A., Tokbaeva A.A. Automorphisms of distance-regular graph with intersection array {64, 42, 1; 1, 21, 64} // Intern. Conf. on applied Math. and Physics. Abstracts. Nalchik, 2017. P. 245–246.
- 3. Belousov I.N. On automorphisms of distance-regular graph with intersection array {81, 64, 1; 1, 16, 81} // Proceedings of Intern. Russian Chinese Conf., 2015, Nalchik. P. 31–32.
- 4. Makhnev A.A., Isakova M.M., Tokbaeva A.A. On graphs, in which neighbourhoods of vertices are strongly regular with parameters (85,14,1,2) or (325,54,3,10) // Trudy IMM UrO RAN, 2016. Vol. 22, no. 3, P. 137–143.
- Ageev P.S., Makhnev A.A. On automorphisms of distance-regular graphs with intersection array {99,84,1;1,14,99} // Doklady Mathematics, 2014. Vol. 90, no. 2, P. 525–528. DOI: 10.1134/S1064562414060015
- Makhnev A.A., Paduchikh D.V. Distance-regular graphs, in which neighbourhoods of vertices are strongly regular with the second eigenvalue at most 3 // Doklady Mathematics, 2015. Vol. 92, no. 2. P. 568–571. DOI: 10.1134/S1064562415050191

- Brouwer A.E., Cohen A.M., Neumaier A. Distance-Regular Graphs. New York: Springer-Verlag, 1989. 495 p. DOI: 10.1007/978-3-642-74341-2
- Gavrilyuk A.L., Makhnev A.A. On automorphisms of distance-regular graph with the intersection array {56, 45, 1; 1, 9, 56} // Doklady Mathematics, 2010. Vol. 81, no. 3. P. 439–442. DOI: 10.1134/S1064562410030282
- 9. Makhnev A.A., Paduchikh D.V., Tsiovkina L.Y. Arc-transitive distance-regular covers of cliques with $\lambda = \mu$ // Proc. Steklov Inst. Math., 2014. Vol. 284, suppl. 1, P. S124–S134. DOI: 10.1134/S0081543814020114
- 10. Zavarnitsin A.V. Finite simple groups with narrow prime spectrum // Siberian Electr. Math. Izv., 2009. Vol. 6. P. 1–12.