AUTOMORPHISMS OF DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY $\{25,16,1 ; 1,8,25\}^{1}$

Konstantin S. Efimov
Ural Federal University, Ekaterinburg, Russia, Ural State University of Economics, Ekaterinburg, Russia
konstantin.s.efimov@gmail.com

Alexander A. Makhnev
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Ekaterinburg, Russia, Ural Federal University, Ekaterinburg, Russia
makhnev@imm.uran.ru

Abstract

Makhnev and Samoilenko have found parameters of strongly regular graphs with no more than 1000 vertices, which may be neighborhoods of vertices in antipodal distance-regular graph of diameter 3 and with $\lambda=\mu$. They proposed the program of investigation vertex-symmetric antipodal distance-regular graphs of diameter 3 with $\lambda=\mu$, in which neighborhoods of vertices are strongly regular. In this paper we consider neighborhoods of vertices with parameters ($25,8,3,2$).

Key words: Strongly regular graph, Distance-regular graph.

Introduction

We consider undirected graphs without loops and multiple edges. Given a vertex a in a graph Γ, we denote by $\Gamma_{i}(a)$ the subgraph induced by Γ on the set of all vertices, that are at the distance i from a. The subgraph $[a]=\Gamma_{1}(a)$ is called the neighborhood of the vertex a. Let $\Gamma(a)=\Gamma_{1}(a)$, $a^{\perp}=\{a\} \cup \Gamma(a)$. If graph Γ is fixed, then instead of $\Gamma(a)$ we write [a]. For the set of vertices X of graph Γ through X^{\perp} denote $\cap_{x \in X} x^{\perp}$.

Let Γ be an antipodal distance-regular graph of diameter 3 and $\lambda=\mu$, in which neighborhoods of vertices are strongly-regular graphs. Then Γ has intersection array $\{k, \mu(r-1), 1 ; 1, \mu, k\}$, and spectrum $k^{1}, \sqrt{k}^{f},-1^{k},-\sqrt{k}^{f}$, where $f=(k+1)(r-1) / 2$. In the case $r=2$ we obtain Taylor's graph, in which $k^{\prime}=2 \mu^{\prime}$. Conversely, for any strongly regular graph with parameters ($v^{\prime}, 2 \mu^{\prime}, \lambda^{\prime}, \mu^{\prime}$) there exists a Taylor's graph, in which neighborhoods of vertices are strongly regular with relevant parameters.

In [1]there were chosen strongly-regular graphs with no more than 1000 vertices, which may be neighborhoods of vertices of antipodal distance-regular graph of diameter 3 and $\lambda=\mu$. There is provided a research program of the study of vertex-symmetric antipodal distance-regular graphs of diameter 3 with $\lambda=\mu$, in which neighborhoods of vertices are strongly regular with parameters from Proposition 1.

Proposition 1. Let Δ be a strongly-regular graph with parameters (v, k, λ, μ). If $(r-1) k=$ $v-k-1, v \leq 1000$ and number $(v+1)(r-1)$ is even, then either $r=2$, or parameters (v, k, λ, μ, r) belong to the following list:

[^0](1) $(16,5,0,2,3), \quad(25,8,3,2,3), \quad(49,12,5,2,4), \quad(64,21,8,6,3), \quad(81,16,7,2,5)$, $(81,20,1,6,4), \quad(85,14,3,2,6), \quad(99,14,1,2,7), \quad(100,33,8,12,3), \quad(121,20,9,2,6)$, $(121,30,11,6,4),(121,40,15,12,3),(126,25,8,4,5),(133,44,15,14,3),(169,24,11,2,7)$, $(169,42,5,12,4),(169,56,15,20,3),(176,25,0,4,7),(196,39,14,6,5),(196,65,24,20,3)$;
(2) $(225,28,13,2,8),(225,56,19,12,4),(243,22,1,2,11),(256,51,2,12,5),(256,85,24,30,3)$, $(261,52,11,10,5),(288,41,4,6,7),(289,32,15,2,9),(289,48,17,6,6),(289,72,11,20,4)$, $(289,96,35,30,3),(305,76,27,16,4),(325,54,3,10,6),(351,50,13,6,7),(351,70,13,14,5)$, $(352,39,6,4,9),(361,36,17,2,10),(361,72,23,12,5),(361,90,29,20,4),(361,120,35,42,3)$;
(3) $(400,57,20,6,7),(400,133,48,42,3),(441,40,19,2,11),(441,88,7,20,5),(441,110,19,30,4)$, $(484,161,48,56,3),(495,38,1,3,13),(505,84,3,16,6),(507,46,5,4,11),(512,73,12,10,7)$, $(529,44,21,2,12),(529,66,23,6,8),(529,88,27,12,6),(529,132,41,30,4),(529,176,63,56,3)$, (540, 49, 8, 4, 11), ($576,115,18,24,5$);
(4) $(625,48,23,2,13),(625,156,29,42,4),(625,208,63,72,3),(640,71,6,8,9),(649,72,15,7,9)$, $(649,216,63,76,3), \quad(676,75,26,6,9), \quad(676,135,14,30,5), \quad(704,37,0,2,19)$, $(729,52,25,2,14), \quad(729,104,31,12,7), \quad(729,182,55,42,4), \quad(736,105,20,14,7)$, $(768,59,10,4,13),(784,261,80,90,3)$;
(5) $(837,76,15,6,11), \quad(841,56,27,2,15)$, (841, 168, 47, 30, 5), ($848,121,24,16,7$), (961, 160, 9, 30, 6), (841, 210, 41, 56, 4), (901, 60, 3, 4, 15), ($1000,111,14,12,9)$.
(841, 84, 29, 6, 10), (841, 280, 99, 90, 3), ($961,60,29,2,16$), (961, 240, 71, 56, 4),
(841, 140, 39, 20, 6), (847, 94, 21, 9, 9),
(961, 120, 35, 12, 8), (961, 320, 99, 100, 3), $(961,192,23,42,5)$,
ए-x

Graphs with local subgraphs having parameters $(64,21,8,6),(81,16,7,2),(85,14,3,2)$ and $(99,14,1,2)$ were investigated in [2], [3], [4] and [5]. In this article we investigate parameters $(25,8,3,2,3)$, i.e. this graph is locally 5×5-grid. In [6] it is proved that distance-regular locally 5×5-grid of diameter more then 2 is either isomorphic to the Johnson's graph $J(10,5)$ or has an intersection array $\{25,16,1 ; 1,8,25\}$.

Theorem 1. Let Γ be a distance-regular graph with intersection array $\{25,16,1 ; 1,8,25\}, G=$ $\operatorname{Aut}(\Gamma), g$ is an element of prime order p in G and $\Omega=\operatorname{Fix}(g)$ contains exactly s vertices in t antipodal classes. Then $\pi(G) \subseteq\{2,3,5,13\}$ and one of the following assertions holds:
(1) Ω is empty graph and $p \in\{2,3,13\}$;
(2) $p=5, t=1, \alpha_{3}(g)=0, \alpha_{1}(g)=50 l+25$ and $\alpha_{2}(g)=50-50 l$;
(3) $p=3, s=3, t=2,5,8, \alpha_{3}(g)=0, \alpha_{1}(g)=30 l+16-11 t$ and $\alpha_{2}(g)=62-30 l+8 t$;
(4) $p=2$, and either $s=1, \Omega$ is t-clique, $t=2,4,6, \alpha_{3}(g)=2 t, \alpha_{1}(g)=20 l-t+6$ and $\alpha_{2}(g)=72-20 l-2 t$, or $s=3, t \leq 8, t$ is even, $\alpha_{3}(g)=0, \alpha_{1}(g)=20 l-11 t+6$ and $\alpha_{2}(g)=72-20 l+8 t$.

Corollary 1. Let Γ be a distance-regular graph with intersection array $\{25,16,1 ; 1,8,25\}$ and a group $G=\operatorname{Aut}(\Gamma)$ acts transitively on the set of vertices of Γ. Then one of the following assertions holds:
(1) Γ is a Cayley graph, G is the a Frobenius group with the kernel of order 13 and with the complement of order 6 ;
(2) Γ is a arc-transitive Maton's graph and the socle of G is isomorphic to $L_{2}(25)$;
(3) G is an extension of a group Q of order 2^{12} by the group $T=L_{3}(3),\left|Q: Q_{\{F\}}\right|=2, T_{\{F\}}$ is an extension of group E_{9} by $S L_{2}(3), T$ acts irreducibly on Q and for an element f of order 13 in G we have $C_{Q}(f)=1$.

1. Proof of the Theorem

Note that there is Delsarte boundary (proposition 4.4.6 from [7]) of maximum order of clique in distance-regular graph with intersection array $\{25,16,1 ; 1,8,25\}$ and spectrum $25^{1}, 5^{26},-1^{25},-5^{26}$ no more than $1-k / \theta_{d}=1+25 / 5=6$. If C is 6 -clique in Γ, then each vertex not in C is adjacent to 0 or to $b_{1} /\left(\theta_{d}+1\right)+1-k / \theta_{d}=2$ vertices in C.

Lemma 1. Let Γ be a distance-regular graph with intersection array $\{25,16,1 ; 1,8,25\}, G=$ $\operatorname{Aut}(\Gamma)$ and $g \in G$. If ψ is the monomial representation of a group G in $G L(78, \mathbf{C})$, χ_{1} is the character of the representation ψ on subspace of eigenvectors of dimension 26, corresponding to the eigenvalue $5, \chi_{2}$ is the character of the representation ψ on subspace of dimension 25 , then $\chi_{1}(g)=\left(10 \alpha_{0}(g)+2 \alpha_{1}(g)-\alpha_{2}(g)-5 \alpha_{3}(g)\right) / 30, \chi_{2}(g)=\left(\alpha_{0}(g)+\alpha_{3}(g)\right) / 3-1$. If $|g|=p$ is prime, then $\chi_{1}(g)-26$ and $\chi_{2}(g)-25$ are divided by p.

Proof. We have

$$
Q=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
26 & 26 / 5 & -13 / 5 & -13 \\
25 & -1 & -1 & 25 \\
26 & -26 / 5 & 13 / 5 & -13
\end{array}\right)
$$

Therefore $\chi_{1}(g)=\left(10 \alpha_{0}(g)+2 \alpha_{1}(g)-\alpha_{2}(g)-5 \alpha_{3}(g)\right) / 30$. Substituting $\alpha_{2}(g)=78-\alpha_{0}(g)-$ $\alpha_{1}(g)-\alpha_{3}(g)$, we obtain $\chi_{1}(g)=\left(11 \alpha_{0}(g)+3 \alpha_{1}(g)-4 \alpha_{3}(g)\right) / 30-13 / 5$.

Similarly, $\chi_{2}(g)=\left(25 \alpha_{0}(g)-\alpha_{1}(g)-\alpha_{2}(g)+25 \alpha_{3}(g)\right) / 78$. Substituting $\alpha_{1}(g)+\alpha_{2}(g)=$ $78-\alpha_{0}(g)-\alpha_{3}(g)$, we obtain $\chi_{2}(g)=\left(\alpha_{0}(g)+\alpha_{3}(g)\right) / 3-1$.

The remaining assertions follow from Lemma 1 in [8]. The proof is complete.
Let further in the paper Γ be a distance-regular graph with intersection array $\{25,16,1 ; 1,8,25\}$, $G=\operatorname{Aut}(\Gamma), g$ is an element of prime order p in G and $\Omega=\operatorname{Fix}(g)$.

Lemma 2. If Ω is an empty graph, then either $p=13, \alpha_{1}(g)=26$ and $\alpha_{2}(g)=52$, or $p=3$, $\alpha_{3}(g)=9 s+6, s<8, \alpha_{1}(g)=54+12 s-30 l$ and $\alpha_{2}(g)=18-21 s+30 l, l \leq 5$, or $p=2, \alpha_{3}(g)=0$, $\alpha_{1}(g)=20 l+6$ and $\alpha_{2}(g)=72-20 l, l \leq 3$.

Proof. Let Ω be an empty graph and $\alpha_{i}(g)=p w_{i}$ for $i>0$. Since $v=78$, we have $p \in\{2,3,13\}$.

Let $p=13$. Then $\alpha_{3}(g)=0, \alpha_{1}(g)+\alpha_{2}(g)=78$ and $\chi_{1}(g)=\left(2 \alpha_{1}(g)-\alpha_{2}(g)\right) / 30=13\left(w_{1}-\right.$ $2) / 10$. This implies $\alpha_{1}(g)=26$ and $\alpha_{2}(g)=52$.

Let $p=3$. Then $\chi_{2}(g)-25=\alpha_{3}(g) / 3-26$ is divided by $3, \alpha_{3}(g)=9 s+6, s \leq 8$ and $\alpha_{2}(g)=72-$ $9 s-\alpha_{1}(g)$. Furthermore, the number $\chi_{1}(g)=\left(2 \alpha_{1}(g)-\alpha_{2}(g)-45 s-30\right) / 30=\left(3 w_{1}-12 s-34\right) / 10$ is congruent to 2 modulo 3 . This implies $\alpha_{1}(g)=54+12 s-30 l$ and $\alpha_{2}(g)=18-21 s+30 l, l \leq 5$. In case $s=8$ we have $\alpha_{3}(g)=78$ and $\langle g\rangle$ acts regularly on each antipodal class. By lemma 4 in [9] 3 must divide $k+1=26$, we have a contradiction.

Let $p=2$. Then $\alpha_{3}(g)=0, \alpha_{1}(g)+\alpha_{2}(g)=78$, the number $\chi_{1}(g)=\left(\alpha_{1}(g)-26\right) / 10$ is even, $\alpha_{1}(g)=20 l+6$ and $\alpha_{2}(g)=72-20 l, l \leq 3$.

In Lemmas 3-6 it is assumed that there are t antipodal classes intersecting the Ω on s vertices. Then p divides $26-t$ and $3-s$. Let F be an antipodal class, containing the vertex $a \in \Omega$, $F \cap \Omega=\left\{a, a_{2}, \ldots, a_{s}\right\}, b \in \Omega(a)$. By $F(x)$ we denote an antipodal class containing vertex x.

Lemma 3. The following assertions hold:
(1) if $t=1$, then $p=5, \alpha_{3}(g)=0, \alpha_{1}(g)=50 l+25$ and $\alpha_{2}(g)=50-50 l$;
(2) if p more than 3 , then $p=5$ and $t=1$;
(3) if $s=1$, then $p=2, t=2,4,6, \alpha_{3}(g)=2 t, \alpha_{1}(g)=20 l-t+6$ and $\alpha_{2}(g)=72-20 l-2 t$.

Proof. If $s=3$, then each vertex from $\Gamma-\Omega$ is adjacent to t vertices in Ω, so $t \leq 8$.
Let $t=1$. As p divides $26-t$, then $p=5, s=3, \alpha_{2}(g)=75-\alpha_{1}(g)$, the number $\chi_{1}(g)=$ $\left(\alpha_{1}(g)-15\right) / 10$ is congruent to 1 modulo 5 . This implies $\alpha_{1}(g)=50 l+25$.

Let $p>3, \alpha_{1}(g)=p w_{1}$. Then $s=3,|\Omega|=3 t, \Omega$ is a regular graph by degree $t-1$ and p divides $26-t$.

If $p>7$, then Ω is a distance-regular graph with intersection array $\{t-1,16,1 ; 1,8, t-1\}$, we come to a contradiction.

Let $p=7$. As p divides $26-t$, then $t=5$, the subgraph $\Omega(b)$ contains 2 vertices in a^{\perp} and a vertex from $\left[a_{2}\right]$ and from $\left[a_{3}\right]$, so Ω is a distance-regular graph with intersection array $\{4,1,1 ; 1,1,4\}$, it is a contradiction with the fact that $r=3$.

Let $p=5$. As p divides $26-t$, then $t=1,6$. If $t=6$, then the subgraph $\Omega(b)$ contains a vertex in $a^{\perp}, 3$ vertices from $\left[a_{2}\right]$ and 3 vertices from $\left[a_{3}\right]$, we come to a contradiction.

Let $s=1$. Then $p=2, t \leq 6, \alpha_{3}(g)=2 t, \alpha_{2}(g)=78-\alpha_{1}(g)-3 t$, and $\chi_{1}(g)=\left(\alpha_{1}(g)+t-26\right) / 10$ is even. This implies that $\alpha_{1}(g)=20 l-t+6$.

Lemma 4. If $p=3$, then $s=3, t=2,5,8, \alpha_{3}(g)=0, \alpha_{1}(g)=30 l+16-11 t$ and $\alpha_{2}(g)=$ $62-30 l+8 t$.

Proof. Let $p=3$. Then $s=3, t=2,5,8, \alpha_{2}(g)=78-\alpha_{1}(g)-3 t$, and the number $\chi_{1}(g)=\left(11 t+\alpha_{1}(g)-26\right) / 10$ is congruent to 2 modulo 3 . This implies that $\alpha_{1}(g)=30 l+16-11 t$. In the case $t=2$ graph Ω is a union of 3 isolated edges.

Lemma 5. If $p=2, s=3$, then t is even, $t \leq 8, \alpha_{3}(g)=0, \alpha_{1}(g)=20 l-11 t+6$ and $\alpha_{2}(g)=72-20 l+8 t$.

Proof. Let $p=2, s=3$. Then t is even, $t \leq 8, \alpha_{3}(g)=0, \alpha_{2}(g)=78-3 t-\alpha_{1}(g)$.
The number $\chi_{1}(g)=\left(11 t+\alpha_{1}(g)-26\right) / 10$ is even, so $\alpha_{1}(g)=20 l-11 t+6$.
Lemmas $2-5$ imply the proof of the Theorem.

2. Proof of Corollary

Let the group G acts transitively on the set of vertices of the graph Γ. Then for a vertex $a \in \Gamma$ subgroup $H=G_{a}$ has index 78 in G. By Theorem we have $\{2,3,13\} \subseteq \pi(G) \subseteq\{2,3,5,13\}$.

Lemma 6. Let f be an element of order 13 in G. Then $\operatorname{Fix}(f)$ is an empty graph, $\alpha_{1}(f)=26$ and the following assertions hold:
(1) if g is an element of prime order $p \neq 13$ in $C_{G}(f)$, then $p=2, \Omega$ is an empty graph, $\alpha_{1}(g)=26$ and $\left|C_{G}(f)\right|$ is not divided by 4;
(2) either $|G|=78$ or $F(G)=O_{2}(G)$;
(3) if G is nonsolvable group, then the socle \bar{T} of the group $\bar{G}=G / F(G)$ is isomorphic to $L_{2}(25), L_{3}(3), U_{3}(4), L_{4}(3)$ or ${ }^{2} F_{4}(2)^{\prime}$.

Proof. By Lemma 2 Fix (f) is an empty graph and $\alpha_{1}(f)=26$.
Suppose that g is an element of prime order $p \neq 13$ in $C_{G}(f)$. As f acts without fixed points on Ω then by Theorem Ω is an empty graph, $p=2$ and $\alpha_{1}(g)=20 l+6$ divided by 13 . This implies that $\alpha_{1}(g)=26$ and $\left|C_{G}(f)\right|$ is not divided by 4 .

Let $Q=O_{p}(G) \neq 1$. If $p=13$, then $|G|$ divides $26 \cdot 12$. In this case $C_{G}(f)=\langle f\rangle$, otherwise for an involution g of $C_{G}(f)$ we obtain a contradiction with the action of element of order 3 of G on $\left\{u \mid d\left(u, u^{g}\right)=1\right\}$. Let the involution g inverts f, h is an element of order 3 in $C_{G}(g)$. From action h on $\left\{u \mid d\left(u, u^{g}\right)=1\right\}$ it follows that $\alpha_{1}(g)=20 l+6$ is divided by 3 . In each case $\alpha_{1}(g)$ is not divided by 4 and $|G|=78$.

If $p=3$, then Q fixes some antipodal class. This implies that Q fixes each antipodal class. By Lemma 3 in [9] G does not contain subgroups of order 3, which are regular on each antipodal class, we come to a contradiction. So, if $|G| \neq 78$ we have $F(G)=O_{2}(G)$.

Let \bar{T} be the socle of the group $\bar{G}=G / F(G)$. Note that 13 divides $|\bar{T}|$ and by Theorem 1 in [10] group \bar{T} is isomorphic to $L_{2}(25), L_{3}(3), U_{3}(4), L_{4}(3),{ }^{2} F_{4}(2)^{\prime}$.

Let us to prove the Corollary. As \bar{T} contains a subgroup of index dividing 26 , then the group \bar{T} is isomorphic to $L_{2}(25)$ (and $\bar{T}_{\{F\}}$ is the extension of a group of order 25 by group of order 12) or $L_{3}(3)$ (and $\bar{T}_{\{F\}}$ is the extension of a group of order 9 by $S L(2,3)$).

In the first case $F(G)$ fixes each antipodal class and $F(G)=1$. This implies that Γ is the arc-transitiv Maton's graph.

In the second case for $Q=F(G)$ we have $\left|Q: Q_{\{F\}}\right|=2$ and \bar{T} acts irreducibly on Q. Further, for the element f of order 13 of G by Lemma 6 the number $\left|C_{Q}(f)\right|$ divides 2. As Q is either 12 -dimensional module over F_{2}, or 16 -dimensional module over F_{16}, or 26 -dimensional module over F_{2}, then $|Q|=2^{12}$ and $C_{Q}(f)=1$. The Corollary is proved.

3. Conclusion

We found possible automorphisms of a distance regular graph with intersection array $\{25,16,1 ; 1$, $8,25\}$. This completes the research program of vertex-symmetric antipodal distance-regular graphs of diameter 3 with $\lambda=\mu$, in which neighborhoods of vertices are strongly regular with parameters from Proposition 1.

REFERENCES

1. Makhnev A.A., Samoilenko M.S. Automorphisms of distance-regular graph with intersection array $\{121,100,1 ; 1,20,121\} / /$ Proc. of the 47 -th International Youth School-conference, Ekaterinburg, Russia, 2016, P. S21-S25.
2. Isakova M.M., Makhnev A.A., Tokbaeva A.A. Automorphisms of distance-regular graph with intersection array $\{64,42,1 ; 1,21,64\} / /$ Intern. Conf. on applied Math. and Physics. Abstracts. Nalchik, 2017. P. 245-246.
3. Belousov I.N. On automorphisms of distance-regular graph with intersection array $\{81,64,1 ; 1,16,81\}$ // Proceedings of Intern. Russian - Chinese Conf., 2015, Nalchik. P. 31-32.
4. Makhnev A.A., Isakova M.M., Tokbaeva A.A. On graphs, in which neighbourhoods of vertices are strongly regular with parameters ($85,14,1,2$) or $(325,54,3,10)$ // Trudy IMM UrO RAN, 2016. Vol. 22, no. 3, P. 137-143.
5. Ageev P.S., Makhnev A.A. On automorphisms of distance-regular graphs with intersection array $\{99,84,1 ; 1,14,99\}$ // Doklady Mathematics, 2014. Vol. 90, no. 2, P. 525-528. DOI: 10.1134/S1064562414060015
6. Makhnev A.A., Paduchikh D.V. Distance-regular graphs, in which neighbourhoods of vertices are strongly regular with the second eigenvalue at most 3 // Doklady Mathematics, 2015. Vol. 92, no. 2. P. 568-571. DOI: 10.1134/S1064562415050191
7. Brouwer A.E., Cohen A.M., Neumaier A. Distance-Regular Graphs. New York: Springer-Verlag, 1989. 495 p. DOI: 10.1007/978-3-642-74341-2
8. Gavrilyuk A.L., Makhnev A.A. On automorphisms of distance-regular graph with the intersection array $\{56,45,1 ; 1,9,56\}$ // Doklady Mathematics, 2010. Vol. 81, no. 3. P. 439-442. DOI: 10.1134/S1064562410030282
9. Makhnev A.A., Paduchikh D.V., Tsiovkina L.Y. Arc-transitive distance-regular covers of cliques with $\lambda=\mu / /$ Proc. Steklov Inst. Math., 2014. Vol. 284, suppl. 1, P. S124-S134. DOI: 10.1134/S0081543814020114
10. Zavarnitsin A.V. Finite simple groups with narrow prime spectrum // Siberian Electr. Math. Izv., 2009. Vol. 6. P. 1-12.

[^0]: ${ }^{1}$ This work is partially supported by RSF, project 14-11-00061-P (Theorem 1) and by the program of the government support of leading universities of Russian Federation, agreement 02.A03.21.0006 from 27.08.2013 (Corollary 1).

