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Abstract: We consider the control problem for a parabolic system that describes the heating of a given
number of rods. Control is carried out through heat sources that are located at the ends of the rods (only at
one end or at both). The density functions of the internal heat sources and exact values of the temperature
at the right ends of some rods are unknown, and only the segments of their change are given. The goal of
choosing control is to ensure that at a fixed time moment the weighted sum of the average temperatures of the
rods belongs to a non-convex terminal set for any admissible unknown functions. After a change of variables,
this problem reduces to a one-dimensional differential game. Necessary and sufficient conditions for the game
termination are found.
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1. Introduction

Mathematical modelling of controlled processes of thermal conductivity, diffusion, filtration
leads to problems of control of parabolic equations [2, 4, 8, 11, 13]. In applications, problems often
arise about heating a rod at the ends of which there are controlled heat sources. In a formalized
form, these problems are reduced to the study of the heat equation, the boundary conditions of
which depend on the control functions (see, for example, [1, 10]).

Control processes for real dynamic systems often occur in conditions where some of the system
parameters and boundary conditions are not precisely specified, and there is also influence from
uncontrolled disturbances [3, 5, 18, 19].

To study such problems, the method of optimization of guaranteed result [9] can be applied.
This method is based on the theory of differential games (see, for example, [12, 14]). Uncertainties
and disturbances affecting the system are taken as the second player – the opponent. In [12, 14]
control is constructed within the framework of the theory of positional differential games.

This article continues the research begun in [6, 15]. The work [15] considers the problem of
heating a rod by controlling the rate of temperature change at its left end. The temperature at the
right end of the rod is determined by an unknown function limited in value. The density function of
the internal heat sources of the rod is not precisely known, and only the boundaries of its possible
values are given. The goal of the control is to bring the average temperature of the rod at a fixed
time moment to a given segment for any unknown temperature at the right end of the rod and for
any function of the density of internal heat sources. The average temperature value is calculated as
the integral of the product of temperature and a given function. In [6] the problem of controlling a
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parabolic system describing the heating of a given number of rods using point heat sources located
at the ends of the rods is considered. The goal of choosing a control is to ensure that at a fixed
time moment the modulus of the linear function, determined using the average temperatures of the
rods, does not exceed a given value.

In this work, a modification of problems [6, 15] is solved. A finite set of desired temperature
values is given. The goal of the control is to bring the weighted sum of the average temperatures
of the rods into the ε–neighbourhood of one of the desired values. After changing variables, taking
unknown functions as a control of the second player, the original problem is reduced to a single-
type one-dimensional differential game. For the resulting differential game, a solvability set and
corresponding player controls are constructed.

2. Problem statement

The heat equation

∂Ti(x, t)

∂t
=
∂2Ti(x, t)

∂x2
+ fi(x, t), 0 ≤ t ≤ p, 0 ≤ x ≤ 1, i = 1, n, (2.1)

describes the temperature distribution Ti(x, t) in i-th (i = 1, n) homogeneous rod of unit length as a
function of time t. At the initial time moment t = 0, the temperature distributions Ti(x, 0) = gi(x),
i = 1, n, are given, where gi(x) are continuous functions.

We assume that the controlled temperature Ti(0, t) at the left end of i–th rod varies according
to equation

dTi(0, t)

dt
= a

(1)
i (t) + a

(2)
i (t)G

(1)
i ξ(t). (2.2)

Here, a
(ζ)
i (t), i = 1, n, ζ = 1, 2, are continuous functions for 0 ≤ t ≤ p, and a

(2)
i (t) > 0. The

vector-function ξ(t) = (ξ1(t), ξ2(t), . . . , ξq(t))
∗ ∈ U , where U is compact in R

q, is a control. The
symbol ∗ denotes the transposition operation. The choice of the corresponding one-dimensional

controls ξι(t) for the left end of each rod is given by the matrix G(1) of n by q dimension. G
(1)
i

denotes the i–th row of the corresponding matrix.

The temperature value Ti(1, t) at the right end of the i-th rod is given as follows:

1. Determined by ξ control

dTi(1, t)

dt
= b

(1)
i (t) + b

(2)
i (t)G

(2)
i ξ(t), i = 1, k. (2.3)

Here, the functions b
(1)
i (t) and b

(2)
i (t), i = 1, k, are continuous for 0 ≤ t ≤ p, and b

(2)
i (t) > 0.

The choice of the corresponding one-dimensional controls ξι(t) for the right end of the rods

with indices i = 1, k is given by the matrix G(2) of k by q dimension. G
(2)
i denotes the i–th

row of the corresponding matrix.

2. The temperature values Ti(1, t), i = k + 1, l, which depend continuously on the time t ∈ [0, p],
are not exactly known, but the limits of their change are given

β
(1)
i (t) ≤ Ti(1, t) ≤ β

(2)
i (t), 0 ≤ t ≤ p. (2.4)

Here β
(ζ)
i (t), i = k + 1, l, ζ = 1, 2, are continuous functions for 0 ≤ t ≤ p.

3. Ti(1, t), i = l + 1, n, are known continuous functions.
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In addition, we know estimates of the continuous functions fi(x, t), which are the densities of
internal heat sources of the rods:

f
(1)
i (x, t) ≤ fi(x, t) ≤ f

(2)
i (x, t), 0 ≤ t ≤ p, 0 ≤ x ≤ 1, i = 1, n. (2.5)

Here functions f
(ζ)
i (x, t), i = 1, n, ζ = 1, 2, are continuous.

Assumption 1. Each function fi : [0, 1] × [0, p] → R, i = 1, n, is such that for any numbers

0 ≤ τ < ν and for any continuous functions ̺
(ζ)
i : [τ, ν] → R, ζ = 1, 2, µi : [0, 1] → R such that the

matching condition ̺
(1)
i (τ) = µi(0), ̺

(2)
i (τ) = µi(1) is satisfied, the first boundary value problem

∂Qi(x, t)

∂t
=
∂2Qi(x, t)

∂x2
+ fi(x, t), (2.6)

Qi(0, t) = ̺
(1)
i (t), Qi(1, t) = ̺

(2)
i (t), τ ≤ t ≤ ν; (2.7)

Qi(x, τ) = µi(x), 0 ≤ x ≤ 1 (2.8)

has a unique solution Qi(x, t) continuous for 0 ≤ x ≤ 1, τ ≤ t ≤ ν.

Let numbers αs, s = 1, r, and ε ≥ 0 be such that αs+1 − αs = ∆ > 0, s = 1, r − 1 and ∆ > 2ε,
and vector λ = (λ1, . . . , λn)

∗ ∈ R
n such that λi > 0, i = 1, n, be given. The goal of choosing control

ξ(t) in (2.2), (2.3) is to implement the inclusion

n∑

i=1

λi

∫ 1

0
Ti(x, p)σi(x)dx ∈ Z(ε) =

⋃

s=1,r

[αs − ε, αs + ε] (2.9)

for any continuous functions Ti(1, t) (2.4), i = k + 1, l, and for any continuous functions
fi(x, t) (2.5), i = 1, n, satisfying Assumption 1.

Here continuous functions σi : [0, 1] → R, i = 1, n are given and satisfy the conditions

σi(0) = σi(1) = 0. (2.10)

3. Problem formalization

Let us describe an admissible rule for choosing control ξ(t). It means that for each time moment
0 ≤ ν < p and for each admissible temperature distribution

T (x, ν) = (T1(x, ν), T2(x, ν), . . . , Tn(x, ν))

at this time moment, a measurable vector-function ξ(t) such that ξ : [ν, p] → U is choosing. We
will denote such a rule as

ξ(t) = N(t, T (·, ν)), t ∈ [ν, p]. (3.1)

Fix a partition ω : 0 = t0 < t1 < . . . < tj < tj+1 < . . . < tm+1 = p of the segment [0, p] with
diameter

d(ω) = max
0≤j≤m

(tj+1 − tj).

Let the temperature distribution T
(ω)

(x, tj), 0 ≤ x ≤ 1 be realized at time moment tj , j = 0,m.

Denote ξ
(j)

(t) = N(t, T
(ω)

(·, tj)), t ∈ [tj , p]. Let continuous functions (2.4) Ti(1, t) = ̺
(2)
i (t) for

tj ≤ t ≤ tj+1, i = k + 1, l, for which ̺
(2)
i (tj) = T

(ω)
i (1, tj), and continuous functions fi(x, t) (2.5),

i = 1, n, for tj ≤ t ≤ tj+1, 0 ≤ x ≤ 1, be realized.
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We denote by T
(ω)
i (x, t) for 0 ≤ x ≤ 1, tj ≤ t ≤ tj+1 the solution Qi(x, t) of the problem

(2.6)–(2.8) for τ = tj, ν = tj+1 and for the following initial and boundary conditions:

βi(x) = T
(ω)
i (x, tj), x ∈ [0, 1]; (3.2)

Qi(0, t) = T
(ω)
i (0, tj) +

∫ t

tj

(a
(1)
i (r) + a

(2)
i (r)G

(1)
i ξ

(j)
(r))dr, t ∈ [tj, tj+1]; (3.3)

Qi(1, t) = T
(ω)
i (1, tj) +

∫ t

tj

(b
(1)
i (r) + b

(2)
i (r)G

(2)
i ξ

(j)
(r))dr, i = 1, k, (3.4)

Qi(1, t) = Ti(1, t), i = k + 1, n, t ∈ [tj , tj+1]. (3.5)

Definition 1. We say that control of the form (3.1) guarantees the fulfilment of the stated

goal (2.9), if for any number γ ∈ (ε,∆/2) there exists a number δ > 0 such that for any parti-

tion ω with diameter d(ω) < δ, for any continuous functions fi(x, t) (2.5), i = 1, n, that satisfy

Assumption 1, and for any continuous functions Ti(1, t) (2.4), i = k + 1, l, the inclusion

n∑

i=1

λi

∫ 1

0
T
(ω)
i (x, p)σi(x)dx ∈ Z(γ) =

⋃

s=1,r

[αs − γ, αs + γ] (3.6)

holds.

Note that when inequality γ < ∆/2 is satisfied, segments [αs − γ, αs + γ], s = 1, r, do not
intersect.

4. Reduction to a one-dimensional problem

Let us denote by ψi(x, τ) for 0 ≤ x ≤ 1, 0 ≤ τ ≤ p solutions of the following first boundary
value problems

∂ψi(x, τ)

∂τ
=
∂2ψi(x, τ)

∂x2
, ψi(x, 0) = σi(x), ψi(0, τ) = ψi(1, τ) = 0, i = 1, n. (4.1)

Equality (2.6) implies that the matching conditions at the ends of the segment in problems (2.9)
are satisfied.

Using the conditions (2.4), it can be shown that [15]

{∫ 1

0
fi(x, t)ψi(x, p − t)dx : f

(1)
i (x, t) ≤ fi(x, t) ≤ f

(2)
i (x, t)

}
=

= {c
(1)
i (t) + c

(2)
i (t)si(t) : |si(t)| ≤ 1}, i = 1, n,

(4.2)

where

c
(1)
i (t) =

1

2

∫ 1

0
(f

(1)
i (x, t) + f

(2)
i (x, t))ψi(x, p − t)dx,

c
(2)
i (t) =

1

2

∫ 1

0
(f

(2)
i (x, t) − f

(1)
i (x, t))|ψi(x, p − t)|dx.

Note that the functions c
(1)
i (t) and c

(2)
i (t), i = 1, n, are continuous for 0 ≤ t ≤ p and c

(2)
i (t) ≥ 0.

The inequalities (2.4) imply

{Ti(1, t)} =

{
β
(1)
i (t) + β

(2)
i (t)

2
+
β
(2)
i (t)− β

(1)
i (t)

2
η̂i(t) : |η̂i(t)| ≤ 1

}
(4.3)
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for i = k + 1, l.
Introduce new variables

yi(t) =

∫ 1

0
Ti(x, t)ψi(x, p− t)dx+ Ti(0, t)

∫ p

t

∂ψi(0, p − r)

∂x
dr+

+

∫ p

t

(
a
(1)
i (τ)

∫ p

τ

∂ψi(0, p − r)

∂x
dr +c

(1)
i (τ)

)
dτ − θi(t), i = 1, n,

(4.4)

where

θi(t) = Ti(1, t)

∫ p

t

∂ψi(1, p − r)

∂x
dr +

∫ p

t

b
(1)
i (τ)

∫ p

τ

∂ψi(1, p − r)

∂x
drdτ, i = 1, k,

θi(t) =

∫ p

t

(
β
(1)
i (τ) + β

(2)
i (τ)

2

∂ψi(1, p − τ)

∂x

)
dτ, i = k + 1, l,

θi(t) =

∫ p

t

(
Ti(1, τ)

∂ψi(1, p − τ)

∂x

)
dτ, i = l + 1, n.

We fix a partition ω of the segment [0, p] and a control (3.1). Let us substitute the realized

functions T
(ω)
i (x, t), i = 1, n, into formula (4.4). Further, taking into account formulas (2.1),

(3.2)–(3.5) and (4.1)–(4.3), we obtain

ẏ
(ω)
i (t) =

(
a
(2)
i (t)

∫ p

t

∂ψi(0, p − r)

∂x
dr

)
G

(1)
i ξ

(j)
(t)−

−

(
b
(2)
i (t)

∫ p

t

∂ψi(1, p − r)

∂x
dr

)
G

(2)
i ξ

(j)
(t) + c

(2)
i (t)si(t), i = 1, k,

(4.5)

ẏ
(ω)
i (t) =

(
a
(2)
i (t)

∫ p

t

∂ψi(0, p − r)

∂x
dr

)
G

(1)
i ξ

(j)
(t)−

−

(
β
(2)
i (t)− β

(1)
i (t)

2

∂ψi(1, p − t)

∂x

)
η̂i(t) + c

(2)
i (t)si(t), i = k + 1, l,

(4.6)

ẏ
(ω)
i (t) =

(
a
(2)
i (t)

∫ p

t

∂ψi(0, p − r)

∂x
dr

)
G

(1)
i ξ

(j)
(t) + c

(2)
i (t)si(t), i = l + 1, n. (4.7)

Next, we rewrite (4.5)–(4.7) in the matrix form

ẏ
(ω)

(t) = −A(t)ξ
(j)

(t) +B(t)η(t), ξ
(j)

(t) ∈ U, η(t) ∈ Π(n). (4.8)

Here

y(ω)(t) =
(
y
(ω)
1 (t), y

(ω)
2 (t), . . . , y(ω)n (t)

)∗
;

Π(n) = {s = (s1, s2, . . . , sn)
∗ ∈ R

n : |si| ≤ 1, i = 1, n};

Ai(t) = −

(
a
(2)
i (t)

∫ p

t

∂ψi(0, p − r)

∂x
dr

)
G

(1)
i +

(
b
(2)
i (t)

∫ p

t

∂ψi(1, p − r)

∂x
dr

)
G

(2)
i

for i = 1, k,

Ai(t) = −

(
a
(2)
i (t)

∫ p

t

∂ψi(0, p − r)

∂x
dr

)
G

(1)
i , for i = k + 1, n;

B(t) = diag

{
c
(2)
1 (t), . . . , c

(2)
k (t), c

(2)
k+1(t) +

β
(2)
k+1(t)− β

(1)
k+1(t)

2

∣∣∣∂ψk+1(1, p − t)

∂x

∣∣∣,

. . . , c
(2)
l (t) +

β
(2)
l (t)− β

(1)
l (t)

2

∣∣∂ψl(1, p − t)

∂x

∣∣∣, c(2)l+1(t), . . . , c
(2)
n (t)

}
.
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Denote by 〈·, ·〉 the operation of the scalar product of two vectors. Define

a−(t) = min
ξ∈U

〈λ,A(t)ξ〉, a+(t) = max
ξ∈U

〈λ,A(t)ξ〉, b(t) = max
η∈Π(n)

〈λ,B(t)η〉.

Note that these functions are continuous.
Then the connectedness of the compact sets U , Π(n) and the symmetry of Π(n) imply

〈λ,A(t)ξ〉 =
1

2
(a+(t) + a−(t)) + a(t)u, |u| ≤ 1, a(t) =

1

2
(a+(t)− a−(t)) ≥ 0; (4.9)

〈λ,B(t)η〉 = b(t)v, |v| ≤ 1. (4.10)

We introduce a new one-dimensional variable

z = 〈λ, y〉. (4.11)

Taking into account (4.11), we obtain a polygonal line z(ω)(t), which satisfies the equality

z(ω)(p) =

n∑

i=1

λi

∫ 1

0
T
(ω)
i (x, p)σi(x)dx.

It follows that inclusion (2.9) takes the form

z(ω)(p) ∈ Z(γ). (4.12)

Differentiate z, taking into account formulas (4.8)–(4.10). Taking the uncertain function v as a
control of the second player, we obtain the following one-dimensional differential game

ż(ω)(t) = −a(t)u+ b(t)v, |u| ≤ 1, |v| ≤ 1, z(p) ∈ Z(ε). (4.13)

5. Termination conditions

Define function

g(t) =

∫ p

t

(a(r)− b(r))dr

for t ≤ p and denote

q1(ε) = inf
{
t < p : ε+ g(τ) < ∆− ε− g(τ) for all t < τ ≤ p

}
,

q2(ε) = inf
{
t < p : 0 ≤ ε+ g(τ) for all t < τ ≤ p

}
,

q3(ε) = inf
{
t < p : α1 − ε− g(τ) ≤ αr + ε+ g(τ) for all t < τ ≤ p

}
.

Let us define the set W (t, ε) for t ≤ p as follows:

W (t, ε) =





⋃
s=1,r

[αs − ε− g(t), αs + ε+ g(t)] for max (q1(ε), q2(ε)) ≤ t ≤ p,

[α1 − ε− g(t), αr + ε+ g(t)] for q3(ε) ≤ t < q1(ε), q2(ε) < q1(ε),

∅ for max (t, q1(ε)) < q2(ε) or t < q3(ε).

(5.1)

Here ∅ denotes the empty set.

Theorem 1. Let the initial temperature distributions Ti(x, 0) = gi(x) be such that the inclusion

z(0) ∈W (0, ε) (5.2)

holds. Then there exists a control ξ that guarantees the fulfillment of the stated goal (2.9) for any

unknown functions (2.4), (2.5).
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P r o o f. Case 1. Let max(q1(ε), q2(ε)) ≤ 0 ≤ p. Then, according to (5.1), inclusion (5.2)
implies conditions

−g(τ) ≤ ε for all 0 < τ ≤ p, z(0) ∈ [αs − ε− g(0), αs + ε+ g(0)] (5.3)

for some s ∈ 1, r.
Let’s make a change of variable z∗ = z − αs and rewrite (5.3) as follows

F (z∗(0)) ≤ ε, (5.4)

where

F (z) = max

(
|z| − g(0),− min

0≤τ≤p
g(τ)

)
.

Define ξ0(t) = N(t, T (·, τ)), t ∈ [τ, p] as the solution of problem

〈λ,A(t)ξ(t)〉sign z∗(t) → max
ξ(t)∈U

.

Here and henceforth sign 0 = 1.
Next, taking into account (4.9), we substitute the control ξ0(t) into (4.13) with z = z∗. We get

that
ż
(ω)
∗ (t) = −a(t)sign z∗(tj) + b(t)v(t), |v(t)| ≤ 1. (5.5)

Here v(t) satisfies the conditions: |v(t)| ≤ 1 if b(t) = 0, and

v(t) =
〈λ,B(t)η(t)〉

b(t)
for b(t) > 0.

Each measurable function v : [0, p] → [−1, 1] with z
(ω)
∗ (0) = z∗(0) defines a polygonal line

z
(ω)
∗ (t) satisfying equation (5.5). The family of these polygonal lines defined on the interval [0, p] is
uniformly bounded and equicontinuous [16, p. 46]. According to Arzel’s theorem [7, p. 104] from
any sequence of these polygonal lines we can select a subsequence uniformly converging on the
segment [0, p]. The limit function z∗(t) satisfies [16, Theorem 8.1] the inequality

|z∗(p)| ≤ F (z∗(0)). (5.6)

Fix a number γ ∈ (ε,∆/2). Let us show that there exists a number δ > 0 such that inclu-
sion (4.12) holds for any polygonal line z(ω)(t) with partition diameter d(ω) < δ.

Indeed, let us assume the opposite. Then there exists a sequence of polygonal lines z(ωk)(t)
with diameters d(ωk) → 0 such that z(ωk)(p) /∈ Z(γ) or what is the same

|z(ωk)(p)− αs| > γ

for all s ∈ 1, r. We can assume that the functions z(ωk)(t) converge on the segment [0, p] uniformly
to the function z(t) (otherwise we move on to a subsequence). Then

|z(p)− αs| ≥ γ

for all s ∈ 1, r. This inequality contradicts inequalities (5.4) and (5.6).

Case 2. Let q3(ε) ≤ 0 < q1(ε), q2(ε) < q1(ε). Then, according to (5.1), inclusion (5.2) implies
conditions

α1 − ε− g(τ) ≤ αr + ε+ g(τ) for all 0 < τ ≤ p, z(0) ∈
[
α1 − ε− g(0), αr + ε+ g(0)

]
. (5.7)
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Define ξ
0
(t) = N(t, T (·, τ)), t ∈ [τ, p] as the solution of problem

〈λ,A(t)ξ(t)〉sign(z(t)− 0.5(α1 + αr)) → max
ξ(t)∈U

.

Taking into account (4.9), we substitute the control ξ0(t) into (4.13)

Next, reasoning by analogy with case 1 of the proof and relying on the results of work [17], it
can be shown that when conditions (5.7) are satisfied, the limit function z(t) satisfies the inclusion

z(q1(ε)) ∈
[
α1 − ε− g(q1(ε)), αr + ε+ g(q1(ε))

]
.

According to the definition of q1(ε), equality

[
α1 − ε− g(q1(ε)), αr + ε+ g(q1(ε))

]
=

⋃

s=1,r

[
αs − ε− g(q1(ε)), αs + ε+ g(q1(ε))

]

holds, and, therefore,

z(q1(ε)) ∈
[
αs − ε− g(q1(ε)), αs + ε+ g(q1(ε))

]
(5.8)

holds for some s ∈ 1, r.

Since q2(ε) < q1(ε), then inequality −g(τ) ≤ ε holds for all q1(ε) < τ ≤ p. From here and from
(5.8) we fall into the condition of case 1.

�

Now we consider the case when function

η∗(t) = sign(z(ω)(tj)− 0.5(α1 + αr))(1, 1, . . . , 1)
∗

is realized in (4.8) for tj < t < tj+1.

Taking (4.10) into account, let us substitute this function η∗(t) into (4.13). We get that

ż(ω)(t) = −a(t)uj(t) + b(t) sign (z(ω)(tj)− 0.5(α1 + αr)), (5.9)

where

a(t)uj(t) = 〈λ,A(t)ξ
(j)

(t)〉.

Choosing arbitrary measurable functions ξ(j)(t) ∈ U and solving equation (5.9) with
z(ω)(0) = z(0), we obtain a family of polygonal lines z(ω)(t).

Theorem 2. Let at least one of the following inequalities be satisfied:

z(0) < α1 − γ − g(0), αr + γ + g(0) < z(0), 0 < q3(γ). (5.10)

Then there exists a number δ > 0 such that z(ω)(p) /∈ Z(γ) for any polygonal line z(ω)(t) (5.9) with
partition diameter d(ω) < δ.

P r o o f. Let’s assume the opposite. Let’s take a sequence of numbers δk → 0. Then there
exists a sequence of polygonal lines z(ωk)(t) with diameter d(ωk) < δk and z(ωk)(t) ∈ Z(γ). The
family of polygonal lines (5.9) with z(ω)(0) = z(0) satisfies the conditions of Arzela’s theorem.
Passing, if necessary, to a subsequence, we can assume that the sequence of polygonal lines z(ωk)(t)
converges to z(t) uniformly.
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Let’s make a change of variables

z̃ = z − 0.5(α1 + αr)

and rewrite conditions (5.10) in the following form:

|z̃(0)| > γ + g(0) + 0.5(αr − α1) or γ + 0.5(αr − α1) + min
0≤τ≤p

g(τ) < 0.

Hence,

0 ≤ γ < F (z̃(0)) − 0.5(αr − α1). (5.11)

On the other hand, the limit function satisfies the inequality |z̃(p)| ≥ F (z̃(0)) [16, Theorem 8.2].
From this and from (5.11) we obtain that

|z̃(ωk)(p)| > γ + 0.5(αr − α1)

for any sufficiently large number k. After a reverse change of variables, we obtain one of the
inequalities

z(ωk)(p) < α1 − γ or z(ωk)(p) > αr + γ.

Thus, we get a contradiction.

�

Next, consider the case when the function

η∗(t) = −sign
(
z(ω)(tj)− 0.5(αs + αs+1)

)
(1, 1, . . . , 1)∗

is realized in (4.8) for tj < t < tj+1. Here, number s ∈ 1, r − 1 can be calculated as the solution of
the minimization problem

min
s∈1,r−1

|z(0) − 0.5(αs + αs+1)|.

Taking (4.10) into account, let us substitute this function η∗(t) into (4.13). We obtain

ż(ω)(t) = −a(t)uj(t)− b(t) sign (z(ω)(tj)− 0.5(αs + αs+1)). (5.12)

Further, we define a family of polygonal lines z(ω)(t) for equation (5.12) by analogy with (5.9).

Theorem 3. Let the following inequalities be satisfied:

αs + γ + g(0) < z(0) < αs+1 − γ − g(0), q1(γ) < 0. (5.13)

Then there exists a number δ > 0 such that z(ω)(p) /∈ Z(γ) for any polygonal line z(ω)(t) (5.12)
with partition diameter d(ω) < δ.

P r o o f. Let’s assume the opposite. By analogy with the proof of Theorem 2, we construct a
sequence of polygonal lines z(ωk)(t) that converges to z(t) uniformly.

Let’s introduce the variable

ẑ = z − 0.5(αs + αs+1)

and write inequalities (5.13) as follows:

|ẑ(0)| < 0.5∆ − γ − g(0), 0 < 0.5∆ − γ − max
0≤τ≤p

g(τ).
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From here we obtain

G(ẑ(0)) = max

{
|ẑ(0)| −

∫ p

0
(b(r)− a(r))dr,− min

0≤τ≤p

∫ p

τ

(b(r)− a(r))dr

}
< 0.5∆ − γ (5.14)

On the other hand, applying [16, Theorem 8.1] from the point of view of the second player
(in variables ẑ the roles of the players change, and the second player becomes the pursuer), we
obtain that the limit function satisfies the inequality |ẑ(p)| ≤ G(ẑ(0)). From this and from (5.14)
we obtain that

|ẑ(ωk)(p)| < 0.5∆ − γ

for all sufficiently large numbers k. After a reverse change of variables, we obtain the inequalities

αs + γ < z(ωk)(p) < αs+1 − γ.

Thus, we get a contradiction. �

Remark 1. Let q3(γ) ≤ 0 < q1(γ) < q2(γ). Let’s substitute an arbitrary function v(t, z)
(|v(t, z)| ≤ 1) into (4.13) and, by analogy with the proof of Theorem 2, define z(t) as the uniform
limit of a sequence of polygonal lines. Then there exists a time moment t∗ ∈ (q1(γ), q2(γ)) such
that γ + g(τ) < 0 for all τ ∈ [t∗, q2(γ)). Then one of the following conditions is satisfied:

αs + γ + g(t∗) < z(t∗) < αs+1 − γ − g(t∗) for some s ∈ 1, r − 1;

z(t∗) < α1 − γ − g(t∗); αr + γ + g(t∗) < z(t∗).

From here we find ourselves in the conditions of Theorem 2 or 3 with the initial time moment t∗.

Corollary 1. Theorems 1, 2, 3 and Remark 1 imply that the set W (0, ε) determines the nec-

essary and sufficient termination conditions in the differential game (4.13).

6. Conclusion

This paper considers the problem of controlling a parabolic system that describes the heating
of a given number of rods, with a non-convex one-dimensional terminal set, which is defined as the
union of a finite number of disjoint segments of equal length. Necessary and sufficient conditions
have been found under which there exists a control (3.1) that guarantees the achievement of the
stated goal (2.9) for all continuous functions (2.4) and for all density functions of internal heat
sources (2.5) that satisfy the Assumption 1.

In the future, it is planned to consider a version of this problem with an arbitrary n-dimensional
non-convex terminal set. This will require the development of approximate algorithms for solving
differential games: constructing a solvability set and restoring the corresponding control ξ.
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