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Abstract: A control system can be treated as a mapping that maps a control to a trajectory (output)
of the system. From this point of view, the reachable set, which consists of the ends of all trajectories at a
given time, can be considered an image of the set of admissible controls into the state space under a nonlinear
mapping. The paper discusses some properties of such abstract reachable sets. The principal attention is paid
to the description of the set boundary.
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1. Introduction

The paper explores the issue of describing the boundary of the reachable set of a nonlinear
control system. A reachable set consists of all state vectors that can be reached along trajectories
generated by admissible controls. For a system with geometric (point-wise) constraints, it is known
that control steering the trajectory to the boundary of the set satisfies Pontryagin’s maximum
principle [13, 16]. Many algorithms for computing reachable sets are established based on solving
optimal control problems and (or) use of the maximum principle [2, 5, 12, 14, 17]. For systems
with integral constraints, some properties of reachable sets and algorithms for their construction
are given in [6, 7, 15].

For integral quadratic constraints, it was shown in [8, 10] that any admissible control leading to
the reachable set boundary provides a local extremum in some optimal control problem. Therefore,
this control satisfies the maximum principle. This result was generalized in [11] for several mixed
integral constraints in which the integrands depend on both control and state variables. In [9]
(see, also [1]), we proposed to consider the reachability problem in terms of nonlinear mappings
of Banach spaces. With this approach, the reachable set is treated as the image of the set of all
admissible controls under the action of a nonlinear mapping. In the present paper, we extend
the results of [9] to a broader class of abstract control systems. These systems are determined by
differentiable maps of Banach spaces with different types of constraints on controls. The paper
weakens the conditions of [9], which makes it possible to consider the problem with constraints
specified by nonsmooth functionals. The use of nonsmooth analysis constructions allowed us to
consider problems with multiple constraints within the framework of a unified scheme.

2. Single constraint control systems

Let us consider the system

ẋ(t) = f1(t, x(t)) + f2(t, x(t))u(t), x(t0) = x0, u(·) ∈ U, (2.1)
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on a time interval [t0, t1]. Here, x(t) ∈ R
n, u(t) ∈ R

r, and U is a given set in the space Lp, p > 1.
Functions f2 : Rn+1 → R

n×r are considered to have continuous Fréchet derivatives in x and
satisfying the conditions:

‖f1(t, x)‖ ≤ l1(t)(1 + ‖x‖), ‖f2(t, x)‖n×r ≤ l2(t), t0 ≤ t ≤ t1, x ∈ R
n.

Here, l1(·) ∈ L1 and l2(·) ∈ L2, where L1 and L2 denote the spaces of summable and square
summable functions, respectively.

For any u(·) ∈ L1, there is a unique absolutely continuous solution x(t, u(·)) to system (2.1)
such that x(t0) = x0.

A reachable set G(t1) of system (2.1) at time t1 under the constraint u(·) ∈ U ⊂ L1 is defined
as follows:

G(t1) =
{

y ∈ R
n : y = x(t1, u(·)), u(·) ∈ U

}

.

This definition of a reachable set fits into the framework of the following abstract construction.
Let X and Y be real Banach spaces, and let U ⊂ X be a given set. We will call a map F : U → Y
an abstract control system. Here, u ∈ U is called a control and the set U is called a constraint.
The reachable set G of this system is

G =
{

y ∈ Y : y = F (u), u ∈ U
}

.

Thus, G = F (U) is an image of the set U under the mapping F .
Further, we set

U =
{

u ∈ X : ϕ(u) ≤ µ
}

,

so U is a level set of a continuous function ϕ : X → R; µ > 0 is a given number. In control problems
for system (2.1), one can take X = Lp, p > 1, including p = ∞, as the space X and Y = R

n.
The mapping F in this case is determined as

F (u) = F (u(·)) = x(t1, u(·)). (2.2)

With standard requirements on system (2.1) (see, for example, [10]), F (u(·)) is a single-valued
mapping having a continuous Fréchet derivative F ′(u(·)) : L2 → R

n:

F ′
u(u(·))∆u(·) = ∆x(t1).

Here, ∆x(t) is a solution to system (2.1) linearized around (x(t, u(·)), u(t)),

∆̇x(t) = A(t)∆x(t) +B(t)∆u(t), ∆x(t0) = 0,

A(t) =
∂f1
∂x

(t, x(t)) +
∂

∂x

[

f2(t, x(t))u(t)
]

, B(t) = f2(t, x(t)),
(2.3)

corresponding to the control ∆u(t). If system (2.3) is controllable on [t0, t1], then ImF ′(u(·)) = R
n.

Let us consider the geometric constraints on controls that are standard for control theory:

u(t) ∈ Ω, a.e. t ∈ [t0, t1].

In many cases, the set Ω can be represented as

Ω = {v ∈ R
r : ‖Qv‖ ≤ 1},

where Q is a matrix and ‖ · ‖ is some norm in R
m. It is clear that we can take here X = L∞ and

ϕ(u(·)) = ess sup
t0≤t≤t1

‖Qu(t)‖.
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Such a functional is obviously continuous in the space L∞.

Another example of control constraints is an integral constraint. In this case, X = Lp, p > 1,
and

ϕ(u(·)) =

∫ t1

t0

‖u(t)‖p dt.

We call the joint constraints on both control and state variables of the form

ϕ(u(·)) :=

∫ t1

t0

(

Q(t, x(t)) + u⊤(t)R(t, x(t))u(t)
)

dt ≤ µ, u(·) ∈ L2,

the isoperimetric constraints.

Let BX(x, r) and BY (y, r) be the balls of radius r centered at x ∈ X and y ∈ Y , respectively.
Further analysis is based on a well-known Lyusternik’s theorem.

Theorem 1 [4, Theorem 2]. Let a mapping F from a Banach space X to a Banach space Y
be continuously Fréchet differentiable at a point û and such that ImF ′(û) = Y . Then there are a
neighborhood V of the point û and a number s > 0 such that, for any BX(u, r) ⊂ V,

BY (F (u), sr) ⊂ F (BX(u, r)).

The condition ImF ′(û) = Y is called the Lyusternik (regularity) condition. If this condition is
met, F is said to be regular at the point û.

Using this theorem we get the following statement.

Theorem 2. Let W be some neighborhood of the set U, let F : W → Y be a mapping con-
tinuously Fréchet differentiable at a point û ∈ U, and let ImF ′(û) = Y. To x̂ = F (û) ∈ ∂G, it is
necessary that û be a local extremum in the problem

ϕ(u) → min, F (u) = x̂, (2.4)

and ϕ(û) = µ.

P r o o f. The proof is by contradiction. Assume that ϕ(û) < µ. Since ϕ(u) is continuous at the
point û, there is a neighborhood V1 of û such that ϕ(u) < µ ∀u ∈ V1. Let us choose a neighborhood
V and a number s whose existence follows from Theorem 1. Then, for any ball BX(û, r) ∈ V

⋂

V1,
we have

BX(û, r) ⊂ U,

BY (x̂, sr) = BY (F (û), sr) ⊂ F (BX(û, r)) ⊂ F (U) = G,

which contradicts the condition x̂ ∈ ∂G. Hence, ϕ(û) = µ.

Let us again choose V and s from Theorem 1. Assume that û is not a local minimum in (2.4).
Then there is ū ∈ V such that F (ū) = x̂ and ϕ(ū) < ϕ(û) = µ. Let us choose r > 0 such that
BX(ū, r) ⊂ V . Then, by Theorem 1,

BY (x̂, sr) = BY (F (ū), sr) ⊂ F (BX(ū, r)) ⊂ F (U) = G

contrary to the condition x̂ ∈ ∂G. This completes the proof. �
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Let us write down the necessary extremum condition for problem (2.4), assuming that ϕ(u) is
continuously differentiable at û. Since the constraint F (u) = x̂ is regular at the point û, there is a
Lagrange multiplier y∗ ∈ Y ∗ such that

ϕ′(û) + F ′∗(û)y∗ = 0. (2.5)

Here, F ′∗(û) denotes the operator conjugate to the continuous linear operator F ′(û).

If ϕ′(û) 6= 0, then equality (2.5) implies that y∗ 6= 0. If we divide both sides of equality (2.5)
by ‖y∗‖, then it takes the form

F ′∗(û)y∗ + λϕ′(û) = 0, (2.6)

where ‖y∗‖ = 1 and λ > 0. Since ϕ(û)− µ = 0, we also have the equality

λ(ϕ(û)− µ) = 0. (2.7)

It is easy to see that relations (2.6) and (2.7) also give the necessary optimality conditions for
the problem

〈y∗, F (u)〉 → min, ϕ(u) ≤ µ, (2.8)

where 〈·, ·〉 denotes a bilinear form establishing the duality of the spaces Y and Y ∗. Here, equal-
ity (2.6) means that the derivative of the Lagrange function

L(u, λ) = 〈y∗, F (u)〉 + λ(ϕ(u) − µ)

in u is equal to zero, and equality (2.7) is a complementary slackness condition. Thus, the following
statement is true.

Theorem 3. Assume that F (û) = x̂ ∈ ∂G, u ∈ U, F (u) is regular, and ϕ(u) is continuously
differential at the point û and ϕ(û) 6= 0. Then, there is y∗ ∈ Y ∗, ‖y∗‖ = 1, such that û satisfies the
necessary extremum conditions (2.6) and (2.7) in problem (2.8).

As it is easy to see, problem (2.8) can be rewritten in the equivalent form

〈z∗, y〉 → max, y ∈ G.

where z∗ = −y∗. The latter is the problem of calculating the support function of G. Recall that a
support function ψG(z

∗) is defined on Y ∗ by the equality

ψG(z
∗) = sup

y∈G

〈z∗, y〉.

The point at which the supremum is reached is called the support point. Since the reachable set G
in the nonlinear case is not necessarily convex, the boundary point x̂ is not necessarily a support
point. But it meets the necessary optimality conditions as if it would be a support point.

Next, we will consider the case when ϕ is not continuously differentiable but is Lipschitz con-
tinuous at the point û. For simplicity, we will assume also that Y = R

n.

Denote by ∂Cf(u) the Clarke subdifferential of a function f at a point u. If f is Lipschitz
continuous in some neighborhood of u, then ∂Cf(u) 6= ∅ is a convex weakly* compact set [3].

Let L be a Lagrange function

L(u, λ, y∗) = λϕ(u) + 〈y∗, F (u)− x̂〉,

where λ ≥ 0 and y∗ ∈ Y ∗ = R
n are Lagrange multipliers.
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Assume that û is a local solution to problem (2.4) and ϕ(u) is Lipschitz continuous at the
point û. Then, there exist λ ≥ 0 and y∗ ∈ R

n, λ+ ‖y∗‖ 6= 0, such that

0 ∈ ∂CL(û, λ, y
∗) = λ∂Cϕ(û) + F ′∗(û)y∗, (2.9)

where ∂CL is taken with respect to u (see, for example, [3, Theorem 6.1.1]). Let us show that
λ > 0. Indeed, if λ = 0, then ‖y∗‖ 6= 0 and F ′∗(û)y∗ = 0. This contradicts the regularity of F at
the point û.

Without loss of generality, we set λ = 1. Suppose that 0 /∈ ∂Cϕ(û). Then F ′∗(û)y∗ 6= 0 and
condition (2.9) takes the form

−F ′∗(û)y∗ ∈ ∂Cϕ(û). (2.10)

Let us show that this inclusion is a necessary extremum condition in problem (2.8). Let

L(u, α, β) = α〈y∗, F (u)〉 + β(ϕ(u) − µ)

be the Lagrange function for problem (2.8). If û is a local minimum point in problem (2.8), then
there are α ≥ 0 and β ≥ 0, α+ β 6= 0, such that

0 ∈ ∂CL(û, α, β). (2.11)

Note that if 0 /∈ ∂Cϕ(û), then α > 0 and β > 0. Indeed, if α = 0, then β > 0 and 0 ∈ ∂Cϕ(û). If
β = 0, then αF ′∗(û)y∗ = 0 and α > 0, which is impossible due to the regularity condition. Divide
both sides of inclusion (2.11) by β and take αy∗/β as a new vector y∗. Then inclusion (2.11) takes
the form (2.10).

As a result, we get the following statement.

Theorem 4. Assume that F (û) = x̂ ∈ ∂G, û ∈ U, F (u) is regular, and ϕ(u) is Lipschitz
continuous at the point û and 0 /∈ ∂Cϕ(û). Then there is y∗ ∈ Y ∗, ‖y∗‖ = 1, such that û satisfies
the necessary extremum condition (2.10) in problem (2.8).

Remark 1. If ϕ(u) is convex, then ∂Cϕ(u) = ∂ϕ(u) is a subdifferential of a convex function.
The condition 0 /∈ ∂Cϕ(û) in this case is equivalent to Slater’s condition: there is ū such that
ϕ(ū) < ϕ(û).

Remark 2. If a mapping F is defined by formula (2.2) and ϕ(u(·)) is an integral quadratic
in u functional, then Theorem 2 implies the necessary extremum conditions [10] in the form of
Pontryagin’s maximum principle.

Note that, under integral quadratic constraints, the relations of the maximum principle follow
directly from the extremum conditions (2.10). Below we present its proof. Assume that X = L2,
Y = R

n, the mapping F is defined by formula (2.2), and ϕ(u(·)) = 1/2 〈u(·), u(·)〉 is an integral
quadratic functional. In this case, ∂ϕ(u(·)) = {ϕ′(u(·))} = {u(·)} and the equality ϕ(û(·)) = µ
implies that ϕ′(û(·)) 6= 0. Therefore, (2.10) takes the following equivalent form:

F ′∗(û)z∗ = û, z∗ = −y∗, z∗ 6= 0.

Recall that F ′(u) = F ′(u(·)) is defined by the equality F ′(u(·))∆u(·) = ∆x(t1), where x(t) is the
solution of (2.3). Let us represent this solution in the integral form

∆x(t1) =

∫ t1

t0

X(t1, τ)B(τ)∆u(τ) dτ,
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where X(t, τ) is the Cauchy matrix. For any z∗ ∈ R
n, we have

(

z∗, F ′(u(·))∆u(·)
)

=
〈

F ′∗(u(·))z∗,∆u(·)
〉

= z∗⊤
∫ t1

t0

X(t1, τ)B(τ)∆u(τ)dτ

=

∫ t1

t0

p⊤(τ)B(τ)∆u(τ)dτ,

where p(τ) = X⊤(t1, τ)z
∗ satisfies the adjoint equation

ṗ(t) = −A⊤(t)p(t), p(t1) = z∗.

Thus, we have

F ′∗(u(·))z∗ = B⊤(·) p(·) = û(·),

which implies that

û(t) = B⊤(t)p(t), t0 ≤ t ≤ t1.

Finally, we obtain a system of relations of the maximum principle for the boundary control û(t)
(see [10])

ẋ(t) = f1(t, x(t)) + f2(t, x(t))B(t)p(t), x(t0) = x0, (2.12)

ṗ(t) = −A⊤(t)p(t), p(t) 6= 0, û(t) = B(t)p(t), (2.13)

A(t) =
∂f1
∂x

(t, x(t)) +
∂

∂x
[f2(t, x(t))û(t)], B(t) = f2(t, x(t)).

Now suppose that the constraints have the form

γ(u(t)) ≤ µ, a.e. in [t0, t1],

where γ(u) is a convex function in R
r (for example, a norm in R

r). In this case, we can take
X = L∞ and

ϕ(u(·)) = ess sup
t0≤t≤t1

γ(u(t)).

Such a functional is obviously convex and continuous in the space X. Assume that there is ū ∈ R
r

such that γ(ū) < µ. As before, we believe that Y = R
n. Since ϕ(u(·)) is convex, we can substitute

∂Cϕ(û(·)) by a subdifferential of the convex function ∂ϕ(û(·)).

If F (û(·)) ∈ ∂G, then ϕ(û(·)) = µ and hence 0 /∈ ∂ϕ(û(·)). Thus,

F ′∗(û(·))z∗ ∈ ∂ϕ(û(·))

for some z∗ ∈ R
n, z∗ 6= 0. Here, the point F ′∗(û(·))z∗ belongs to the space L

∗
∞. Similar to the

previous case, it can be proven that F ′∗(û(·))z∗ = B⊤(·)p(·), where p(t) 6= 0 is a solution to the
adjoint system.

From the properties of ∂ϕ(û(·)), we get

ϕ(u(·)) − ϕ(û(·)) ≥ 〈F ′∗(û(·))z∗, u(·) − û(·)〉

for every u(·) ∈ L∞. From this inequality, for every u(·) such that ϕ(u(·)) ≤ µ, we have

0 ≥

∫ t1

t0

p⊤(τ)B(τ)(u(τ) − û(τ))dτ. (2.14)
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Choose a point τ ∈ (t0, t1) and a vector v ∈ R
r such that γ(v) ≤ µ, and sufficiently small ε > 0.

Let

u(t) =

{

û(t), t /∈ [τ, τ + ε],

v, t ∈ [τ, τ + ε].

Then, (2.14) implies the inequality

1

ε

∫ τ+ε

τ

p⊤(t)B(t)û(t)dt ≥
1

ε

∫ τ+ε

τ

p⊤(t)B(t)vdt.

Passing here to the limit, we get

p⊤(τ)B(τ)û(τ) ≥ p⊤(τ)B(τ)v

for almost every τ ∈ [t0, t1] and every v such that γ(v) ≤ µ. So, we have

p⊤(τ)B(τ)û(τ) = max
γ(v)≤µ

p⊤(τ)B(τ)v,

ṗ(τ) = −A(τ)p(τ), p(·) 6= 0.

Introducing the Hamiltonian

H(t, x, p, u) = p⊤(f1(t, x) + f2(t, x)u),

we can write the last relations in the standard form of the maximum principle:

H(τ, x(τ), p(τ), û(τ)) = max
γ(v)≤µ

H(τ, x(τ), p(τ), v), a.e. τ ∈ [t0, t1], (2.15)

ṗ(τ) = −A(τ)p(τ) = −
∂H

∂x
(τ, x(τ), p(τ), û(τ)), τ ∈ [t0, t1]. (2.16)

3. Multiple constraints on the control

In this section, we consider constraints specified by the inequalities

ϕi(u) ≤ µi, i = 1, . . . , k. (3.1)

Here, ϕi : X → R are functionals and µi, i = 1, . . . , k, are given positive numbers.
One can assume without loss of generality that µi = 1, i = 1, . . . , k. Then (3.1) can be replaced

by the single constraint ϕ(u) ≤ 1 by setting

ϕ(u) = m(ϕ1(u), . . . , ϕk(u)), m(x) = m(x1, . . . , xk) = max
1≤i≤k

xi.

Since m(x) is a continuous function, the functional ϕ(u) is obviously continuous at a point of
continuity of all functionals ϕi(u). Therefore, for describing the reachable set boundary, we can
use Theorem 2, which leads to the following statement.

Corollary 1. Let W be a neighborhood of the set U, and let F : W → Y be a mapping
continuously Fréchet differentiable at the point û ∈ U such that ImF ′(û) = Y . Assume that

G = {F (u) : ϕi(u) ≤ 1, i = 1, . . . , k},

where ϕi(u) are continuous at the point û. To x̂ = F (û) ∈ ∂G, it is necessary that û be a local
extremum in the problem

ϕ(u) = m(ϕ1(u), . . . , ϕk(u)) → min, F (u) = x̂,

and ϕ(û) = 1.
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The derivation of extremum conditions in this problem is more complicated than before because
the function m(x) is not differentiable. However, the superposition ϕ(u) = m(ϕ1(u), . . . , ϕk(u)) is
locally Lipschitz at the point û if such are the functions ϕi(u). Moreover, if each of the functions
ϕi(u) is either convex or continuously differentiable at the point û, then

∂Cϕ(û) = co
⋃

i∈I(û)

∂Cϕi(û), (3.2)

where I(û) = {i : ϕi(û) = ϕ(û)} and coA denotes a convex hull of A [3].

Let the conditions of Corollary 1 be satisfied. Let initially all functionals ϕi be continuously
differentiable at û. Then ∂Cϕi(û) = {ϕ′

i(û)} and, taking into account (3.2), we get

∂Cϕi(û) =
{

∑

i∈I(û)

αiϕ
′
i(û) :

∑

i∈I(û)

αi = 1, αi ≥ 0
}

=
{

∑

1≤i≤k

αiϕ
′
i(û) :

∑

1≤i≤k

αi = 1, αi ≥ 0, αi(ϕi(û)− 1) = 0, i = 1, . . . , k
}

.

Here, the condition 0 /∈ ∂Cϕi(û) takes the form

∑

1≤i≤k

αi = 1, αi ≥ 0, αi(ϕi(û)− 1) = 0, i = 1, . . . , k ⇒
∑

1≤i≤k

αiϕ
′

i(û) = 0.

In particular, it is satisfied if the vectors ϕi(û) form a positive linear independent set. If this
condition is met, we can write down the necessary condition for the inclusion F (û) ∈ ∂G as follows:

F ′∗(û)z∗ =
∑

1≤i≤k

αiϕ
′
i(û),

∑

1≤i≤k

αi = 1, αi ≥ 0, αi(ϕi(û)− 1) = 0, i = 1, . . . , k.

Using the previous scheme, we can also write this condition in the form of Pontryagin’s maxi-
mum principle [16] (see also [11]).

Let us next consider a system with double control constraints. We will assume that one of
the constraints is specified by a convex differentiable functional ϕ1(u) and the second by a convex
functional ϕ2(u). An example of such a problem is system (2.1) with integral quadratic and
geometric constraints. If ϕ2(û) < ϕ1(û), then ∂Cϕ(û) = {ϕ′

1(û)}; if ϕ1(û) < ϕ2(û), then ∂Cϕ(û) =
{∂ϕ2(û)}; and, finally, if ϕ1(û) = ϕ2(û), then ∂Cϕ(û) = co({ϕ′

1(û)} ∪ ∂ϕ2(û)).

Lemma 1. Let a ∈ X, and let B ⊂ X be a convex set. Then

co({a} ∪B) = C :=
⋃

0≤λ≤1

(λa+ (1− λ)B).

P r o o f. Obviously, C ⊂ co({a} ∪B). To prove the lemma, it suffices to prove the convexity
of C. Let

c1 = λ1a+ (1− λ1)b1, c2 = λ2a+ (1− λ2)b2, b1, b2 ∈ B.

Let us choose α, β ≥ 0, α+ β = 1, and show that

c3 = αc1 + βc2 ∈ λ3a+ (1− λ3)B

for some λ3 ∈ [0, 1]. To this end, we try to find numbers α1, β1 ≥ 0, α1 + β1 = 1, such that

αc1 + βc2 = α(λ1a+ (1− λ1)b1) + β(λ2a+ (1− λ2)b2) = λ3a+ (1− λ3)(α1b1 + β1b2).
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Equating the coefficients at the vectors a, b1, and b2 on both sides of the equality, we obtain

λ3 = αλ1 + βλ2, α(1 − λ1) = α1(1− λ3), β(1− λ2) = β1(1− λ3).

This implies the inequality 0 ≤ λ3 ≤ 1. For 0 ≤ λ3 < 1, we have

α1 =
α(1− λ1)

1− λ3
, β1 =

β(1 − λ2)

1− λ3
;

so, α1, β1 ≥ 0 and α1 + β1 = 1. If λ3 = 1, then either αλ1 = 1 or βλ2 = 1. In both of these cases,
we get c3 = a. This completes the proof. �

Let us further assume that Slater’s condition is satisfied: there exists ū such that ϕi(ū) < 1,
i = 1, 2. Then the condition 0 /∈ ∂Cϕ(û) is satisfied. Indeed, suppose on the contrary that
0 ∈ ∂Cϕ(û). Then, it follows from Lemma 1 that there is λ ∈ [0, 1] such that

0 ∈ λϕ′
1(û) + (1− λ)∂ϕ2(û) = ∂(λϕ1 + (1− λ)ϕ2)(û).

For the convex function λϕ1 + (1 − λ)ϕ2, the last condition is necessary and sufficient for the
minimum at û. Thus,

(λϕ1 + (1− λ)ϕ2)(û) ≤ (λϕ1 + (1− λ)ϕ2)(ū),

which contradicts Slater’s condition.
Let further X = L∞ and

ϕ1(u(·)) = c/2〈u(·), u(·)〉 = c/2

∫ t1

t0

u⊤(t)u(t)dt, ϕ2(u(·)) = ess sup
t0≤t≤t1

γ(u(t)). (3.3)

The constant c > 0 is chosen here such that to write down the constraints in the form ϕi(u(·)) ≤ 1,
i = 1, 2. Since ϕ′

1(u(·)) = cu(·), the optimality conditions F ′∗(û(·))z∗ ∈ ∂ϕ(û(·)) take the form

F ′∗(û(·))z∗ − λcû(·) ∈ (1− λ)∂ϕ2(û(·))

for some λ ∈ [0, 1].
For λ = 0, we get a maximum principle of the form (2.15), (2.16).
For λ = 1, we get (2.12), (2.13).
Finally, for 0 < λ < 1, we get

F ′∗(û(·))w∗ − σcû(·) ∈ ∂ϕ2(û(·)),

where w∗ = z∗/(1− λ) and σ = λ/(1 − λ). Introducing the Hamiltonian

H(t, x, p, σ, u) = −σcu+ p⊤(f1(t, x) + f2(t, x)u),

we can write these relations in the form of maximum principle:

H(τ, x(τ), p(τ), σ, û(τ)) = max
γ(v)≤µ

H(τ, x(τ), p(τ), σ, v), a.e. τ ∈ [t0, t1],

ṗ(τ) = −A(τ)p(τ) = −
∂H

∂x
(τ, x(τ), p(τ), σ, û(τ)), τ ∈ [t0, t1].

Thus, we arrive at the following statement.

Corollary 2. Let functionals ϕi(u(·)) : L∞ → R, i = 1, 2, be given by equalities (3.3), and let
F (u(·)) = x(t1), where x(t) is a solution to system (2.1). Let

G =
{

F (u(·)) : ϕi(u(·)) ≤ 1, i = 1, 2
}

.

If F (û(·)) ∈ ∂G and system (2.1) linearized around û(·) is controllable, then there exist a function
p(·) 6= 0 and a number σ ≥ 0 such that the relations of maximum principle are satisfied.
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4. Conclusion

The paper proposes a unified scheme for studying extremal properties of the reachable set
boundary. Within the framework of this approach, the reachable set is treated as the image of the
set of admissible controls under a nonlinear mapping of a Banach space. The proposed scheme is
based on the results of nonlinear and nonsmooth analysis and is equally applicable to systems with
integral and geometric control constraints, including multiple constraints.
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