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Abstract: In 1996, the first author defined analogs of the concepts of complete (divisible), reduced, and
periodic abelian groups, well-known in the theory of abelian groups, for arbitrary varieties of algebras. In 2021,
the first author proposed a modification of the concepts of completeness and reducibility, which is more natural
in the case of associative rings. The paper studies the modification of these concepts for associative rings.
Artinian M-complete, M-reduced rings, and minimally M-complete associative nilpotent rings, simple rings
with unity, and finite rings are characterized.
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1. Introduction

In the theory of abelian groups, the notions of complete (divisible), reduced, and periodic (in
particular, primary) groups are of great importance. In [16] (see also [17, 19]), some analogs of
these notions were defined for arbitrary varieties of algebras. In the mentioned papers, the concepts
of (atomic) complete, (atomic) reduced, and solvable algebra [30] (see also [31]) were defined by
means of the atoms of these varieties and the Malcev products for these atoms [15]. Furthermore,
the notions of periodic and primary algebra were defined using notions of (atomic) completeness,
(atomic) reducibility, and solvability. In particular, an algebra is called periodic if each of its
monogenic (i.e., one generated) subalgebras is finitely reduced. Note that a group or semigroup is
periodic as a universal algebra (in our sense) if and only if it is periodic as a group or semigroup
in the ordinary sense.

It is different for associative rings. In the theory of associative rings, a ring is called periodic
if its multiplicative semigroup is periodic (in the ordinary sense). Any finite nonprime field is a
periodic ring in the ordinary sense. On the other hand, such a field is monogenic, but it is not a
finitely reduced ring; i.e., it is not a periodic algebra in the sense of papers [16, 17, 19]. To remove
this difference, paper [21] suggests modifying the concepts of complete, reducible, periodic, and
primary associative rings. This is done by using a special set M of subvarieties of the variety As of
associative rings, whereM is the union of the set of lattice atoms of subvarieties of As and the set of
all varieties, each of which is generated by some finite nonprime field. In this case, M-periodic rings
are rings with finite monogenic subrings (i.e., there is an analogy with groups and semigroups).
Moreover, every finite field is both M-periodic and M-primary. Thus, the modification of the
concepts discussed, given in [21], is more natural for associative rings.
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In [21], properties of M-periodic and M-primary associative rings are studied. In addition,
paper [21] characterizes the M-periodic, M-primary, and M-reduced varieties of associative rings.
From the results of paper [21] (in particular, Remark 5.17), it follows that the class MC of all
M-complete rings of As is closed with respect to homomorphic images, extensions, and direct sums
in As. Furthermore, the class MR of all M-reduced rings of As is closed with respect to subrings,
direct products, and extensions in As. Besides, the variety As is transverbal (in the sense of [15])
with respect to any variety belonging to M.

If we replace the set At(L(As)) by the set M in paper [18], the main result of [18] will
change. From the modified result, we obtain that any ring R belonging to As contains the largest
M-complete subring CM(R); CM(R) is a two-sided ideal of the ring R; the factor ring R/CM(R)
is an M-reduced ring. All of the above means that the basic properties of the modified concepts of
completeness and reducibility for associative rings are saved. Further, let a mapping rM : As → As
be such that rM(R) = CM(R) for all R ∈ As. From the above, we obtain that rM is a radical in
the sense of Kurosh and Amitsur (see, for example, [1, p. 91] or [6, p. 27]). Here, MC is a radical
class and MR is a semisimple class.

We say that the radical rM is the M-complete radical and the ideal CM(R) of R is the
M-complete radical of the ring R. Note that CM(R) contains any M-complete subring of the
ring R. Therefore, rM is a strict radical in the sense of Kurosh [13] (see also [6, p. 148]).

In papers [10, 11, 20, 24, 25], the complete radical of an associative ring was studied. It is
easy to verify that analogous main results of these papers also hold for the M-complete radical. In
papers [12, 22, 26–28], the structure of complete and reduced associative rings was studied. The
main results of these papers are significantly modified if we replace the concepts of completeness
and reducibility with the concepts of M-completeness and M-reducibility.

Recall that in the theory of abelian groups, the concept of a complete group coincides with that
of a divisible group. Any minimal divisible abelian group is isomorphic to the (additive) quasi-cyclic
group Cp∞, where p is a prime, or to the additive group Q+ of the field Q of rational numbers.
Minimal divisible abelian groups have significant importance since any divisible abelian group is a
direct sum of minimal divisible abelian groups (see, for example, [4, Theorem 23.1, p. 124]). An
associative ring R is called minimal M-complete if it is a nonzero M-complete ring, and all proper
subrings of the ring R are M-reduced rings.

This paper aims to characterize M-complete, M-reduced associative Artinian rings, and min-
imal M-complete finite associative rings. Note that the class of Artinian rings contains all finite
rings.

Nevertheless, in this paper, we do not limit ourselves to Artinian rings and provide some results,
which are valid for all associative rings. We will use the results from papers [12, 22, 23, 26–29]
on the study of complete and reduced associative rings and modify them for the concepts of M-
completeness and M-reducibility. If the obtained results have fundamental changes, then proofs
are provided. The modified formulations of the statements are given only with references to similar
statements if the changes are insignificant. Before formulating and proving the basic results of the
paper, we will provide and prove several lemmas. Some lemmas are of independent interest.

First, let us give some definitions, notations, and facts about associative rings.

2. Basic definitions, notations, and preliminary information

Further in the paper, by a ring we mean an associative ring (not necessarily with the unity),
by an ideal we mean a two-sided ideal. Denote by |M | the cardinal number of a set M . Positive
integers are denoted by k, l,m, n (sometimes with subscripts), and primes are denoted by p and q.
Denote by R+ the additive group of the ring R. A ring with zero multiplication will be called an
abelian ring. An abelian ring with an additive group R+ is denoted by R0. Denote by O the zero



86 Leonid Martynov and Tatiana Pavlova

ideal of the ring R. A simple ring is a nonzero ring having no ideal besides O and itself. The
smallest n ∈ N is said to be the characteristic of a ring R if nR = O and is denoted by char R. If
there is no such n, then char R = 0 is assumed.

The set of natural numbers is denoted by N, and the set of primes is denoted by P. Denote by
Z the ring of integers, and by Q the field of rational numbers. Furthermore, let Zn denote the ring
of residue classes modulo n > 1. The finite field (Galois field) of pm elements is denoted by Fpm.
A prime field is a field, which has no proper subfields. Any prime field is isomorphic to the field Q

of rational numbers or the finite field Fp of p elements.
If M is a nonempty subset of a ring R, then 〈M〉 and (M) denote the subring and the ideal of

R generated by M , respectively. The subring generated by a ∈ R is called monogenic and denoted
by 〈a〉. An element e ∈ R with the property e2 = e is called an idempotent of R. The idempotent
e ∈ R is called basic if σ(e) is the unity of the factor ring R/J(R), where J(R) is the Jacobson
radical of the ring R and σ is the natural homomorphism of R to R/J(R). A ring R is called
idempotent if R2 = R, where R2 = 〈a · b | a, b ∈ R〉.

Denote by Mn(R) the ring of square n × n matrices over a ring R. For a commutative ring
R with unity, R[x] denotes the ring of polynomials in x over R. Denote by Z〈X〉 a free (in As)
ring over the infinite countable set X = {x1, x2, . . . }, i.e., the ring of polynomials with integer
coefficients in noncommuting variables of X with zero free terms. An identity is a formal equality
of the form f(x1, x2, . . . , xn) = 0, where f(x1, x2, . . . , xn) ∈ Z〈X〉.

Suppose that ϕ is the natural homomorphism of Zpk [x] onto Zp[x] and f(x) ∈ Zpk [x] is a unitary
polynomial of degree m such that ϕ

(
f(x)

)
is an irreducible polynomial over Zp; then the factor

ring Zpk [x]/
(
f(x)

)
is called a Galois ring of characteristic pk and order pkm. The Galois ring, up

to isomorphism, is defined by the numbers p, k, and n and is denoted by GR(pk,m). It is obvious
that GR(pk, 1) ∼= Zpk and GR(p,m) ∼= Fpm . Galois rings play a special role in the structural theory
of finite associative rings.

Let varΣ denote the variety of rings defined by a system Σ of ring identities, and let varK
be the least variety of rings containing a class K of rings (in other words, varK is the variety
generated by K). The free monogenic ring in As will be denoted by Z〈x〉. Below we use the
following important notations:

Z0
n = var {nx = 0, xy = 0} = varZ0

n;
Fpm = var {px = 0, xp

m

= x} = varFpm .
Let V be a variety of rings. A ring R is called V-complete if R has no homomorphisms onto

nonzero rings from V. Equivalently, V(R) = R, where V(R) is the verbal ideal of R (i.e., V(R) is
the least ideal in the set of all ideals I of the ring R such that the factor ring R/I belongs to V).
A ring is called V-solvable if it has no nonzero V-complete subrings.

Let M be the union of two sets Z and F of varieties of rings, where

Z = {Z0
p | p ∈ P}, F = {Fpm | p ∈ P, m ∈ Z+},

i.e., M = Z ∪ F. Note that M contains the set At(L(As)), where At(L(As)) consists of the
varieties Z0

p and Fp for any prime p (see, for example, [9]). A ring R is called M-complete if
R is M-complete for every M ∈ M. We call a ring R M-reduced if R has no nontrivial M-
complete subrings. By analogy, the concepts of Z-complete (F-complete) ring and of Z-reduced
(F-reduced) ring are defined. We point out the connection between the concepts of completeness
and M-completeness, as well as the concepts of reducibility and M-reducibility. Obviously, any
M-complete ring is complete. But the converse statement, generally speaking, is incorrect. For
example, any nonminimal finite field F is complete, while F is M-reduced. On the other hand, any
reduced ring is M-reduced.

Recall that if a variety V is given by an identity system Σ, then the V-verbal V(R) of a ring R
coincides with the ideal of R generated by the values in R of all polynomials that are the left-hand
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sides of the identities of Σ. For varieties Z0
p and Fpm and a ring R, we indicate formulas to calculate

the corresponding verbals:

Z0
p (R) = pR+R2, Fpm(R) = pR+Rpm,

where Rpm is the ideal generated by the set

{rp
m

− r | r ∈ R}.

It is clear that a ring R is M-complete (M-reduced) if and only if Z0
p(R) = R (Z0

p(R) = O) and
Fpm(R) = R (Fpm(R) = O) for all p and m, respectively.

It is clear that the M-complete radical CM(R) of a ring R is equal to the sum of all M-complete
subrings of R. A ring R is M-complete if and only if CM(R) = R. In particular, the M-complete
radical CM(R) of any ring R is an M-complete ideal of R. A ring R is M-reduced if and only if
CM(R) = O. From a well-known fact for arbitrary radicals (see, for example, [1], Proposition 1,
p. 91) it follows that the M-complete radical of a ring R is the intersection of all its ideals I such
that the factor ring R/I is M-reduced.

Similarly, the Z-complete radical CZ(R) and the F-complete radical CF(R) of a ring R are
defined by the sets Z and F, respectively. Recall that a radical r is called strict if the radical r(R)
of a ring R contains every r-radical subring A (i.e., a subring with the property r(A) = A) of R.
As above, the M-complete radical is strict. It is clear that Z-complete and F-complete radicals are
also strict. A ring is M-complete if and only if it is simultaneously Z-complete and F-complete.
Denote by M (Z, F) the class of all rings belonging to the varieties of rings from the set M (Z, F),
respectively. It is clear that M-complete (Z-complete, F-complete) radicals are upper radicals
defined by the class M (Z, F), respectively. In addition, for any prime p, we need the notation Fp

for the class of rings of characteristic p from the class F.
Recall that the transverbality of the variety As over the subvariety V means that, for any ring R

and an ideal I of R, V(I) is an ideal of R. As already noted, the transverbality of the variety As
over any variety from the set M is proved in paper [21].

In additive notation, the atoms of the lattice L(Ab) of subvarieties of the variety Ab of all abelian
groups Ab are the varieties Ap = var {px = 0} for all primes p. Note that the Ap-completeness of an
abelian group A means the validity of the equality Ap(A) = pA = A. Further, the divisibility of an
abelian group A is equivalent to its Ap-completeness over all primes p, i.e., the completeness of A.
It is well known that in every abelian group A, a divisible subgroup is always a direct summand, in
A there is the largest divisible subgroup C(A), and A is the direct sum of its complete and reduced
subgroups. Moreover, as noted above, every divisible abelian group is the direct sum of some sets
of isomorphic copies of the additive group Q+ of rationales and copies of quasi-cyclic groups Cp∞

for some primes p.
Recall that a ring is called a left Artinian ring if any decreasing chain of its left ideals stabilizes.

Equivalently, the ring satisfies the minimum condition of left ideals. Further, left Artinian rings
will be called Artinian rings. It is well known (see, for example, [8, Theorem 1, p. 63]) that the
Jacobson radical of an Artinian ring is nilpotent. In addition, by the Wedderburn–Artin Theorem
(see, for example, [8, p. 65]), any Artinian semisimple (in the sense of Jacobson radical) ring is
isomorphic to the direct sum of finitely many full matrix rings over skew fields. It is well known
that a factor ring of an Artinian ring is Artinian. Also, if the ideal I and the factor ring R/I of a
ring R are both Artinian, then R itself is Artinian.

In conclusion of this section, we give some well-known statements that do not relate to the
concepts of M-completeness and M-reducibility but are needed for the sequel.

Theorem 1. [5, Theorem 122.7, p. 350] Every Artinian ring R is the ring direct sum
R = S ⊕ Tp1 ⊕ · · · ⊕ Tpk of some torsion-free Artinian ring S and a finite number of Artinian
pi-rings Tpi corresponding to various primes pi.
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Theorem 2. [32, Proposition 6] Let R be a finite ring with unity of characteristic pk and
radical J(R). Then R contains a subring Q isomorphic to a direct sum of matrix rings over Galois
rings such that Q/pQ ∼= R/J(R) and a (Q,Q)-submodule M of J(R) such that R = Q +M with
Q ∩M = O.

Theorem 3. [7, Theorem 1.4.3, p. 35] If an additive group R+ of a left Artinian ring R is a
torsion-free group, then R possesses a left unity.

Proposition 1. [28, Lemma 12] An Artinian ring R is finite if and only if mR = O for some
m ∈ N and the factor ring R/J(R) is finite.

Lemma 1. [10, Lemma 3] If I is an ideal of a ring R and K is a field, then any homomorphism
ϕ : I → K can be extended to a homomorphism ϕ̄ : R → K.

Lemma 2. [24, Lemma] For any ideal I of a ring R, the relation Mn(R)/Mn(I) ∼= Mn(R/I)
holds.

3. Artinian M-complete rings

This section aims to obtain a characterization of M-complete Artinian rings. Let us first give
several lemmas. Some of them are valid for arbitrary rings.

Lemma 3. If R is an M-complete ring, then R2 is an M-complete ring.

P r o o f. Let R be an M-complete ring. Since R is a Z0
p -complete ring for any prime p, the

relation Z0
p(R) = pR+R2 = R holds for all primes p; i.e., R = R2 + pR. We have

R2 = (R2 + pR)(R2 + pR) = R4 + pR3 + p2R2 = R4 + pR(R2 + pR) = R4 + pR2;

i.e., Zp(R
2) = R2. This equality means that the ring R2 is Z0

p -complete.
We now show that R2 is Fpm-complete for all p and m. Since R is a Z0

p -complete ring for any
prime p, for each x of R, we find elements a, ai, and bi (i = 1, . . . , n) of R such that

x = pa+

n∑

i=1

aibi.

Then,

xp
m

− x =
(
pa+

n∑

i=1

aibi

)pm

−
(
pa+

n∑

i=1

aibi

)
= pz +

(( n∑

i=1

aibi

)pm

−
( n∑

i=1

aibi

))

for some z ∈ R. Therefore, Rpm ⊆ pR+ (R2)pm. It follows that

(Rpm)
2 ⊆ (pR+ (R2)pm)(pR + (R2)pm) ⊆ pR2 + (R2)pm .

Considering this inclusion and the fact that the ring R is Fpm-complete, we get

R2 = (pR+Rpm)(pR+Rpm) ⊆ pR2 + (Rpm)
2 ⊆ pR2 + (R2)pm = Fpm(R

2);

i.e., R2 is Fpm-complete for all p and m. �
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Corollary 1. If R is a minimally M-complete ring and R2 6= O, then R2 = R.

Lemma 4. A simple ring R is either M-complete and does not belong to the set M or
M-reduced and isomorphic to a field Fpm for some p and m.

P r o o f. A simple ring R is a ring with nonzero multiplication, so R ∈ F for some prime p.
As is well known, any nonzero ring of any variety from F is a subdirect product of finite fields
(see, for example, [30]). �

Lemma 5. Any nil ring R is an F-complete ring.

P r o o f. The homomorphic image of a nil ring is a nil ring and therefore cannot be a nonzero
ring of a variety Fpm for any p and m. �

Lemma 6. [26, Lemma 3] If the ideal I of a ring R is contained in the kernel of any homo-
morphism of R onto rings from a variety V of rings, then R is a V-complete ring if and only if
R/I is a V-complete ring.

Repeating almost verbatim the proof of Lemma 5 from [11], one can verify the validity of the
following statement.

Lemma 7. A nilpotent ring R is M-complete if and only if its additive group R+ is divisible.

We omit the proof of the following statement analogous to Lemma 2 from [26], which corresponds
almost verbatim to the proof of that lemma and uses the results mentioned in Section 1 on the
Jacobson radical of Artinian rings, semisimple Artinian rings, the structure of divisible abelian
groups, and Lemma 7.

Lemma 8. The following conditions are equivalent for a ring R:

(1) R+ ∼=
n⊕

i=1
Cp∞i

;

(2) R is an M-complete abelian Artinian ring ;
(3) R is an M-complete Artinian nilpotent ring.

The main result of this section is a modification of two statements of Theorems 1 and 2 of [26].

Theorem 4. An Artinian ring R is M-complete if and only if the following conditions hold
for its ideal R2:

(1) R2 is an idempotent Artinian ring and if R2 6= O, then

R2/J(R2) ∼=

k⊕

i=1

Mni
(Ki),

where Ki is a skew field and Mni
(Ki) 6∼= Fpm for any prime p, m ∈ N, and i = 1, . . . , k;

(2) if R2 6= R, then

R/R2 ∼=

n⊕

j=1

C0
p∞j

.
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P r o o f. Let R be an M-complete Artinian ring. It follows from Theorem 1 that R is the
direct sum of its ideals S and T , where S is an M-complete torsion-free Artinian ring and T is an
M-complete Artinian periodic ring. Therefore, it is enough to consider both rings separately.

By Theorem 3, the ring S possesses a left unity. Therefore, S2 = S. Since S is an M-complete
ring, it follows that the factor ring S/J(S) is an M-complete ring. From the Wedderburn–Artin
theorem and Lemma 4, it follows that the factor ring S/J(S) is isomorphic to a direct sum of
finitely many full matrix rings over skew fields and does not contain summands isomorphic to a
finite field Fpm for any prime p and m ∈ N.

Further, consider a decreasing chain of ideals in T : T ⊇ T 2 ⊇ T 3 ⊇ . . . Since T is an Artinian
ring, we have T n = T n+1 for some n; i.e., the ideal T n is an idempotent ring. Then, T = T/T n is
an M-complete Artinian nilpotent ring and, by Lemma 8, T is an abelian ring. Hence, xy ∈ T n

for all x, y ∈ T and, therefore, T 2 = T n; i.e., T 2 is an idempotent ring. In addition, by Lemma 8,

T/T 2 ∼=

n⊕

j=1

C0
p∞j

.

Let us show that the ideal T 2 is an Artinian ring. Let I be a left ideal of T 2. The group T+ is
periodic, therfore, for any i ∈ I, there exists m ∈ N such that mi = 0. By Lemma 8,

T/T 2 ∼=

k⊕

i=1

C0
p∞i

,

it follows that there exists t1 ∈ T for any t ∈ T such that mt̄1 = t̄ in the factor ring T = T/T 2.
Since t−mt1 ∈ T 2, we have

ti = (t−mt1 +mt1)i = (t−mt1)i+mt1i = (t−mt1)i ∈ I.

This means that I is a left ideal of T .
Thus, T 2 is an Artinian and M-complete ring by Lemma 3. Therefore, T 2/J(T 2) also is M-

complete ring. It follows that

T 2/J(T 2) ∼=

k⊕

i=1

Mni
(Ki),

where Ki is a skew field and Mni
(Ki) 6∼= Fpm for any prime p and m ∈ N.

Conversely, let for the ideal R2 of an Artinian ring R, conditions (1) and (2) of the theorem be
satisfied. Four cases are possible:

(i) R = R2 = O. Then, R is an M-complete ring by definition.

(ii) R 6= R2 = O and R/R2 ∼=
n⊕

j=1
C0
p∞j

. Then, R = R/R2 is an M-complete ring by Lemma 8.

(iii) R = R2 6= O and R/J(R) = R2/J(R2) ∼=
k⊕

i=1
Mni

(Ki), where Ki is a skew field and

Mni
(Ki) 6∼= Fpm for any prime p and m ∈ N. In this case, R is a nonzero idempotent

Artinian ring and R/J(R) is an M-complete ring. Then, J(R) is an M-complete ring by
Lemma 5. This means that J(R) is contained in the kernel of any homomorphism onto rings
from a variety Fpm for any p and m. Then, by Lemma 6, R/J(R) is an F-complete ring if
and only if R is an F-complete ring. The ring R = R2 also is Z-complete. Hence, R is an
M-complete ring.

(iv) R 6= R2 and R2 6= O, where R/R2 ∼=
n⊕

j=1
C0
p∞j

and the ideal R2 is an idempotent Artinian

ring. Then, R2/J(R2) ∼=
k⊕

i=1
Mni

(Ki), where Ki is a skew field and Mni
(Ki) 6∼= Fpm for any
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prime p and m ∈ N. The M-completeness of R2 is proved similar to case (iii). The factor
ring R/R2 is M-complete by Lemma 8. In this case, it follows from Lemma 2.2 of [21] that
the extension of the M-complete ring R2 by the M-complete ring R/R2 is an M-complete
ring. Besides, it is known that an extension of an Artinian ring by an Artinian ring is also
Artinian.

�

A special case of Theorem 4 is a modification of the result on complete finite rings from [12].

Corollary 2. A finite nonzero ring R is M-complete if and only if the following conditions
hold :

(1) R2 = R;
(2) R/J(R) is an M-complete ring and R/J(R) ∼= ⊕n

i=1Mni
(Fpi

mi ), where ni > 1 for all
i = 1, 2, . . . , n, mi ∈ N, and pi are primes.

4. Artinian M-reduced rings

This section aims to characterize M-reduced Artinian rings.

The following statements are modifications for M-reduced rings of lemmas for reduced rings
from [27]. Their proofs are easy to obtain if we replace the field Fp by the field Fpm for any p
and m.

Lemma 9. [27, Lemma 1] For an Artinian nilpotent ring R, the following conditions are equiv-
alent :

(1) mR = O for some m ∈ N;
(2) R is a finite ring ;
(3) R is an M-reduced ring.

From Lemma 9, it follows that all nilpotent M-reduced Artinian rings are finite.

Lemma 10. [27, Lemma 1] Any Artinian M-reduced ring has characteristic m > 0.

From Lemma 10 and Theorem 1, it follows that it is sufficient to characterize Artinian
M-reduced rings of characteristic pk.

Lemma 11. [27, Lemma 2] Any ring R of characteristic pk, where k ∈ N and p is a prime, is
Z0
q -complete and Fqm-complete for any prime q 6= p and m ∈ N.

Lemma 12. [27, Lemma 3] A ring R of characteristic pk for a prime p and k ∈ N, is an
M-complete ring if and only if the ring R/pR is M-complete.

The following lemma describes the M-complete radical of an Artinian ring of characteristic pk

for a prime p and k ∈ N.

Lemma 13. For an Artinian ring R of characteristic pk, where p is a prime and k ∈ N, there
exists m,n ∈ N such that the F-complete radical CF(R) = Fpm(R) and the M-complete radical
CM(R) = Fn

pm(R), where n is the idempotent degree of the verbal Fpm(R); i.e., Fn
pm(R) = Fn+1

pm (R).
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P r o o f. Consider the set of all verbals Fpd(R) of the ring R, where d ∈ N. Note that, for any
t ∈ N and x ∈ R,

xp
td

− x =
(
xp

d

− x
)
·
i=s∑

i=0

xp
td
−pd−i(pd−1), where s =

j=t∑

j=0

p(t−j)d.

This means that if h is divisible by d, then Fph(R) ⊆ Fpd(R).

Since R is an Artinian ring, R contains the minimal verbal Fpm(R). At the same time,
Fpm(R) ⊆ Fpd(R) for all d ∈ N (assuming that this is not the case, we get that the verbal Fpm(R)
is not minimal since it contains the verbal Fpl(R) ⊆ Fpm(R) ∩ Fpd(R) 6= Fpm(R), where l is the
least common multiple of d and m).

By Lemma 11, the ring R of characteristic pk is Fqt-complete for any prime q 6= p and t ∈ N.
It follows from Lemma 1 that any ideal of an Fqt -complete ring, in particular, the ideal Fpm(R), is
also an Fqt-complete ring. From the same lemma and the fact that Fpm(R) ⊆ Fpk(R) for all k ∈ N,
it follows that Fpm(R) is an Fpk -complete ring for all k ∈ N. Therefore, Fpm(R) is an F-complete
ring; i.e., Fpm(R) ⊆ CF(R); hence, Fpm(R) = CF(R).

The decreasing chain of ideals Fpm(R) ⊇ F2
pm(R) ⊇ F3

pm(R) ⊇ . . . of the ring R stabilizes at
some step n. That is, Fn

pm(R) is an idempotent ring; so it is Z-complete. In addition, Fn
pm(R) is

an F-complete ring by Lemma 1. So, Fn
pm(R) ⊆ CM(R). Conversely, since CM(R) ⊆ Fpm(R), we

have Cn
M(R) ⊆ Fn

pm(R). Hence, CM(R) = Cn
M(R) ⊆ Fn

pm(R) and therefore CM(R) = Fn
pm(R). �

Lemma 14. A nonnilpotent Artinian ring R of characteristic pk, where p is a prime and k ∈ N,
is an M-reduced ring if and only if R is a finite ring and CF(R) = J(R). In addition, the factor
ring R/J(R) is isomorphic to a finite direct sum of fields Fpki for ki ∈ N.

P r o o f. First, we show that CF(R) = J(R). It follows from Lemma 5 that J(R) is an
F-complete ring, so J(R) ⊆ CF(R). Conversely, by Lemma 13, CF(R) = Fpm(R) for some m ∈ N.
Since R is an M-reduced ring, we have Cn

F(R) = Fn
p (R) = O for some n ∈ N. Thus, Fpm(R) is a

nilpotent ideal; hence, CF(R) = Fpm(R) ⊆ J(R).

The factor ring R/J(R) is isomorphic to a direct sum of finitely many full matrix rings over
skew fields. Since Fpm(R) = J(R), the factor ring R/J(R) belongs to the variety Fpm . Therefore,
each of these summands belongs to the variety Fpm and is isomorphic to Fpki for some ki ∈ N by
Lemma 4. Also, since R/J(R) is a finite ring, R is also a finite ring by Proposition 1.

Conversely, if R is a finite ring, then J(R) is an M-reduced ring by Lemma 9. Hence, the
ring R is M-reduced as an extension of theM-reduced ring J(R) by theM-reduced ring R/J(R). �

The following statement, similar to Teorem 2 of [27], describes the structure of Artinian
M-reduced rings.

Theorem 5. An Artinian ring R is an M-reduced if and only if R is a finite ring with

F-complete radical CF(R) = J(R) and either R = J(R) or R/J(R) ∼=
n⊕

i=1
Fki
pi
, where pi is a

prime and ki ∈ N.

P r o o f. By Lemma 10, for any Artinian M-reduced ring R, there exists m ∈ N such that
mR = O. Let m = pk11 · pk22 · . . . · pknn be the canonical representation of the number m. Then, by

Theorem 1, the ring R is a finite direct sum of its ideals Ri, where pkii Ri = O for all 1 ≤ i ≤ n.
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It follows from the properties of a finite direct sum of rings that the rings Ri for all 1 ≤ i ≤ n
are M-reduced Artinian rings. If the ring Ri is nonnilpotent, then it satisfies the conditions of
Lemma 14, otherwise Ri satisfies the conditions of Lemma 9. If Ri is nilpotent, then CF(Ri) = Ri

by Lemma 5. In each case, Ri is a finite ring and CF(Ri) = J(Ri). Thus, R is a finite ring and its
F-complete radical

CF(R) =

n⊕

i=1

CF(Ri) =

n⊕

i=1

Fp
mi
i
(Ri) =

n⊕

i=1

J(Ri) = J(R).

Moreover, if R 6= J(R), then the factor ring R/J(R) is a finite direct sum of ideals isomorphic
to finite fields.

Conversely, any finite ring R satisfying the conditions of the theorem is an extension of the
M-reduced ring J(R) by the M-reduced ring R/J(R). This means that R is an M-reduced ring. �

5. Minimally M-complete Artinian rings

This section aims to characterize minimally M-complete Artinian rings. Before proving the
main result, we formulate analogs of auxiliary statements from [22] and [28] and prove some of
them.

The proofs of the following several statements almost verbatim correspond to the proofs of their
analogs, so, we omit them.

Proposition 2. [25, Proposition 1] For a basic idempotent e of a nonnilpotent Artinian ring R,
CM(eRe) = eCM(R)e.

For an M-complete radical, the requirement that the idempotent e is the basic idempotent of
a nonnilpotent Artinian ring A is essential. For example, in the M-complete ring R = M2(Fp), for
the idempotent

e =

(
1 0
0 0

)
,

the subring eRe ∼= Fp is M-reduced; i.e., CM(eRe) = O. However, eCM(R)e = eRe 6= O.

Corollary 3. [25, Corollary 2] A nonnilpotent minimally M-complete Artinian ring contains
a unit.

Lemma 15. [22, Lemma 11] If any decreasing chain of ideals of a ring R contained in the
ideal I of this ring stabilizes at some finite step, then the M-reducibility of the ring R implies the
M-reducibility of the ring R/I.

Corollary 4. Any homomorphic image of an Artinian M-reduced ring is an M-reduced ring.

Corollary 5. The homomorphic image of a minimally M-complete finite ring is a minimally
M-complete ring.

Lemma 16. [28, Lemma 11] A finite idempotent ring R of characteristic pk is minimally
M-complete if and only if R/pR is a minimally M-complete ring.
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Lemma 17. [22, Lemma 15] If I is a nilpotent ideal of a ring R of characteristic pk and K is
an M-reduced subring of the ring R, then the homomorphic image K in the ring R = R/I is also
an M-reduced ring.

Corollary 6. If R is a minimally M-complete Artinian ring of characteristic pk, then the
factor ring R/J(R) is also a minimally M-complete ring.

Lemma 18. [22, Lemma 1] A minimally M-complete nilpotent ring is isomorphic to the ring
Q0 or the ring C0

p∞ for some prime p.

Lemma 19. [22, Lemma 3] A skew field K of characteristic zero is minimally M-complete if
and only if it is isomorphic to the field Q of rational numbers.

Corollary 7. The ring Z of integers and any of its subrings are M-reduced.

Proposition 3. [24, Proposition] For any ring R and n > 1, the ring Mn(R) is M-complete
if and only if the ring R is Z-complete.

Corollary 8. For any idempotent ring R and n > 1, the ring Mn(R) is M-complete.

The description of minimallyM-complete skew field of prime characteristic p differs significantly
from the description of complete skew field of prime characteristic p obtained in Lemma 4 of [22].

Lemma 20. A skew field K of prime characteristic p is minimally M-complete if and only if
K is isomorphic to the algebraic closure F̂p of the field Fp.

P r o o f. Let K be the minimally M-complete skew field of prime characteristic p. Then K
contains the field Fp that obviously lies in the center of K.

Just as in the proof of Lemma 4 of [22], it can be shown that the existence of an element in K
that is transcendent with respect to the field Fp is impossible.

Therefore, all elements of the skew field K are algebraic with respect to the field Fp. It is
clear that elements of K are algebraic with respect to a field Fpm for any m > 1. Recall that
the field Fpm is M-reduced by Lemma 4. Taking into account the well-known facts that, for any
finite field Fq in the ring Fq[x], there exists an irreducible polynomial of any positive degree (see,
for example, [14, Corollary 2.11, p. 70]) and an algebraic extension of Fq containing any of its
roots is again a finite field, it is easy to understand that K must coincide with the union of a
countable infinite strictly increasing sequences of corresponding finite fields, i.e., K is isomorphic
to the algebraic closure F̂p of the field Fp.

Conversely, if a skew field K of prime characteristic p is the algebraic closure of the field Fp,

i.e., A ∼= F̂p, then any proper nonzero subring F of K is a finite field Fpm for some m and therefore
it is M-reduced. Thus, K is a minimally M-complete ring. �

An analog of Lemma 5 from [22] for the M-completeness also has significant changes.

Lemma 21. The full ring Mn(K) of matrices over a skew field K is minimally M-complete if
and only if Mn(K) is isomorphic either to the field Q of rational numbers or the algebraic closure
F̂p of the field Fp or a ring M2(Fp) for some prime p.
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P r o o f. Let Mn(K) be a minimally M-complete ring of matrices of order n over a skew
field K. Being M-complete, the ring Mn(K) does not belong to any variety of M since the rings
of the latter are M-reduced.

Let n = 1. In this case, M1(K) ∼= K. If char K = 0, then K ∼= Q by Lemma 19. If char K = p,
then K ∼= F̂p by Lemma 20.

Let now n > 1. The ring Mn(K), in this case, contains the skew field K as its proper subring.
Due to the minimal M-completeness of the ring Mn(K), the skew field K must be M-reduced. By
Lemma 4, being a simple ring, K must be isomorphic to a finite field Fpm for some p and m. It is
obvious that the ring Mn(Fpm) for n ≥ 3 contains a proper subring isomorphic to an M-complete
ring M2(Fpm), and therefore is not M-minimally complete. Hence, n = 2. If m > 1 then the ring
M2(Fpm) contains the M-complete proper subring M2(Fp). Thus, m = 1.

Finally, we show that the ring M2(Fp) is minimally M-complete. Consider any proper nonzero
M-complete subring R of a ring M2(Fp). Being finite, and therefore Artinian, a semisimple factor
ring R/J(R), by the Wedderburn-Artin theorem, is a direct sum of a finite number of matrix
rings over suitable skew fields. It is clear that, in our case, these skew fields must be finite fields.
But then the orders of the matrices included in the decomposition of the ring must be equal to
1. Being a direct sum of M-reduced fields, by Lemma 2.5 of [21], the ring R/J(R) must also be
M-reduced. But then it is clear that the subring R is not M-complete. Thus, the ring M2(Fp) has
no proper nonzero M-complete subrings; therefore, it is a minimally M-complete ring. �

Note that, in [23], it is indicated that Lemma 5 of [22] describing minimally complete rings
Mn(K) of all (n × n)-matrices over a skew field K, in the end, mistakenly states that such is
the ring M2(Fp) for any p. That this is not the case follows from the well-known representation
of finite fields by matrices (see, e.g., [14], p. 90): elements of a finite field Fpn of order pn can
be represented by square matrices of order n over the field Fp. Consequently, the ring M2(Fp)
contains a subring isomorphic to the complete field Fp2 and, therefore, is not a minimally complete
ring. As a consequence, rings of matrices of the form M2(Fp) for all p should be excluded from the
formulations of Lemma 5 and condition (2) of the theorem from [22]. Rings R for which the factor
ring R/pR is isomorphic to M2(Fp) also must be excluded from the formulation of condition (3) of
the same theorem. The exact formulation of the theorem from [22] is Theorem 4 of paper [29].

Corollary 9. A semisimple Artinian ring is minimally M-complete if and only if it is isomor-
phic either to the field Q of rational numbers or the algebraic closure F̂p of the field Fp or a ring
M2(Fp) for some prime p.

Lemma 22. A minimally M-complete finite ring R of a prime characteristic is semisimple by
Jacobson.

P r o o f. A ring R satisfying the conditions of Lemma 22 is an algebra of finite dimension over
a field Fp. The ring R/J(R) is minimally M-complete by Corollary 5. Therefore, by Corollary 9,
R/J(R) is the ring M2(Fp) of square matrices of order 2 over a finite field Fp for some p; i.e.,
R/J(R) is a central simple algebra. In any case, we get that the algebra is a separable algebra over
a field Fp. The field Fp is perfect; therefore, according to the Wedderburn–Maltsev theorem (see,
for example, Theorem 13.18 in [3], p. 575), R = J(R) ⊕ S, where S is a subalgebra of R and S is
isomorphic to R/J(R). Since the ring R/J(R) is M-complete and R is minimally M-complete, we
have R = S; i.e., R is a semisimple ring. �

Corollary 10. In a minimally M-complete finite ring R of characteristic pk, the equality
J(R) = pR is valid.
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P r o o f. In the ring R, the ideal pR is nilpotent; therefore, pR ⊆ J(R). On the other hand,
the ring R/pR is minimally M-complete by Lemma 5 and semisimple by Lemma 22. Hence,
J(R) ⊆ pR; i.e., J(R) = pR. �

Lemma 23. A minimally M-complete ring R of all matrices of some order over the Galois
ring is isomorphic to the ring M2(Zpk) for some prime p and k ∈ N.

P r o o f. For every Galois ring GR(pk,m), the factor ring

GR(pk,m)/pGR(pm, k) ∼= GR(p,m) = Fpm.

Note, that any Galois ring has a unit and therefore is an idempotent ring. By Corollary 8, the
matrix ring Mn(GR(pk,m)) is M-complete for any n ≥ 2. It follows that if R = Mn(GR(pk,m)) is
the minimally M-complete ring, then n = 2. By Lemma 2,

R/pR ∼= M2(GR(pk,m))/M2(pGR(pk,m)) ∼= M2(GR(p,m)) = M2(Fpm).

It follows from Lemma 21 that

R/pR ∼= M2(Fp) ∼= M2(GR(p, 1)).

But then
R ∼= M2(GR(pk, 1)) ∼= M2(Zpk).

Conversely, let R = M2(Zpk) for some prime p and k ∈ N. Then, R is a finite ring, for which

R2 = R and pkR = O. By Lemma 16, the ring R is minimally M-complete if and only if the ring
R/pR is minimally M-complete. Since R/pR ∼= M2(Fp) is minimally M-complete by Lemma 21,
we see that the ring R = M2(Zpk) is minimally M-complete. �

The main result of this section is the following modification of Theorem 1 from [22].

Theorem 6. (1) Any minimally M-complete nilpotent ring is isomorphic to the ring Q0 or
the ring C0

p∞ for some prime p.
(2) A simple ring with unit is minimally M-complete if and only if it is isomorphic to the field

Q of rational numbers or the algebraic closure F̂p of the field Fp or a ring M2(Fp) for some
prime p.

(3) A finite ring is minimally M-complete if and only if it is isomorphic to a matrix ring M2(Zpk)
for some prime p and k ∈ N.

P r o o f. (1) This statement of Theorem 6 is the content of Lemma 18.
(2) Let a simple ring with unit is M-minimally complete. Then, it is an Artinian ring (see, for

example, Corollary 4, [2], p. 196). But a simple Artinian ring is isomorphic to the ring of matrices
Mn(K) for some skew field K and a natural number n by the Wedderburn–Artin theorem. The
rest follows from Lemma 9.

(3) Let R be a finite minimally M-complete ring. It follows that the additive group of the ring
R is bounded. Then, by Theorem 1, R is a ring of characteristic pk for some prime p. The ring R
is nonnilpotent by Lemma 9. It follows that R is a ring with unity by Corollary 3.

By Corollary 6, the ring R/J(R) is also minimally M-complete. Then, R/J(R) ∼= M2(Fp) by
Corollary 9. By Theorem 2, the ring R contains a subring S isomorphic to the direct sum of full
matrix rings over Galois rings such that S/J(S) ∼= R/J(R). In the ring S, the equality J(S) = pS
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is valid. This means that S/pS ∼= M2(Fp). We obtain that S is a minimally M-complete subring
of the ring R by Lemma 16. Therefore, R = S.

Minimally M-complete rings of all matrices of some order over Galois rings are described in
Lemma 23. Hence, we get that R ∼= M2(Zpk) for some prime p and k ∈ N. �

6. Conclusion

The paper characterizes associative Artinian M-complete (Theorem 4), M-reduced (Theo-
rem 5), and some classes of minimally M-complete associative Artinian rings (Theorem 6). For
an exhaustive description of minimally M-complete Artinian rings, it is necessary to consider the
remaining unexplored case of Artinian rings of characteristic pk containing a subring isomorphic
to the algebraic closure F̂p of the field Fp. As examples show, such rings exist for any prime p and
k ∈ N.
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