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Abstract: For optimal stabilization of an autonomous linear system of differential equations with aftereffect
and impulse controls, the formulation of the problem in the functional state space is used. For a system with
aftereffect, approximating systems of ordinary differential equations proposed by S.N. Shimanov and J. Hale are
used. A method for constructing approximations for optimal stabilizing control of an autonomous linear system
with aftereffect and impulse controls is proposed. Matrix Riccati equations are used to find approximating
controls.
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1. Introduction

The control object is described as an autonomous linear system of differential equations with
aftereffect and impulse control

dx(t)

dt
=

0
∫

−τ

[dsη(s)]x(t + s) +Bu. (1.1)

Here, t ∈ R
+ = (0,+∞), x : [−τ,+∞) → R

n, τ > 0, B is a constant matrix of dimension n× r, the
matrix function η has bounded variation on [−τ, 0], and η(0) = 0. Impulse controls are generalized
functions defined by the formulas

u(t) =
dv(t)

dt
, t ∈ R

+,

in which control impulses v : [0,+∞) → R
r have bounded variations on any finite interval

and v(0) = 0.
For any initial function ϕ ∈ H, there is a unique solution x(t, ϕ), t ≥ −τ, to equation (1.1)

satisfying the condition x(t, ϕ) = ϕ(t), −τ ≤ t ≤ 0, and the integral equation

x(t) = ϕ(0) +

t
∫

0

(

0
∫

−τ

[dξη(ξ)]x(s + ξ)

)

ds+B (v(t)− v(+0)) , t ∈ R
+.

Here, H = L2([−τ, 0),R
n)× R

n is a Hilbert space of functions with the scalar product

〈ϕ,ψ〉H = ψ⊤(0)ϕ(0) +

0
∫

−τ

ψ⊤(ϑ)ϕ(ϑ)dϑ.
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Solutions to the integral equation are functions with bounded variations on any finite interval of
the positive semi-axis [0,+∞). They define generalized solutions to the differential equation (1.1).

Need to find an impulse control formed according to the feedback principle, which ensures stable
operation of system (1.1) and minimizes a given criterion for the quality of transient processes

J =

+∞
∫

0

(

x⊤(t)Cxx(t) + v⊤(t)Cvv(t)
)

dt, (1.2)

where Cx and Cv are positive definite matrices.
The problems of optimal stabilization of autonomous linear systems of differential equations

with aftereffects for non-impulse controls have been studied quite well [5, 8, 10, 11]. For impulse
controls, they were studied in [1, 6, 21]. Constructive procedures for constructing optimal stabilizing
controls are associated with finite-dimensional approximations of differential equations with afteref-
fects. In control problems and the theory of differential games for finite-dimensional approximations
of equations with aftereffects, systems of ordinary differential equations proposed by Krasovskii are
widely used. Approximations of optimal nonimpulse controls are constructed [4, 8, 12, 15]. An es-
timate of the accuracy of these approximations in the optimal stabilization problem for differential
equations with concentrated delay was obtained by Bykov and Dolgii [2]. In [7], for the problem
of optimal impulse stabilization, finite-dimensional approximations to a differential equation with
aftereffect proposed by Krasovskii were used.

Canonical approximations were used in the problem of optimal stabilization of systems of dif-
ferential equations with aftereffect and non-impulse controls in the works of Krasovskii and Os-
ipov [13, 17], Markushin and Shimanov [16], Pandolfi [18, 19], Bykov and Dolgii [3]. In this work,
when constructing approximations for optimal impulse stabilizing control, we use canonical approx-
imations to the differential equation with aftereffect.

2. Stabilization problem in a Hilbert state space

When solving the problem, it is convenient, following Krasovskii [14, p. 162], to move from a
finite-dimensional to an infinite-dimensional formulation, introducing functional elements

xt(ϑ) = x(t+ ϑ), ϑ ∈ [−τ, 0], t ≥ 0,

belonging to a separable Hilbert space H for solutions of system (1.1).
System (1.1) is associated with the differential equation

dxt

dt
= Axt +Bu, t ∈ R

+. (2.1)

Here, A : H → H is an unbounded operator with the domain

D(A) =
{

x ∈ H : x ∈ W
1
2([−τ, 0],R

n)
}

defined by the formulas

(Ax)(ϑ) =
dx(ϑ)

dϑ
, ϑ ∈ [−τ, 0), (Ax)(0) =

0
∫

−τ

[dsη(s)]x(s).

A bounded operator B : Rr → H is defined by the formulas

(Bu)(ϑ) = 0, ϑ ∈ [−τ, 0), (Bu)(0) = Bu.
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The quality criterion for transient processes corresponding to (1.2) has the form

J =

+∞
∫

0

(

〈Cxxt,xt〉H + v⊤(t)Cvv(t)
)

dt, (2.2)

where a bounded self-adjoint nonnegative operator Cx : H → H is defined by the formulas

(Cxx)(ϑ) = 0, ϑ ∈ [−τ, 0), (Cxx)(0) = Cxx(0).

Using the complexification of the space H, we will consider the scalar product

〈x,y〉H = y∗(0)x(0) +

0
∫

−τ

y∗(ϑ)x(ϑ) dϑ.

The eigenvalues of the operator A coincide with the roots of the characteristic equation

δ(λ) = det∆(λ) = 0, λ ∈ C, (2.3)

where (see [14, p. 164])

∆(λ) = λIn −

0
∫

−τ

[dsη(s)] exp(λs), λ ∈ C.

We will consider the nondegenerate case when the characteristic equation has a countable
number of roots λk, k ∈ N. To simplify further calculations, we will restrict ourselves to describing
the canonical expansion procedure only for differential equations (2.1), all roots of the characteristic
equations of which are simple. For any α ∈ R, a finite number of roots of equation (2.3) lie in the
half-plane

{λ ∈ C : Re (λ) > α}.

Consequently, they can be numbered in descending order of their real parts, and the numbers of
complex conjugate roots must differ by one. The sequence of roots of the characteristic equation
satisfies the condition Re (λn) → −∞ as n → +∞. For the general case, the theory of canonical
expansion is described in [9, 20].

Choose a positive integer N that satisfies requirement (A):

Re (λn) < 0, n > N.

Let H
N be the linear span of the eigenfunctions of the operator A corresponding to its eigen-

values belonging to the set

σN = {λ1, . . . , λN} ⊂ σ(A),

where λk ∈ C, k = 1, N , and σ(A) is the set of eigenvalues of the operator A. The projector
PN

(

PNH = H
N
)

defines the canonical decomposition of the space H into a direct sum, in which an
element x ∈ H uniquely defines the elements xN ∈ H and zN ∈ (I −PN )H such that x = xN +zN .

When constructing canonical approximations to the stabilization problem, the projection
method scheme is used. We use the complexification of state space elements x ∈ H and controls
u ∈ C

r. Applying the projector PN to equation (2.1) and taking into account the equalities

PNA = APN = AP2
N , xN = PNx,
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we obtain the approximating equation

dxN
t

dt
= ANxN

t +BNu, t ∈ R
+, (2.4)

where finite-dimensional operators AN : HN → H
N and BN : Cr → H

N are defined by the formulas
AN = APN and BN = PNB.

The new quality criterion corresponding to (2.2) has the form

JN =

+∞
∫

0

(

〈Cxx
N
t ,x

N
t 〉H + v∗(t)Cvv(t)

)

dt. (2.5)

3. Finite-dimensional optimal stabilization problem

The subspace H
N is topologically equivalent to the finite-dimensional Hilbert space C

N with
the inner product z∗y, where y, z ∈ C

N . Let the topological isomorphism be given by the mapping

πN : HN → C
N , xN = πNxN , xN ∈ H

N , xN ∈ C
N .

Using the mapping πN , we replace equation (2.4) in the spaces HN with an equivalent equation in
the space C

N

dxN

dt
= ANx

N +BNu, t ∈ R
+, (3.1)

where finite-dimensional operators AN : CN → C
N and BN : Cr → C

N are defined by the formulas

AN = πNANπ
−1
N , BN = πNBN .

The equivalent quality criterion corresponding to (2.5) has the form

JN =

+∞
∫

0

(

xN∗(t)CN
x x

N (t) + v∗(t)Cvv(t)
)

dt, (3.2)

where a finite-dimensional operator CN
x : CN → C

N is defined by the formula

CN
x = π−1∗

N Cxπ
−1
N .

Using the substitutions

u(t) =
dv(t)

dt
, yN (t) = xN (t)−BNv(t), t ∈ R

+, (3.3)

we replace the finite-dimensional problem of optimal impulse stabilization (3.1), (3.2) with the finite-
dimensional problem of optimal nonimpulse stabilization. It is posed for the system of differential
equations

dyN

dt
= ANy

N +ANBNv, t ∈ R
+, (3.4)

with new nonimpulse controls v and quality criterion corresponding to (3.2) of the form

ĴN =

+∞
∫

0

(

yN∗(t)CN
yyy

N (t) + 2yN∗(t)CN∗

yv v
N (t) + v∗(t)CN

vvv(t)
)

dt, (3.5)
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where
CN
yy = CN

x , CN
yv = CN

x BN , CN
vv = Cv +B∗

NC
N
x BN .

Assume that, for the problem of optimal non-impulse stabilization (3.4), (3.5) the matrix Riccati
equation,

KNAN +A∗

NK
N +CN

x −
(

KNAN +CN
x

)

C̃N
vv

(

A∗

NK
N + CN

x

)

= 0,

C̃N
vv = BN

(

CN
vv

)−1
B∗

N ,
(3.6)

has a unique positive definite solution KN . Then the optimal stabilizing control of prob-
lem (3.4), (3.5) is defined by the formula

vNo[yN ] = −
(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

)

yN , yN ∈ C
N . (3.7)

Using formula (3.7), we find optimal stabilizing impulse controls of problem (3.1), (3.2).

Theorem 1. Let the matrix Riccati equation (3.6) have a unique positive definite solution KN

and
det

(

Cv −B∗

NA
∗

NK
NBN

)

6= 0.

Then the optimal stabilizing impulse control of problem (3.1), (3.2) is defined by the formula

uNo[t, xN0 , x
N ] = −

(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

) (

xN0 δ(t) +ANx
N
)

, xN ∈ C
N , (3.8)

where δ(·) is the Dirac function.

P r o o f. Using formulas (3.7) and (3.3), we obtain

vN (t) = −
(

CN
vv

)−1
B∗

N

(

A∗

NK
N +CN

x

) (

xN (t)−BNv
N (t)

)

, t ∈ R
+, xN ∈ C

N ,

or
(

Ir −
(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

)

BN

)

vN (t) =

−
(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

)

xN (t), t ∈ R
+, xN ∈ C

N .

Taking into account the equality

IN −
(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

)

BN =
(

CN
vv

)−1 (
Cv −B∗

NA
∗

NK
NBN

)

and the condition
det

(

Cv −B∗

NA
∗

NK
NBN

)

6= 0,

we get

vN (t) = −
(

Cv −B∗

NA
∗

NK
NBN

)−1
B∗

N

(

A∗

NK
N + CN

x

)

xN (t),

t ∈ R
+, vN (0) = 0, xN ∈ C

N .

The control vN is differentiable on the positive semi-axis R+ and has a unique discontinuity point
of the first kind t = 0 with a limit value

vN (+0) = −
(

Cv −B∗

NA
∗

NK
NBN

)−1
B∗

N

(

A∗

NK
N + CN

x

)

xN0 .

As a result, the impulse control of problem (3.1), (3.2) is defined by the formula

uN (t) = −
(

Cv −B∗

NA
∗

NK
NBN

)−1
B∗

N

(

A∗

NK
N + CN

x

)

(

xN0 δ(t) +
dxN (t)

dt

)

, t ≥ 0, xN ∈ C
N .

Using (3.1), we obtain the equality

uN (t) = −
(

Cv −B∗

NA
∗

NK
NBN

)−1
B∗

N

(

A∗

NK
N + CN

x

) (

xN0 δ(t) +ANx
N (t) +BNu

N (t)
)

,

t ≥ 0, xN ∈ C
N .

This explains the validity of formula (3.8), which completes the proof of the theorem. �
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4. Stabilizing impulse control of a system of differential equations with

aftereffect

Using formula (3.8) and the connection between elements of the spaces HN and C
N , we find a

stabilizing control for an autonomous linear system of differential equations with aftereffect.

Theorem 2. Let requirement (A) and the conditions of Theorem 1 be satisfied. Then the
control

uNo[t, ϕ,xt] = −
(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

)

(πNϕδ(t) +ANπNxt) , ϕ,xt ∈ H, t > 0, (4.1)

is stabilizing for the system of differential equations with aftereffect (1.1).

P r o o f. For control (4.1), the differential equation (2.1) takes the form

dxt

dt
= (A−DNANπ)xt −DNπϕδ(t), t ∈ R

+.

Here

(DNv) (ϑ) = 0, ϑ ∈ [−τ, 0), (DNv) (0) = BN

(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

)

v, v ∈ C
N .

Using the canonical expansion of the space H, we obtain the system of differential equations

dxN
t

dt
= (APN − PNDNANπ)x

N
t − PNDNπϕδ(t),

dzNt
dt

= A (I − PN ) zNt − (I − PN )DNANπx
N
t − (I − PN )DNπϕδ(t), t ≥ 0

with the initial conditions
xN
0 = PNϕ, zN0 = (I − PN )ϕ.

The control used guarantees exponential boundedness of the solutions of the first subsystem
with negative exponents. The evolutionary operator TN (t), t ∈ R

+, of the homogeneous part of
the first subsystem is exponentially bounded with a negative exponent, according to the chosen
canonical expansion [9, p. 170].

The solution of the second subsystem is defined by the formula [9, p. 185]

zNt = TN (t) (I − PN )ϕ−

t
∫

0

TN (t− s) (I − PN )DN

(

ANπx
N
s − πϕδ(s)

)

ds

= TN (t) (I − PN ) (ϕ−DNπϕ)−

t
∫

0

TN (t− s) (I − PN )DNANπx
N
s ds, t ∈ R

+.

This implies that the solutions of the second subsystem with negative exponents are exponentially
bounded, which completes the proof of the theorem. �

Let us consider the eigenfunctions ϕi, i = 1, N, corresponding to the eigenvalues λi, i = 1, N,
of the operator A. Due to their linear independence, they define the basis of the subspace HN . The
eigenfunctions of the operator A are defined by the formulas

ϕk(ϑ) = exp(λkϑ)ϕ̂
k, ϑ ∈ [−τ, 0],
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where ϕ̂k are nontrivial solutions to the algebraic system

(

λkIN −

0
∫

−τ

[dsη(s)] exp(λks)

)

ϕ̂k = 0, k = 1, N.

To find a coordinate representation of the projector PN in the selected basis, it is necessary to
consider for it a biorthogonal system of functions {ψj}Nj=1. The unbounded operator A has a dense
domain in the space H. Therefore, there is an unbounded conjugate operator A∗ : H → H with the
domain

D(A∗) =
{

y ∈ H : ỹ ∈ W
1
2([−τ, 0],C

n), ỹ(ϑ) = y(ϑ) − η⊤(ϑ)y(0),

ϑ ∈ [−τ, 0], ỹ(−τ) + η⊤(−τ)y(0) = 0
}

.

It is defined by the formulas

(A∗y)(ϑ) = −
dỹ(ϑ)

dϑ
, ϑ ∈ [−τ, 0), (A∗y)(0) = ỹ(0).

The eigenfunctions of the operator A∗ corresponding to its eigenvalues λ̄k, k ∈ N, are defined by
the formulas

ψk(ϑ) = exp(−λ̄kϑ)

(

λ̄kIN −

0
∫

ϑ

[dsη
⊤(s)] exp(λ̄ks)

)

ψ̂k,

ϑ ∈ [−τ, 0), ψk(0) = ψ̂k,

where ψ̂k are nontrivial solutions to the algebraic system

(

λ̄kIN −

0
∫

−τ

[dsη
⊤(s)] exp(λ̄ks)

)

ψ̂k = 0, k = 1, N.

The requirement of simplicity of the eigenvalues of the operator A imposed above generates the
biorthogonality of the system of eigenfunctions {ψj}Nj=1 of the operator A∗ with respect to the

system of eigenfunctions {ϕi}Ni=1 of the operator A. For the fulfilment of the conditions 〈ϕi, ψj〉H =
δij , where δij , i, j = 1, N, is the Kronecker symbol, it is necessary that

1 = 〈ϕi, ψi〉H = ψ̂i∗

(

In −

0
∫

−τ

[dsη
⊤(s)]s exp(λis)

)

ϕ̂i, i = 1, N.

These normalization conditions can be ensured by freedom in choosing the vectors ψ̂i, i = 1, N.
Let us define a coordinate representation of the projector PN by the formulas

PNx =

N
∑

k=1

ykϕ
k = xN =

N
∑

k=1

〈xN , ψk〉Hϕ
k, x ∈ H, xN ∈ H

N , {yk}
N
k=1 = yN ∈ C

N .

The topological isomorphism πN : HN → C
N is defined by the formulas

πNxN = {〈xN , ψk〉H}Nk=1 = yN , π−1
N yN =

N
∑

k=1

ykϕ
k = xN , x ∈ H, xN ∈ H

N , yN ∈ C
N .
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We have the estimates

‖πN‖ ≤

( N
∑

k=1

‖ψk‖2
)1/2

, ‖π−1
N ‖ ≤ λmax,

where λmax is the spectral radius of the matrix {〈ϕk, ϕm〉H}Nk,m=1.

Theorem 3. If the conditions of Theorem 2 hold, then the stabilizing controls for the system
of differential equations with aftereffect (1.1) are defined by the formulas

uNo[t, ϕ,xt] = −
(

CN
vv

)−1
B⊤

N
∑

i,j=1

ψ̂i
(

λ̄iK
N
ij + ϕ̂i∗Cxϕ̂

j
) (

〈ϕ,ψj〉Hδ(t) + λj〈xt, ψ
j〉H

)

,

ϕ,xt ∈ H, t > 0,

(4.2)

where

CN
vv = Cv +B⊤

N
∑

i,j=1

ψ̂iϕ̂i∗Cxϕ̂
jψ̂j∗B.

P r o o f. Using the coordinate representations of the projector PN and the topological iso-
morphism πN , we find the following coordinate representations for the operators:

ANxN = APNxN =
N
∑

i=1

〈xN , ψi〉HAϕi =
N
∑

i=1

λi〈x
N , ψi〉Hϕ

i, xN ∈ H
N ,

ANyN = πNANπ
−1
N yN = πN

N
∑

i=1

λi〈

N
∑

k=1

ykϕ
k, ψi〉Hϕ

i =

N
∑

i=1

λiyiπNϕ
i

=

N
∑

i=1

λiyi{〈ϕ
i, ψk〉H}Nk=1 = {λkyk}

N
k=1, yN ∈ C

N ,

BNu = πNBNu = πNPNBu = πN

N
∑

i=1

ψ̂i∗BuπNϕ
i

=

N
∑

i=1

ψ̂i∗Bu{〈ϕi, ψk〉H}Nk=1 = {ψ̂k∗Bu}Nk=1, u ∈ C
r,

CN
x yN = π−1∗

N Cxπ
−1
N yN =

{

〈Cxπ
−1
N yN , ϕi〉H

}N

i=1

=
{

ϕ̂i∗
(

Cxπ
−1
N yN

)

(0)
}N

i=1
=

{

N
∑

k=1

ϕ̂i∗Cxϕ̂
kyk

}N

i=1
, yN ∈ C

N .

Using these formulas, from (4.1) we obtain (4.2), which completes the proof of the theorem. �

As the positive integer N increases, the constructed stabilizing controls approximate the optimal
impulse controls for the autonomous linear system of differential equations with aftereffect (1.1).

5. Conclusion

Approximations to an optimal impulse stabilizing control for an autonomous linear system of
differential equations with aftereffect have been constructed. Evaluating the accuracy of approxi-
mations to an optimal impulse stabilizing control is a challenging problem.
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