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Abstract: The paper is devoted to the optimal control problem for a linear system with integrally constrained
control function. We study the problem of minimization of a linear terminal cost with terminal constraints given
by a set of linear inequalities. For the solution of this problem we propose two-stage numerical algorithm, which
is based on construction of the reachable set of the system. At the first stage we find a solution to finite-
dimensional optimization problem with a linear objective function and linear and quadratic constraints. At the
second stage we solve a standard linear-quadratic control problem, which admits a simple and effective solution.
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Introduction

The optimal control problems under integrally constrained controls were studied in many papers
(see, for example, [1, 5, 7–9,12,13]). In [2, 3] the authors considered the linear control system with
integrally constrained control. They studied the problem of minimization of a linear terminal cost
under linear terminal constraints and proposed a saddle-point method to solve it.

We propose here a two-stage numerical algorithm for the solution of above optimal control
problem. It is based on constructing the reachable set of the control system, and we use here
the well-known result that this set for a linear control system with integral quadratic constraints
on controls is an ellipsoid in the state space. Then, at the first stage, we find a minimum of a
linear function on the intersection of the polyhedron and ellipsoid. This problem may be solved
numerically in different ways. At the second stage, we solve the standard linear-quadratic control
problem with fixed endpoints of the trajectory, this problem has a simple and effective solution in
the linear case. The typical unpleasant feature of the optimal control problem with terminal cost
is a nonuniqueness of solutions, which always takes place if the endpoint of the optimal trajectory
belongs to the interior of the reachable set. This leads to additional difficulties in the construction
and implementation of numerical algorithms. The method proposed here avoids these problems.

1The research is supported by Russian Science Foundation, project no. 16–11–10146.
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1. Notation and problem statement

We use the following notations. By A⊤ we denote the transpose of a real matrix A, 0 stands for
a zero vector of appropriate dimension, I is an identity matrix. For x, y ∈ R

n let (x, y) = x⊤y be

the inner product, x⊤ = (x1, . . . , xn), ‖x‖ = (x, x)
1

2 be the Euclidean norm, and Br(x̄): Br(x̄) =
{x ∈ R

n : ‖x − x̄‖ ≤ r} be a ball of radius r > 0 centered at x̄. For a set S ⊂ R
n let ∂S, intS,

clS, coS be a boundary, an interior, a closure, and a convex hull of S respectively; ∇g(x) is the
gradient of a function g(x) at the point x, ∂f

∂x
(x) is the Jacobi matrix of a vector-valued function

f(x). For a real k ×m matrix A a matrix norm is denoted as ‖A‖k×m. The symbols L1, L2 and
C stand for the spaces of summable, square summable and continuous functions respectively. The
norms in these spaces are denoted as ‖ · ‖L1

, ‖ · ‖
L2
, ‖ · ‖

C
.

We consider a linear control system with integral constraints on a controls

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ [t0, t1], x(t0) = x0, (1.1)

where x ∈ Rn, u(t) ∈ Rr, A(t), B(t) are integrable on [t0, t1] matrix functions. Let the control
constraints are defined by the integral quadratic inequality

u(·) ∈ U =

{

u(·) ∈ L2 : J(u(·)) = ‖u(·)‖2L2
=

∫ t1

t0

u⊤(t)u(t)dt ≤ µ2
}

, (1.2)

where µ > 0 is a given number. For any u(·) ∈ L2 there exists a unique absolutely continuous
solution x(t) of system (1.1), which is defined on interval [t0, t1].

Assume that m × n–matrix D, vectors d ∈ R
m and c ∈ R

n are given. We consider here the
following optimal control problem for system (1.1):

I(u(·)) = c⊤x(t1) → min, (1.3)

under constraints
u(·) ∈ U, Dx(t1) ≤ d. (1.4)

Definition 1. The reachable set G(t1) of system (1.1) at time instant t1 is a set of all states

x(t1) that can be reached by the trajectories of (1.1) corresponding to controls u(·) ∈ U :

G(t1) = {x ∈ R
n : ∃u(·) ∈ U, x = x(t1)},

where x(t) is a solution of (1.1).

The considered optimization problem may be split into two following subproblems.

Problem 1 (the first stage): to find x∗ ∈ R
n that solves the finite-dimensional optimization

problem
c⊤x→ min,

under constraints

x ∈ G(t1), Dx ≤ d.

Here the reachable set G(t1) is an ellipsoid in R
n those parameters are calculated effectively. Thus,

the optimization Problem 1 may be solved by employing the methods of linear or convex program-
ming.

Problem 2 (the second stage): to find a control u(·) ∈ U that steers the trajectory x(t) of (1.1)
to point x(t1) = x∗ and minimizes functional J(u(·)).
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2. Description of reachable sets

Let X(t, τ) = Φ(t)Φ−1(τ), where Φ(t) is a Cauchy matrix, satisfying the equation

Φ̇(t) = A(t)Φ(t), Φ(t0) = I.

A solution of (1.1) at time instant t1 has the form

x(t1) = x̂+

∫ t1

t0

X(t1, τ)B(τ)u(τ)dτ, (2.1)

where x̂ = X(t1, t0)x
0. Take an arbitrary vector l ∈ R

n, l 6= 0 and calculate the maximum of inner
product (l, x(t1)) over all x(t1) ∈ G(t1):

max
x(t1)∈G(t1)

(l, x(t1)) = l⊤x̂+ max
u(·)∈U

∫ t1

t0

l⊤X(t1, τ)B(τ)u(τ)dτ = l⊤x̂+ max
〈u(·),u(·)〉≤µ2

〈v(·), u(·)〉 =

= l⊤x̂+ µ‖v(·)‖
L2

= µ
√

l⊤W (t1)l + l⊤x̂.

Here v(t) = B⊤(t)X⊤(t1, t)l,

〈v(·), u(·)〉 =

∫ t1

t0

v⊤(t)u(t)dt

is an inner product of functions v(·), u(·) in the Hilbert space L2, and symmetric matrix W (t) is
defined by the equality

W (t) =

∫ t

t0

X(t, τ)B(τ)B⊤(τ)X⊤(t, τ)dτ.

Differentiating the last equality in t we get the following matrix differential equation for W :

Ẇ (t) = A(t)W (t) +W (t)A⊤(t) +B(t)B⊤(t), W (t0) = 0. (2.2)

It is known (see, for example, [10]), that system (1.1) is completely controllable on [t0, t1], if and
only if W (t1) is positive definite. In this case G(t1) is a nondegenerate ellipsoid

G(t1) = {(x− x̂)⊤W−1(t1)(x− x̂) ≤ µ2}.

If the system is not completely controllable, the reachable set is a degenerate ellipsoid (ellipsoid,
lying in a subspace of dimension less than n). It is obvious, that x ∈ ∂G(t1) if and only if there
exists a vector l 6= 0 such that (l, x) = maxy∈G(t1)(l, y), and hence, a control u(·) steering the
system trajectory to point x satisfies the relation

∫ t1

t0

l⊤X(t, τ)B(τ)u(τ)dτ = max
〈u(·),u(·)〉≤µ2

〈v(·), u(·)〉, (2.3)

where v(t) is defined above. If the system is completely controllable, v(·) 6= 0 and the equality (2.3)
uniquely determines u(t) = αv(t), where α = µ/‖v(·)‖L2

. Denote p(t) = αX⊤(t1, t)l, assuming that
p(t) is a nontrivial solution of the adjoint differential equation ṗ(t) = −A⊤(t)p(t) and the relations

u(t) = B⊤(t)p(t), J(u(·)) = µ2

hold. Define a Hamiltonian H(p, t, x, u) by the expression

H(p, t, x, u) = −
1

2
u⊤u+ p⊤(A(t)x+B(t)u).
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Equating to zero the gradient of H(p(t), t, x(t), u) in u, from the concavity of the Hamiltonian in u
we get that control u(t) = B⊤(t)p(t) satisfies the maximum principle

H(p(t), t, x(t), u(t)) = max
v∈Rr

H(p(t), t, x(t), v),

where p(t) is a nontrivial solution of the adjoint differential equation

ṗ(t) = −
∂H

∂x
(p(t), t, x(t), u(t)).

This form of the maximum principle corresponds to the problem of minimization of a convex
functional J(u(·)) on solutions of linear system (1.1)

J(u(·)) → min, x(t0) = x0, x(t1) = x. (2.4)

Since for a linear-convex optimal control problem the maximum principle provides necessary and
sufficient optimality conditions, a control u(t) = B⊤(t)p(t), found from the maximum principle,
solves problem (2.4). Inversely, let u(·) be the solution to problem (2.4) and let J(u(·)) = µ2. Then
we will have x ∈ G(t1). Indeed, if we assume that x /∈ ∂G(t1), then

(x− x̂)⊤W−1(t1)(x− x̂) = ν2 < µ2.

Hence, the control system can be transferred to the point x by the control v(·), for this control we
have J(v(·)) ≤ ν2 < µ2 which contradicts to the optimality of u(t). Thus, we come to the following
statement.

Assertion 1. Let system (1.1)4 be completely controllable. In order to control u(·) steers a

trajectory of system (1.1) to point x, lying on the boundary of the reachable set G(t1), it is necessary
and sufficient that this control solves the extremal problem (2.4) and the minimum of functional J
equals to µ2.

3. The algorithm of solving the optimal control problem

Having the parameters of the reachable set given, let us describe the algorithm of the solution
of the problem. Consider system (1.1) and assume that it is completely controllable. Then, at the
first stage, we should solve the Problem 1

c⊤x→ min,

Dx ≤ d,

(x− x̂)⊤W−1(t1)(x− x̂) ≤ µ2.

(3.1)

The problem (3.1) is a linear programming problem with an additional constraint, which is defined
by an inequality with a positive definite quadratic form. This problem may be solved by various
algorithms. For example, in [11] the authors proposed a finite convergent algorithm for solution of
the problem of type (3.1).

The second way of finding the solution concerns with description of the ellipsoidal reachable
set via its support function:

G(t1) = {x ∈ R
n : (l, x) ≤ ψ(l), ∀l ∈ S},

where the support function has the form

ψ(l) = µ
√

l⊤W (t1)l + (x̂, l),
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with S = {l : ‖l‖ = 1}. Then, the problem (3.1) may be written as follows

c⊤x→ min,

Dx ≤ d, l⊤x− ψ(l) ≤ 0, l ∈ S.
(3.2)

The problem (3.2) is a semi-infinite linear programming problem [6], which can be solved by a
number of effective numerical algorithms.

Choosing a finite grid of N vectors li ∈ S, we can approximate the problem (3.2) by the
following linear programming problem with a finite number of constraints

c⊤x→ min,

Dx ≤ d, li
⊤x− ψ(li) ≤ 0, i = 1, ..., N.

(3.3)

Let a solution x∗ of problem (3.1) ((3.2), (3.3)) be obtained (this solution is unique as a rule).
Then we come to the next stage: to find the solution of the next problem

J(u(·)) → min, x(t0) = x0, x(t1) = x∗. (3.4)

For completely controllable system this solution does exist and is unique. It may be obtained from
the maximum principle:

u(t) = B⊤(t)p(t), ṗ = −A⊤(t)p(t), p1 = p(t1). (3.5)

Represent p(t) as follows
p(t) = X⊤(t1, t)p

1,

then we have

x(t1) = x̂+

∫ t1

t0

X(t1, τ)B(τ)B⊤(τ)X⊤(t1, τ)p
1dτ = x∗. (3.6)

Thus, to find an optimal control it is sufficient:
1) to find a vector p1 from the linear equation

W (t1)p
1 + x̂ = x∗, (3.7)

2) to integrate adjoint equation (3.5) with boundary condition p(t1) = p1 and substitute p(t) into
the formula for u(t).

We can put from the very beginning x(t1) = x̂ + W (t1)p
1 and solve a semi-infinite linear

programming problem in the dual variables p1

c⊤W (t1)p
1 → min

DW (t1)p
1 ≤ d−Dx̂, l⊤W (t1)p

1 − µ
√

l⊤W (t1)l ≤ 0, l ∈ S.
(3.8)

The last form is more convenient, it may be used even in the case of degenerate matrix W (t1).
Really, it is known [8] that if there exists a control from L2 that steers the control system from
x0 to x∗, than control u(·) solving the problem (3.4) is a linear combination of columns of matrix
B⊤(τ)X⊤(t1, τ). That is

u(τ) = B⊤(τ)X⊤(t1, τ)p
1

for some p1 ∈ R
n. Substituting the control u(t) into equality (3.6) we get (3.7). Thus, the following

theorem holds.

Theorem 1. Assume that the system of constraints (1.1), (1.4) is consistent. Then the optimal

control in the problem (1.3)–(1.4) is given by formulas (3.5), where p1 is a solution to the linear

semi-infinite optimization problem (3.8).
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4. Example
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Figure 1. Graphs of optimal controls

Consider an illustrative example of optimal
control problem for a linear control system de-
scribed by the equations

ẋ1 = x2,

ẋ2 = −x1 + x3, (4.1)

ẋ3 = u

with t0 = 0, t1 = 2π and x0 = (1, 0, 0)⊤.
We consider the integral quadratic constraints

on controls given by the inequality (1.2) with µ2 = 1.

Assume a matrix D and a vector d that determine the terminal constraints are

D =





0 1 0
0 −1 0
0 0 −1



 , d =





1
1
0



 .

Integrating a differential equations (2.2) for matrix W and calculating vector x̂ we get

W (2π) =





9.4264 0.0005 6.2831
0.0005 3.1399 0.0000
6.2831 0.0000 6.2832



 , x̂ =





1
0
0



 .

Let the terminal cost is determined by vector c = (0, 2, 2)⊤. Solving the problem (3.1) we get the
solution

x∗ = (0.9993,−1.0000, 0.0000)⊤ , p1 = (−0.0002,−0.3185, 0.0002)⊤ .

The graph of the optimal control is shown in Figure 1 by the black line. Here x∗ is the interior
point of the reachable set, so there are infinitely many admissible control inputs that steer the
trajectories to point x∗. Among these inputs the considered control input has a minimal value of
the integral functional J(u(·)) which equals to 0.3185.

Consider another case and put c = (1, 0, 0)⊤. In this case we have the following solution

x∗ = (−0.7729,−0.0003, 0.0000)⊤ , p1 = (−0.5640,−0.0000, 0.5640)⊤ .

Here (x∗ − x̂)⊤W−1(2π)(x∗ − x̂) = 1, hence x∗ belongs to the boundary of the reachable set. In
this case there exists a unique optimal control input which is shown in Figure 1 by the blue line.

5. Further generalizations

Consider here the generalized statement for the previous problem. We assume that integral
constraints restrict simultaneously a control and a trajectory of system (1.1) as follows

J(u(·)) =
1

2

∫ t1

t0

(

x⊤(t)Q(t)x(t) + u⊤(t)R(t)u(t)
)

dt ≤
µ2

2
, (5.1)

where Q(t) is a nonnegative definite and R(t) is a positive definite matrix for every t ∈ [t0, t1].
Suppose Q(t) and R(t) to be the measurable and bounded matrix functions.
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Assume that a pair (A(t), B(t)) is completely controllable on [t0, t1]. Let x(t0) = x0 be fixed
and let x ∈ G(t1). The set of trajectories satisfying inequality (5.1) is a compact set in C. Hence,
there exists the solution to the problem

J(u(·)) → min, x(t0) = x0, x(t1) = x,

this solution is unique due to strict convexity of the functional J(u(·)).
Consider a Hamiltonian

H(t, x, u, (p0, p)) = −p0
1

2

(

x⊤Q(t)x+ u⊤R(t)u
)

+ p⊤(A(t)x+B(t)u).

According to the maximum principle (see, for example, [4, 10]) there exist (p0, p(·)) 6= 0 such that
u(t) maximizes a Hamiltonian, hence we have ∂H

∂u
= 0 and

ṗ(t) = −
∂H

∂u
= −A⊤(t)p(t) + p0Q(t)x.

Assuming p0 = 0, we get p(·) 6= 0. Then p(t) is a nonzero solution of the equation

ṗ(t) = −A⊤(t)p(t),

and the condition ∂H/∂u = 0 implies the equality p⊤(t)B ≡ 0, this contradict to the controllability
conditions. Thus, p0 6= 0, so we can take p0 = 1. In this case we have

u(t) = R−1(t)B⊤(t)p(t). (5.2)

Substituting control (5.2) into equations of the control system we get

ẋ = A(t)x+B(t)R−1(t)B⊤(t)p,

ṗ = −A⊤(t)p+Q(t)x.
(5.3)

Thus, (5.3) is a linear homogeneous system of differential equations

(

ẋ
ṗ

)

=

(

A(t) B(t)R−1(t)B(t)
Q(t) −A⊤(t)

)(

x
p

)

. (5.4)

The solution of (5.4) with the initial state x(t0) = x0, p(t0) = p0 has the form

(

x(t)
p(t)

)

= Y (t)

(

x0

p0

)

,

where Y (t) is the fundamental matrix of system (5.4) satisfying the initial condition Y (t0) = I.
Representing Y (t) as a block matrix

Y (t) =

(

Y11(t) Y12(t)
Y21(t) Y22(t)

)

,

we will have
x(t) = Y11(t)x

0 + Y12(t)p
0,

p(t) = Y12(t)x
0 + Y22(t)p

0,

x = x(t1) = Y11(t1)x
0 + Y12(t1)p

0,

u(t) = R−1(t)B⊤(t)
(

Y12(t)x
0 + Y22(t)p

0
)

.

(5.5)
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Substituting x(t) and u(t) into J(u) we get

J(u(·)) =
1

2

∫ t1

t0

[

(

x0
⊤
Y11

⊤(t) + p0
⊤
Y12

⊤(t)
)

Q(t)
(

Y11(t)x
0 + Y12(t)p

0
)

+
(

x0
⊤
Y12

⊤(t) + p0
⊤
Y22

⊤(t)
)

B(t)R−1⊤(t)B⊤(t)
(

Y12(t)x
0 + Y22(t)p

0
)

]

dt ≤
µ2

2
,

or

x0
⊤
S11x

0 + x0
⊤
S12p

0 + p0
⊤
S22p

0 ≤ µ2, (5.6)

where

S11 =

∫ t1

t0

(

Y11
⊤(t)Q(t)Y11(t) + Y12

⊤(t)B(t)R−1(t)B⊤(t)Y12
⊤(t)

)

dt,

S12 = 2

∫ t1

t0

(

Y11
⊤(t)Q(t)Y12(t) + Y12

⊤(t)B(t)R−1(t)B⊤(t)Y22
⊤(t)

)

dt,

S22 =

∫ t1

t0

(

Y12
⊤(t)Q(t)Y12(t) + Y22

⊤(t)B(t)R−1(t)B⊤(t)Y22
⊤(t)

)

dt.

Matrices S11, S22 are, obviously, nonnegative definite.

Assertion 2. If the pair (A(t), B(t)) is completely controllable on [t0, t1] then S22 is a positive

definite matrix.

P r o o f. Suppose to the contrary that there exists p0 6= 0 : S22p
0 = 0. Let us take x0 = 0 and

α ∈ R. Denote

p̄(t) = Y22(t)p
0, ū(t) = R−1B⊤(t)p̄(t), x̄(t) = Y12(t)p

0.

Multiply p0 on α, then αū(t) satisfies (5.1), that is

α2

∫ t1

t0

ū⊤(t)R(t)ū(t)dt ≤
µ2

2

for any α, this implies ū(t) ≡ 0, that is B⊤(t)p̄(t) ≡ 0. To zero controller ū(t) and state x0 = 0
there corresponds the trajectory x̄(t) ≡ 0. Hence, from the equations of adjoint system we get

˙̄p(t) = −A⊤(t)p̄(t) +Q(t)x̄(t) = −A⊤(t)p̄(t).

Thus, p̄(t) is a nonzero solution of the adjoint homogenous system such that p̄⊤(t)B(t) ≡ 0. This
contradicts to the controllability of the system.

In the last case the problem (3.1) may be written as follows

c̄⊤p0 → min

D̄p0 ≤ d̄, p0
⊤
S22p

0 + x0
⊤
S12p

0 ≤ µ2 − x0
⊤
S11x

0,
(5.7)

where

c̄⊤ = c⊤Y12(t1), D̄ = DY12(t1), d̄ = d−DY11(t1)x
0.

This is also a problem of the above type with the linear constraints and one quadratic constraint.
Solving this problem we can obtain an optimal control by the explicit formulas (5.5).

The reduction of the integral constraints to quadratic constraint (5.6) allows us to easily gen-
eralize the considered problem to the case, when x0 is not fixed but belongs to some polyhedron.
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6. Conclusion

We consider an optimal control problem for a linear system with integrally constrained control,
with a linear terminal cost and with terminal constraints given by a set of linear inequalities. This
problem is, in fact, the ill-posed problem because of nonuniqueness of optimal control, which always
takes place if the end point of the optimal trajectory belongs to the interior of the reachable set of
the control system. We propose here a simple numerical algorithm for solving the optimal control
problem, which uses a known explicit description of the reachable sets for linear systems with
integral quadratic constraints on control functions. The algorithm is based on the reduction of
considered problem to the solution of a finite-dimensional convex programming problem in primal
or dual variables. This method allows to avoid difficulties related to nonuniqueness of optimal
control.
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