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Abstract: Some inequalities between the best simultaneous approximation of functions and their interme-
diate derivatives, and the modulus of continuity in a weighted Bergman space are obtained. When the weight
function is γ(ρ) = ρα, α > 0, some sharp inequalities between the best simultaneous approximation and an mth
order modulus of continuity averaged with the given weight are proved. For a specific class of functions, the
upper bound of the best simultaneous approximation in the space B2,γ1 , γ1(ρ) = ρα, α > 0, is found. Exact

values of several n-widths are calculated for the classes of functions W
(r)
p (ωm, q).
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1. Introduction

Extremal problems of polynomial approximation of functions in a Bergman space were studied,
for example, in [8, 13–15]. Here, we will continue our research in this direction and study the
simultaneous approximation of functions and their intermediate derivatives in a weighted Bergman
space based on the works [4–6, 10]. Note that the problem of simultaneous approximation of
periodic functions and their intermediate derivatives by trigonometric polynomials in the uniform
metric was studied by Garkavi [1]. In the case of entire functions, this problem was studied by
Timan [12].

To solve the problem, we first will prove an analog of Ligun’s inequality [2].

Let us introduce the necessary definitions and notation to formulate our results. Let

U := {z ∈ C : |z| < 1}

be the unit disk in C, and let A(U) be the set of functions analytic in the disk U . Denote by B2,γ

the weighted Bergman space of analytic functions f ∈ A(U) such that [8]

‖f‖2,γ :=

(

1

2π

∫∫

(U)
|f(z)|2γ(|z|)dσ

)1/2

<∞, (1.1)

dσ is an area element, γ := γ(|z|) is a nonnegative measurable function that is not identically zero,
and the integral is understood in the Lebesgue sense. It is obvious, that the norm (1.1) can be
written in the form

‖f‖2,γ =

(

1

2π

∫ 1

0

∫ 2π

0
ργ(ρ)|f(ρeit)|2dρdt

)1/2

.
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In the particular case of γ ≡ 1, Bq := Bq,1 is the usual Bergman space. The mth order modulus of
continuity in B2,γ is defined as

ωm(f, t)2,γ = sup
{

‖∆m(f, ·, ·, h)‖2,γ : |h| ≤ t
}

=

= sup

{(

1

2π

∫ 1

0

∫ 2π

0
ργ(ρ)|∆m(f ; ρ, u, h)|2dρdu

)1/2

: |h| ≤ t

}

,

where

∆m(f ; ρ, u, h) =

m
∑

k=0

(−1)kCk
mf

(

ρei(u+kh)
)

.

Let Pn be the set of complex polynomials of order at most n. Consider the best approximation of
functions f ∈ B2,γ :

En−1(f)2,γ = inf
{

‖f − pn−1‖2,γ : pn−1 ∈ Pn−1

}

Denote by B
(r)
2,γ and B

(r)
2 , r ∈ N the class of functions f ∈ A(U) whose rth order derivatives

f (r)(z) = drf/dzr

belong to the spaces B2,γ and B2, respectively. Define

αn,r = n(n− 1) · · · (n − r + 1), n > r.

It is well known [7, 8] that the best approximation of functions

f =

∞
∑

k=0

ck(f)z
k ∈ B2,γ

is equal to

En−1(f)2,γ =

( ∞
∑

k=n

|ck(f)|
2

∫ 1

0
ρ2k+1γ(ρ)dρ

)1/2

,

En−s−1

(

f (s)
)

2,γ
=

( ∞
∑

k=n

|ck(f)|
2 α2

k,s

∫ 1

0
ρ2(k−s)+1γ(ρ)dρ

)1/2

,

(1.2)

and the modulus of continuity of f ∈ B2,γ is

ωm

(

f (r), t
)

2,γ
= 2m/2 sup

|h|≤t

{ ∞
∑

k=r

α2
k,r|ck(f)|

2(1− cos(k − r)h)m
∫ 1

0
ρ2(k−r)+1γ(ρ)dρ

}1/2

. (1.3)

Denote by

µs(γ) =

∫ 1

0
γ(ρ)ρsdρ, s = 0, 1, 2, . . . (1.4)

the moments of order s of the weight function γ(ρ) on [0, 1]. According to notation (1.4), we write
equalities (1.2) and (1.3) in compact form:

En−1(f)2,γ =

( ∞
∑

k=n

|ck(f)|
2µ2k+1(γ)

)1/2

,

En−s−1

(

f (s)
)

2,γ
=

( ∞
∑

k=n

|ck(f)|
2 α2

k,s µ2(k−s)+1(γ)

)1/2

, (1.5)

ωm

(

f (r), t
)

2,γ
= 2m/2 sup

|h|≤t

{ ∞
∑

k=r

α2
k,r|ck(f)|

2(1− cos(k − r)h)m µ2(k−r)+1(γ)

}1/2

.
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2. Analog of Ligun’s inequality

For compact statement of the results, we introduce the following extremal characteristic:

Km,n,r,s,p(q, γ, h) = sup
f∈B

(r)
2,γ

2m/2En−s−1

(

f (s)
)

2,γ
(

∫ h

0
ωp
m(f (r), t)2,γq(t)dt

)1/p
,

where m,n ∈ N, r ∈ Z+, n > r ≥ s, 0 < p < 2, 0 < h ≤ π/(n − r), and q(t) is a real, nonnegative,
measurable weight function that is not identically zero on [0, h].

Theorem 1. Let k,m, n ∈ N, r, s ∈ Z+, k > n > r ≥ s, 0 < p < 2, 0 < h ≤ π/(n − r), and let
q(t) be a nonnegative, measurable function that is not identically zero on [0, h]. Then

1

Ln,r,s,p(q, γ, h)
≤ Km,n,r,s,p(q, γ, h) ≤

1

inf
n≤k<∞

Lk,r,s,p(q, γ, h)
, (2.1)

where

Lk,r,s,p(q, γ, h) =
αk,r

αk,s

(

µ2(k−r)+1(γ)

µ2(k−s)+1(γ)

)1/2 (
∫ h

0

(

1− cos(k − r)t
)mp/2

q(t)dt

)1/p

.

P r o o f. Consider the simplified variant of Minkowski’s inequality [3, p. 104]:

(
∫ h

0

( ∞
∑

k=n

|gk(t)|
2

)p/2

dt

)1/p

≥

( ∞
∑

k=n

(
∫ h

0
|gk(t)|

pdt

)2/p)1/2

, (2.2)

which is hold for all 0 < p ≤ 2 and h ∈ R+. Setting

gk = fkq
1/p (0 < p ≤ 2)

in (2.2), we get

(
∫ h

0

( ∞
∑

k=n

|fk(t)|
2

)p/2

q(t)dt

)1/p

≥

( ∞
∑

k=n

(
∫ h

0
|fk(t)|

pq(t)dt

)2/p)1/2

. (2.3)

From (1.3) with respect to (2.3), we get

{
∫ h

0
ωp
m

(

f (r), t
)

2,γ
q(t)dt

}1/p

=

{
∫ h

0

(

ω2
m(f (r), t)2,γ

)p/2
q(t)dt

}1/p

≥

{
∫ h

0

(

2m
∞
∑

k=n

α2
k,r|ck(f)|

2(1− cos(k − r)t)mµ2(k−r)+1(γ)
)p/2

q(t)dt

}1/p

≥

{ ∞
∑

k=n

[

2mp/2αp
k,r|ck(f)|

p

∫ h

0
(1− cos(k − r)t)mp/2

(

µ2(k−r)+1(γ)
)p/2

q(t)dt
]2/p

}1/2

= 2m/2

{ ∞
∑

k=n

|ck(f)|
2µ2(k−r)+1(γ)

[

αp
k,r

∫ h

0
(1− cos(k − r)t)mp/2q(t)dt

]2/p
}1/2

= 2m/2

{ ∞
∑

k=n

|ck(f)|
2α2

k,s µ2(k−s)+1(γ)µ2(k−r)+1(γ)
(

µ2(k−s)+1(γ)
)−1
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[(

αk,r

αk,s

)p ∫ h

0
(1− cos(k − r)t)mp/2q(t)dt

]2/p}1/2

≥ 2m/2 inf
n≤k<∞

{

αk,r

αk,s

(

µ2(k−r)+1(γ)

µ2(k−s)+1(γ)

)1/2 (∫ h

0
(1− cos(k − r)t)mp/2q(t)dt

)1/p}

×

( ∞
∑

k=n

|ck(f)|
2α2

k,s µ2(k−s)+1(γ)

)1/2

= 2m/2En−s−1(f
(s))2,γ inf

n≤k<∞
Lk,r,s,p(q, γ, h),

and this yields the inequality

2m/2En−s−1

(

f (s)
)

2,γ
(
∫ h

0
ωp
m(f (r), t)2,γq(t)dt

)1/p
≤

1

inf
n≤k<∞

Lk,r,s,p(q, γ, h)
(2.4)

or

Km,n,r,s,p(q, γ, h) ≤
1

inf
n≤k<∞

Lk,r,s,p(q, γ, h)
. (2.5)

To estimate the value in (2.1) from below, consider the function

f0(z) = zn ∈ B
(r)
2,γ.

Simple calculation leads to the following relations:

En−s−1

(

f
(s)
0

)

2,γ
= αn,s

(
∫ 1

0
ρ2(n−s)+1γ(ρ)dρ

)1/2

= αn,s

(

µ2(n−s)+1(γ)
)1/2

,

ω2
m

(

f
(r)
0 , t

)

2,γ
= 2mα2

n,r

(

1− cos(n− r)t
)m

∫ 1

0
ρ2(n−r)+1γ(ρ)dρ

= 2mα2
n,r

(

1− cos(n− r)t
)m
µ2(n−r)+1(γ),

using which, we get the lower estimate

Km,n,r,p(q, γ, h) ≥
2m/2En−s−1

(

f
(s)
0

)

2,γ
(
∫ h

0
ωp
m(f

(r)
0 , t)2,γq(t)dt

)1/p

=
2m/2αn,s

(

µ2(n−s)+1(γ)
)1/2

(

2mp/2αp
n,r

(

µ2(n−r)+1(γ)
)p/2

∫ h

0
(1− cos(n− r)t)mp/2q(t)dt

)1/p
=

1

Ln,r,s,p(q, γ, h)
.

(2.6)

Comparing the upper estimate (2.5) and the lower estimate (2.6), we obtain the required two-sided
inequality (2.1). This completes the proof of Theorem 1. �

Corollary 1. The following two-sided inequality holds for γ1(ρ) = ρα, α ≥ 0, in Theorem 1:

1

Gn,r,s,p,α(q, h)
≤ Km,n,r,s,p(q, γ1, h) ≤

1

inf
n≤k<∞

Gk,r,s,p,α(q, h)
, (2.7)

where

Gk,r,s,p,α(q, h) =
αk,r

αk,s

(

2(k − s+ 1) + α

2(k − r + 1) + α

)1/2 (∫ h

0
(1− cos(k − r)t)mp/2 q(t)dt

)1/p

. (2.8)
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The following problem naturally arises from (2.7): to find an exact upper bound for the extremal
characteristic

Km,n,r,s,p(q, γ1, h) = sup
f∈B

(r)
2,γ1

2m/2En−s−1(f
(s))2,γ1

(
∫ h

0
ωp
m(f (r), t)2,γ1q(t)dt

)1/p
,

where m,n ∈ N, r, s ∈ Z+, n > r ≥ s, 0 < p < 2, 0 < h ≤ π/(n − r), γ1(ρ) = ρα, and α ≥ 0.

Theorem 2. Let a weight function q(t), t ∈ [0, h], be continuous and differentiable on the
interval. If the differential inequality

( r−1
∑

l=s

p

k − l
−

2p(r − s)

[2(k − r + 1) + α](2(k − s+ 1) + α)
−

1

k − r

)

q(t)−
1

k − r
tq′(t) ≥ 0 (2.9)

holds for all k ∈ N, r, s ∈ Z+, k > n > r ≥ s, 0 < p ≤ 2, and α ≥ 0, then the following equality
holds for all m,n ∈ N and 0 < h ≤ π/(n− r):

Km,n,r,s,p(q, γ1, h) =
αn,s

αn,r

(

2(n − r + 1) + α

2(n − s+ 1) + α

)1/2 (∫ h

0
(1− cos(n− r)t)mp/2 q(t)dt

)1/p

. (2.10)

P r o o f. To prove equality (2.10), it suffices to show that the following equality holds in (2.7):

inf
n≤k<∞

Gk,r,s,p,α(q, h) = Gn,r,s,p,α(q, h). (2.11)

We should note that a similar problem of finding a lower bound in (2.11) for some specific weights
for p = 2 was considered in [2]. In the general case, this problem was studied in [9], where it was
proved that, if the weight function q ∈ C(1)[0, h] for 1/r < p ≤ 2, r ≥ 1, and 0 < t ≤ h satisfies the
differential equation

(rp− 1)q(t) − tq′(t) ≥ 0,

then (2.11) holds.
Let us now show that, under all constrains on the parameters k, r, s, m, p, α, and h in Theo-

rem 2, the function

ψ(k) =

(

αk,r

αk,s

)p(2(k − s+ 1) + α

2(k − r + 1) + α

)p/2 ∫ h

0

(

1− cos(k − r)t
)mp/2

q(t)dt (2.12)

increases for n ≤ k <∞. Indeed, differentiating (2.12) and using the identity

d

dk
(1− cos(k − r)t)mp/2 =

t

k − r

d

dt
(1− cos(k − r)t)mp/2,

we obtain

ψ′(k) =

(

αk,r

αk,s

)p r−1
∑

l=s

p

k − l

(

2(k − s+ 1) + α

2(k − r + 1) + α

)p/2 ∫ h

0
(1− cos(k − r)t)mp/2 q(t)dt

+

(

αk,r

αk,s

)p p

2

(

2(k − s+ 1) + α

2(k − r + 1) + α

)p/2−1 4s − 4r

[2(k − r + 1) + α]2

∫ h

0
(1− cos(k − r)t)mp/2 q(t)dt

+

(

αk,r

αk,s

)p(2(k − s+ 1) + α

2(k − r + 1) + α

)p/2 ∫ h

0

d

dk
(1− cos(k − r)t)mp/2 q(t)dt
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=

∫ h

0
(1− cos(k − r)t)mp/2 q(t)dt

{(

αk,r

αk,s

)p r−1
∑

l=s

p

k − l

(

2(k − s+ 1) + α

2(k − r + 1) + α

)p/2

−

(

αk,r

αk,s

)p 2p(r − s)

[2(k − r + 1) + α](2(k − s+ 1) + α)

(

2(k − s+ 1) + α

2(k − r + 1) + α

)p/2}

+

(

αk,r

αk,s

)p(2(k − s+ 1) + α

2(k − r + 1) + α

)p/2 ∫ h

0

t

k − r

d

dt
(1− cos(k − r)t)mp/2q(t)dt

=

(

αk,r

αk,s

)p(2(k − s+ 1) + α

2(k − r + 1) + α

)p/2 { h

k − r
(1− cos(k − r)h)mp/2q(h) +

∫ h

0
(1− cos(k − r)t)mp/2

×

[( r−1
∑

l=s

p

k − l
−

2p(r − s)

[2(k − r + 1) + α](2(k − s+ 1) + α)
−

1

k − r

)

q(t)−
1

k − r
tq′(t)

]

dt

}

.

This relation and condition (2.9) imply that ψ(k) > 0, k ≥ n > r ≥ s, and we obtain equal-
ity (2.10). Theorem 2 is proved. �

Denote byW
(r)
p (ωm, q) (r ∈ Z+, 0 < p ≤ 2) the set of functions f ∈ B

(r)
2,γ1

whose rth derivatives

f (r) satisfy the following condition for all 0 < h ≤ π/(n − r) and n > r:

∫ h

0
ωp
m

(

f (r), t
)

2,γ1
q(t)dt ≤ 1.

Since, for f ∈ B
(r)
2,γ1

, its intermediate derivatives f (s) (1 ≤ s ≤ r−1) also belong to L2, the behavior

of the value En−s−1

(

f (s)
)

2
for some classes M

(r) ⊂ B
(r)
2,γ1

, n > r ≥ s, n ∈ N, and r, s ∈ Z+, is of
interest. More precisely, it is required to find the value

An,s

(

M
(r)

)

:= sup
{

En−s−1(f
(s))2,γ1 : f ∈ M

(r)
}

.

Corollary 2. The following equality holds for all n ∈ N, n > r ≥ s, 0 < p ≤ 2, and 0 < h ≤
π/(n − r):

An,s

(

W (r)
p (ωm, q)

)

:= sup
{

En−s−1(f
(s))2,γ1 : f ∈W (r)

p (ωm, q)
}

=
1

2m/2 Gn,r,s,p,α(q, h)
. (2.13)

Moreover, there is a function g0 ∈W
(r)
p (ωm, q) on which the upper bound in (2.13) is attained.

P r o o f. Assuming that γ = γ1(ρ) = ρα in (2.4), with respect to (2.8), we can write

En−s−1(f
(s))2,γ1 ≤

(
∫ h

0
ωp
m(f (r), t)2,γ1q(t)dt

)1/p

2m/2 inf
n≤k<∞

Lk,r,s,p(q, γ1, h)
=

(
∫ h

0
ωp
m(f (r), t)2,γ1q(t)dt

)1/p

2m/2 inf
n≤k<∞

Gk,r,s,p,α(q, h)
.

Using equality (2.11) and the definition of the class W
(r)
p (ωm, q), we get

En−s−1(f
(s))2,γ1 ≤

1

2m/2 Gn,r,s,p,α(q, h)
. (2.14)

From (2.14), it follows the upper estimate of the value on the left-hand side of (2.13):

An,s

(

W (r)
p (ωm; q,Φ)

)

≤
1

2m/2 Gn,r,s,p,α(q, h)
. (2.15)
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To obtain the lower estimate for this value, consider the function

g0(z) =

√

2(n− r + 1) + α

2m/2αn,r

(
∫ h

0
(1− cos(n− r)t)mp/2 q(t)dt

)−1/p

zn

and show that g0 belongs to W
(r)
p (ωm, q). Differentiating this function r times, we obtain

g
(r)
0 (z) =

√

2(n − r + 1) + α

2m

(
∫ h

0
(1− cos(n− r)t)mp/2 q(t)dt

)−1/p

zn−r.

Using this equality and formulas (1.3), we get

ωm

(

g
(r)
0 , t

)

2,γ1
=

[1− cos(n− r)t]m/2

(
∫ h

0
(1− cos(n− r)t)mp/2 q(t)dt

)1/p
.

Raising both sides of this inequality to a power p (0 < p ≤ 2), multiplying them by the weight
function q(t), and integrating with respect to t from 0 to h, we obtain

∫ h

0
ωp
m(g

(r)
0 , t)2,γ1q(t)dt = 1

or, equivalently,
(
∫ h

0
ωp
m(g

(r)
0 , t)2,γ1q(t)dt

)1/p

= 1.

Thus, the inclusion g0 ∈W
(r)
p (ωm, q) is proved.

Since the relation

g
(s)
0 (z) =

√

2(n− r + 1) + α

2m
αn,s

αn,r

(
∫ h

0
(1− cos(n− r)t)mp/2 q(t)dt

)−1/p

zn−s

holds for all 0 ≤ s ≤ r < n, n ∈ N, and r, s ∈ Z+, according to (1.5), we have

En−s−1

(

g
(s)
0

)

2,γ1
=

1

2m/2

αn,s

αn,r

√

2(n− r + 1) + α

2(n − s+ 1) + α

(
∫ h

0
[1− cos(n− r)t]mp q(t)dt

)−1/p

=
1

2m/2 Gn,r,s,p,α(q, h)
.

Using this equality, we obtain the lower estimate

sup
{

En−s−1(f
(s))2,γ1 : f ∈W (r)

p (Ωm, q)
}

≥ En−s−1(g
(s)
0 )2,γ1 =

1

2m/2 Gn,r,s,p,α(q, h)
. (2.16)

Comparing the upper estimate (2.15) and the lower estimate (2.16), we obtain the required equal-
ity (2.13). �
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3. Exact values of n-widths for the classes W
(r)
p (ωm, q) (r ∈ Z+, 0 < p ≤ 2)

Recall definitions and notation needed in what follows. Let X be a Banach space, let S be
the unit ball in X, let Λn ⊂ X be an n-dimensional subspace, let Λn ⊂ X be a subspace of
codimension n, let L : X → Λn be a continuous linear operator, let L ⊥ : X → Λn be a continuous
linear projection operator, and let M be a convex centrally symmetric subset of X. The quantities

bn(M,X) = sup
{

sup {ε > 0; εS ∩ Λn+1 ⊂ M} : Λn+1 ⊂ X
}

,

dn(M,X) = inf
{

sup {inf {‖f − g‖X : g ∈ Λn} : f ∈ M} : Λn ⊂ X
}

,

δn(M,X) = inf
{

inf {sup {‖f − L f‖X : f ∈ M} : LX ⊂ Λn} : Λn ⊂ X
}

,

dn(M,X) = inf
{

sup {‖f‖X : f ∈ M ∩ Λn} : Λn ⊂ X
}

,

Πn(M,X) = inf
{

inf{sup{‖f − L
⊥f‖X : f ∈ M} : L

⊥X ⊂ Λn} : Λn ⊂ X
}

are called the Bernstein, Kolmogorov, linear, Gelfand, and projection n-widths of a subset M in
the space X, respectively. These n-widths are monotone in n and related as follows in a Hilbert
space X (see, e.g., [3, 11]):

bn(M,X) ≤ dn(M,X) ≤ dn(M,X) = δn(M,X) = Πn(M,X). (3.1)

For an arbitrary subset M ⊂ X, we set

En−1(M)X := sup
{

En−1(f)2 : f ∈ M
}

.

Theorem 3. The following equalities hold for all m,n ∈ N, r ∈ Z+, n > r, and 0 ≤ h ≤
π/(n − r):

λn(W
(r)
p (ωm, q), B2,γ1) = En−1(W

(r)
p (ωm, q), B2,γ1)

=
1

2m/2αn,r

√

2(n − r + 1) + α

2(n + 1) + α

(
∫ h

0
[1− cos(n− r)t]mp q(t)dt

)−1/p

,
(3.2)

where λn(·) is any of the n-widths bn(·), dn(·), d
n(·), δn(·), and Πn(·).

P r o o f. We obtain the upper estimates of all n-widths for the class W
(r)
p (ωm, q) with s = 0

from (2.14) since

En−1

(

W (r)
p (ωm, q)

)

2,γ1
= sup

{

En−1(f)2,γ1 : f ∈W (r)
p (ωm, q)

}

≤
1

2m/2αn,r

√

2(n − r + 1) + α

2(n + 1) + α

(
∫ h

0
[1− cos(n− r)t]mp q(t)dt

)−1/p

.

Using relations (3.1) between the n-widths, we obtain the upper estimate in (3.2):

λn
(

W (r)
p (ωm, q)

)

≤ En−1

(

W (r)
p (ωm, q)

)

2,γ1

≤
1

2m/2αn,r

√

2(n − r + 1) + α

2(n + 1) + α

(
∫ h

0
[1− cos(n− r)t]mp q(t)dt

)−1/p

.
(3.3)

To obtain the lower estimate on the right-hand side of (3.2) for all n-widths in the (n + 1)-
dimensional subspace of complex algebraic polynomials

Pn+1 =
{

pn(z) : pn(z) =

n
∑

k=0

akz
k, ak ∈ C

}

,
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we introduce the ball

Bn+1:=

{

pn(z) ∈ Pn : ‖pn‖ ≤
1

2m/2αn,r

√

2(n−r+1)+α

2(n + 1) + α

(
∫ h

0
[1− cos(n− r)t]mp q(t)dt

)−1/p}

,

where n > r, n ∈ N, r ∈ Z+, and show that Bn+1 ⊂ W
(r)
p (ωm, q). Indeed, for all pn(z) ∈ Bn+1,

from (1.3), we write

ω2
m

(

p(r)n , t
)

2,γ1
= 2m

∞
∑

k=r

α2
k,r|ak(f)|

2

2(k − r + 1) + α
(1− cos(k − r)h)m

≤ 2m max
r≤k≤n

{

α2
k,r(1− cos(k − r)h)m

}

∞
∑

k=r

|ak(f)|
2

2(k − r + 1) + α
.

(3.4)

We have to prove that

max
r≤k≤n

{

α2
k,r(1− cos(k − r)h)m

}

= α2
n,r(1− cos(n− r)h)m, 0 ≤ h ≤ π/(n − r).

Consider the function

ϕ(k) = α2
k,r(1− cos(k − r)h)m, r ≤ k ≤ n, 0 ≤ h ≤ π/(n − r).

We will show that the function ϕ(k) is monotone increasing for all accepted values k and h. To
this end, it suffices to show that ϕ′(k) > 0. In fact

ϕ′(k) = 2α2
k,r

r−1
∑

l=0

1

k − l
(1− cos(k − r)h)m +mhα2

k,r sin(k − r)h(1− cos(k − r)h)m−1 ≥ 0.

Hence, we can write (3.4) in the form

ω2
m

(

p(r), t
)

2,γ1
≤ 2mα2

n,r(1− cos(n− r)h)m
∞
∑

k=r

|ak(f)|
2

2(k − r + 1) + α

≤ 2mα2
n,r(1− cos(n− r)h)m

∞
∑

k=0

|ak(f)|
2

2(k − r + 1) + α
= 2mα2

n,r(1− cos(n− r)h)m‖pn‖
2
2,γ1 .

(3.5)

From (3.5), we have

ωm

(

p(r), t
)

2,γ1
≤ 2m/2αn,r(1 − cos(n− r)h)m/2‖pn‖2,γ1 .

Raising both sides of this inequality to a power p (0 < p ≤ 2), multiplying them by the weight
function q(t), and integrating with respect to t from 0 to h, we obtain

∫ h

0
ωp
m

(

p(r), t
)

2,γ1
q(t)dt ≤ 2mp/2αp

n,r‖pn‖
p
2,γ1

∫ h

0
(1− cos(n− r)h)mp/2q(t)dt ≤ 1

for all pn ∈ Bn+1. It follows that Bn+1 ⊂ W
(r)
p (ωm, q). Then, according to the definition of the

Bernstein n-width and (3.1), we can write the following lower estimate for all above listed n-widths:

λn(W
(r)
p (ωm, q), B2,γ1) ≥ bn(W

(r)
p (ωm, q), B2,γ1) ≥ bn(Bn+1, B2,γ1)

≥
1

2m/2αn,r

√

2(n − r + 1) + α

2(n + 1) + α

(
∫ h

0
[1− cos(n− r)t]mp q(t)dt

)−1/p

.
(3.6)

Comparing the upper estimate (3.3) and the lower estimate in (3.6), we obtain the required equal-
ity (3.2). Theorem 3 is proved. �



174 Muqim Saidusainov

4. Conclusion

Upper and lower estimates have been proven for extremal characteristics in a weighted Bergman
space. In the case of a power function considered instead of a general weight, the values of n-widths
have been calculated for a specific class of functions.
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