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Abstract: By an (integer) partition we mean a non-increasing sequence λ = (λ1, λ2, . . . ) of non-negative
integers that contains a finite number of non-zero components. A partition λ is said to be graphic if there
exists a graph G such that λ = dptG, where we denote by dptG the degree partition of G composed of the
degrees of its vertices, taken in non-increasing order and added with zeros. In this paper, we propose to consider
another criterion for a partition to be graphic, the ht-criterion, which, in essence, is a convenient and natural
reformulation of the well-known Erdös–Gallai criterion for a sequence to be graphical. The ht-criterion fits well
into the general study of lattices of integer partitions and is convenient for applications. The paper shows the
equivalence of the Gale–Ryser criterion on the realizability of a pair of partitions by bipartite graphs, the ht-
criterion and the Erdös–Gallai criterion. New proofs of the Gale–Ryser criterion and the Erdös–Gallai criterion
are given. It is also proved that for any graphical partition there exists a realization that is obtained from some
splitable graph in a natural way. A number of information of an overview nature is also given on the results
previously obtained by the authors which are close in subject matter to those considered in this paper.
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1. Introduction

Everywhere by a graph we mean a simple graph, i.e. a graph without any loops and multiple
edges.

An integer partition, or simply partition, is a non-increasing sequence λ = (λ1, λ2, . . . ) of non-
negative integers that contains a finite number of non-zero components (see [1]). Let sumλ denote
the sum of all components of the partition λ and call it the weight of the partition λ. It is often
said that a partition of λ is a partition of a non-negative integer n = sumλ. The length ℓ(λ) of a
partition λ is the number of its non-zero components. For convenience, the partition λ will often
be written as λ = (λ1, . . . , λt), where t ≥ ℓ(λ), i. e. we will omit the zeros by starting from some
zero component without forgetting that the sequence is infinite.

The theory of partitions is one of the actively developing areas of contemporary combinatorics,
the foundations of which were laid by L. Euler as early as the 18th century. For some information
about the achievements of this theory in the 19th and 20th centuries, see [1].

A partition λ is said to be graphic if there is a graph G such that λ = dptG, where we denote
by dptG the degree partition composed by the degrees of vertices taken in non-increasing order
with added zeros. In this case, the graph G is called a realization of the partition λ, and λ is said
to be realized by the graph G. It is clear that adding or removing isolated vertices does not change
the degree partition of the graph.

A finite sequence λ = (λ1, λ2, . . . , λn) of non-negative integers such that λ1 ≥ λ2 ≥ · · · ≥ λn

and n is a natural number will be called an n-sequence. Such an n-sequence is called graphic if
there is a simple graph G on n vertices such that deg(v1) = λ1, . . . ,deg(vn) = λn, where v1, . . . , vn
is the sequence of all its vertices; and the graph G is called a realization of the n-sequence λ, and
λ is said to be realized by the graph G.
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Obviously, an n-sequence λ = (λ1, λ2, . . . , λn) is graphic if and only if the partition
(λ1, λ2, . . . , λn, 0, 0, . . . ) obtained from λ by adding zeros, is graphic.

It should be noted that in [4] an algorithm was constructed for generating all graphic n-sequences
which does not generate any non-graphic sequences during calculations.

We call an n-sequence λ = (λ1, λ2, . . . , λn) proper (proper n-sequence) if
1) n− 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λn;
2) the sumλ of all components of the sequence λ is even.

Obviously, any graphic n-sequence is proper.

The first criterion for an n-sequence to be graphic was found by Erdös and Gallai [14].

Theorem 1 [14, Erdös and Gallai]. Let λ = (λ1, λ2, . . . , λn) be a proper n-sequence. Then λ
is a graphic n-sequence if and only if it is satisfied the inequality

k∑

i=1

λi ≤ k(k − 1) +
n∑

i=k+1

min{k, λi}

for any k = 1, . . . , n.

It is an easy matter to prove that the condition “k = 1, . . . , n” can be replaced by the condition
“k = 1, . . . , r(λ)”, where r(λ) = max{i|λi ≥ i} is the rank of the n-sequence λ.

The paper [17] considers all seven graphic criteria known by that time: Erdös–Gallai, Ryser,
Berge, Fulkerson–Hoffman–McAndrew, Bollobas, Grünbaum, Hässelbarth. It is shown, how they
deduced from each other, and a new, more elegant proof of the Erdös–Gallai criterion is given.

In this paper, we propose for consideration (in our terminology) another graphic criterion, the
ht-criterion (see Theorem 2), which has the simplest and most natural form. Moreover, as will be
seen below, this criterion fits well into the general study of partition lattices.

It should be noted that considerations close to the ht-criterion can be found in [15].

As can be seen below, the ht-criterion can be in essence considered as a reformulation of the
Erdös–Gallai criterion which is convenient for applications.

In § 2, by fairly simple reasoning, we establish the equivalence of Theorem 2 on the ht-criterion
and the Erdös–Gallai Theorem 1.

§ 3 will provide a transparent proof of the Gale–Ryser theorem on the realization of two parti-
tions by a bipartite graph, that does not use the partition graphicity criteria.

In § 4, with the Gale–Ryser theorem and without any partition graphicity criteria, we prove
Theorem 2 on the ht-criterion and, therefore, obtain a new natural proof of the Erdös–Gallai
theorem. From the proof of Theorem 2 we also extract Theorem 4 and Theorem 5 on the existence
of a special kind of realizations for arbitrary partitions, and this result is one of the main ones in
this paper.

§ 5 will give another proof of the Gale–Ryser theorem, in which the ht-criterion is used. As a
result, we will show how the Gale–Ryser theorem, the ht-criterion Theorem 2 and the Erdös–Gallai
Theorem 1 can be derived from each other.

At the end of paragraphs 4 and 5, we give a brief review of the previously obtained results of
authors which are close in subject matter to those considered in this paper.

2. On the ht-criterion

Let us first give the necessary definitions.
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We denote by IPL the set of all partitions of all natural numbers with added zero partition,
and by IPL(m) for a non-negative integer m we denote the set of all its partitions. On the sets
IPL and IPL(m), consider the dominance relation E [13], by setting λE µ if

λ1 + λ2 + · · ·+ λi ≤ µ1 + µ2 + · · · + µi

for any i = 1, 2, . . . , i. e. the prefix partial sums of the partition λ do not exceed the corresponding
prefix partial sums of the partition µ.

The partition can be conveniently depicted as a Ferrers diagram, which can be thought of
as a set of square boxes of the same size (see an example in Fig. 1, which shows the partition
(6, 5, 4, 4, 3, 2, 1, 1) of the number 26, the length of this partition is 8). We will use Cartesian
notation for Ferrers diagrams aligned to the bottom-left corner of the 1st quadrant. Components
correspond to columns and decrease in size from left to right. The coordinates for boxes resemble
the standard Cartesian coordinates for the Euclidean plane.

Figure 1. The Ferrers diagram of the partition (6, 5, 4, 4, 3, 2, 1, 1).

Let us define two types of elementary transformations (see [2–5]) of the partition
λ = (λ1, λ2, . . . , λn), where n = ℓ(λ) + 1.

Let there be natural numbers i, j ∈ {1, . . . , n} such that i < j ≤ ℓ(λ) + 1 and

1) λi − 1 ≥ λi+1,

2) λj−1 ≥ λj + 1,

3) λi = λj + δ, where δ ≥ 2.

We will say that the partition η = (λ1, . . . , λi − 1, . . . , λj + 1, . . . , λn) is obtained from the
partition λ = (λ1, . . . , λi, . . . , λj , . . . , λn) by an elementary transformation of the first type (or
through box movement). It should be noted that η differs from λ on exactly two components with
numbers i and j.

For the Ferrers diagram, such a transformation means moving the top box from the i-th column
to the right to the top of the j-th column. The conditions 1), 2) and 3) guarantee that after such
a move, a partition will again be obtained. It should be noted that a box can also be thrown to
the zero component with the number ℓ(λ) + 1.

The fact that η is obtained from λ by moving a box will be briefly written in the form λ ⇁ η.
It should be noted that an elementary transformation of the first type preserves the weight of the
partition, while the length of the partition can be preserved or lifted by 1.

We now define elementary transformations of the second type for the partition λ = (λ1, λ2, . . . ).
Let λi − 1 ≥ λi+1, where i ≤ ℓ(λ). A transformation that replaces λ by

η = (λ1, . . . , λi−1, λi − 1, λi+1, . . . )

will be called an elementary transformation of the second type (or a box removal).
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As in the previous case, we will briefly write λ ⇁ η, i. e., the notation λ ⇁ η means that η
obtained from λ by an elementary transformation of the first or second type. It should be noted
that box removal reduces the weight of the partition by exactly 1, while the length of the partition
can be preserved or lowered by 1.

On the set IPL and on sets of the form IPL(m), we define the relation ≤ by setting η ≤ λ if η
can be obtained from λ by sequentially applying a finite number (possibly a zero one) of elementary
transformations of the stated types.

Of course, in the case of IPL(m) we are forced to use only elementary transformations of the
first type, which do not change the weight of the partitions. It was proved in [3] and [5] that the
relation ≤ on each of the considered sets coincides with the dominance relation E, and each of
these sets is a lattice.

It is essential to note that the use of elementary transformations is often more convenient than
the use of inequalities appearing in the definition of the dominance relation.

It should be noted that the IPL lattice is a disjoint union of lattices IPL(m), where m ranges
over non-negative integers corresponding to some natural transitive system of embeddings [5].

Let λ = (λ1, λ2, . . . ) be a partition. We determine the rank r(λ) of the partition λ by setting
r(λ) = max{i|λi ≥ i}. Obviously, the rank r = r(λ) of a partition λ is equal to the number of
boxes on the main diagonal of the Ferrers diagram of this partition. The maximum square made
up of boxes and symmetrical about the main diagonal is called the Durfey square of the partition λ
(see Fig. 2).

Figure 2. The main diagonal in the Durfey square.

Fig. 2 shows the partition λ = (6, 5, 4, 4, 3, 2, 1, 1). Here r(λ) = 4 and the Durfey square consists
of 16 = 4 · 4 boxes. Any row and any column of a Durfey square consists of r = r(λ) boxes.

For each partition λ, we will consider an conjugate partition λ∗ whose components are equal
to the number of boxes in the corresponding rows of the Ferrers diagram of the partition λ. It is
clear that the Ferrers diagram of the partition λ∗ can be obtained from the Ferrers diagram of the
partition λ by mirror symmetry with respect to the main diagonal. For Fig. 2, λ∗ = (8, 6, 5, 4, 2, 1)
is satisfied. Of course, the equality r(λ∗) = r(λ) is true.

It should be noted (see [3]) that for any m ∈ N the mapping λ → λ∗ is an involutive anti-
automorphism of the lattice IPL(m) such that (λ∗)∗ = λ and the condition γ1 ≤ γ2 implies the
condition γ∗1 ≥ γ∗2 .

Let ξ, η ∈ IPL(m) and f be an elementary transformation of the first type ξ ⇁ η, transforming ξ
into η. It is plain to see (see Fig. 3) that the inverse transformation f∗ to the transformation f is
an elementary transformation of the first type η∗ ⇁ ξ∗, transforming η∗ into ξ∗. Ferrers diagrams
stated in Fig. 3 can also be considered as Ferrers diagrams of the corresponding conjugate partitions,
only then they need to be considered lying “on their side”, i. e., the components should be read in
rows.

Similarly, if f is an elementary transformation of the second type ξ ⇁ η (box removal) that
transforms ξ into η, then the inverse transformation f∗ of f is a box insertion that transforms η∗
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⇁

↽∗

Figure 3. The elementary transformathion of the first type and the inverse transformation.

into ξ∗, i. e., η∗ ⇁ ξ∗ (it is convenient to use the same symbol ⇁ to indicate box insertion).
We now define the head and tail of the partition λ = (λ1, λ2, . . . ), the rank of which is equal

to r.
As the head hd (λ), we take the partition that is obtained from the partition λ by reducing the

first r components by the same number r−1 and zeroing all components with numbers r+1, r+2, . . .
(for an example, see the diagram in Fig. 4).

As the tail tl (λ) we take a partition for which the Ferrers diagram of the conjugate partition
is obtained from the Ferrers diagram of the partition λ by deleting the first r columns, i. e. the
Ferrers diagram of the partition tl (λ)∗ is located to the right of the Durfey square (see Fig. 4).

hd(λ) = (3, 2, 1, 1)

tl(λ) = (4, 2, 1)

hd(λ)

tl(λ)∗

Figure 4. The head and the tail of the partition (6, 5, 4, 4, 3, 2, 1, 1).

The arrows in Fig. 4 indicate the directions in which the components of the partitions hd(λ)
and tl(λ) are read. It is clear that the upper row of the Durfey square enters the Ferrers diagram
of the partition hd(λ), the partition hd(λ) is “read” by column from left to right, and the length of
the partition hd(λ) is equal to r. The partition tl(λ) is “read” by row from bottom to top and the
length of the partition tl(λ)∗ is equal to ℓ(λ) − r(λ), and the length of the partition tl(λ) is equal
to tl(λ)∗1 — the value the first component of the partition tl(λ)∗, hence ℓ(tl(λ)) ≤ r(λ).

For n-sequences, the concepts of rank, head, and tail are introduced in exactly the same way.
In order to consider the ht-criterion for partitions to be graphic, we present two auxiliary

lemmas.

Lemma 1. Let λ = (λ1, λ2, . . . , λn) be an n-sequence. Then for any k = 1, . . . , r = r(λ), the
condition

k∑

i=1

λi ≤ k(k − 1) +

n∑

i=k+1

min{k, λi} (2.1)

is equivalent to the condition
k∑

i=1

hd (λ)i ≤
k∑

i=1

tl (λ)i,

where hd (λ)i and tl (λ)i are the i-components, respectively, of the head and tail of the partition λ
for any i = 1, . . . , k.
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P r o o f. Note first that for k = 1, . . . , r the sum

n∑

i=k+1

min{k, λi}

is equal to the number of boxes of the Ferrers diagram of the sequence λ located in the strip
standing at the intersection of rows with numbers from 1 to k and columns with numbers from
k + 1 to n (see the shaded area in Fig. 5).

hd(λ)

tl(λ)

k r − k

r − 1
k

Figure 5. The Ferrers diagram of the sequence.

Let us rewrite inequality (2.1) in the equivalent form

k∑

i=1

λi − k(k − 1)− k(r − k) ≤
n∑

i=k+1

min{k, λi} − k(r − k),

after transformations, the resulting inequality is equivalent to the inequality

k∑

i=1

λi − k(r − 1) ≤
n∑

i=k+1

min{k, λi} − k(r − k).

It is plain to see that

k∑

i=1

λi − k(r − 1) =

k∑

i=1

hd (λ)i and

n∑

i=k+1

min{k, λi} − k(r − k) =

k∑

i=1

tl (λ)i.

Therefore, inequality (2.1) is equivalent to the inequality

k∑

i=1

hd (λ)i ≤
k∑

i=1

tl (λ)i.

�

Lemma 2. Let λ = (λ1, λ2, . . . , λn) be an n-sequence and hd (λ) ≤ tl (λ). Then λ1 ≤ n− 1.
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P r o o f. Let r = r(λ). The condition hd (λ) ≤ tl (λ) implies hd (λ)1 ≤ tl (λ)1, so

λ1 − (r − 1) ≤ ℓ(λ)− r.

Therefore,
λ1 ≤ ℓ(λ)− 1 ≤ n− 1.

�

Since ℓ(hd (λ)) = r(λ) and ℓ(tl (λ)) ≤ r(λ) for any partition λ, due to Lemmas 1 and 2 the
statement of the Erdös–Gallay theorem is equivalent to the following statement.

Theorem 2. Let λ = (λ1, λ2, . . . ) be an arbitrary nonzero partition of even weight. Then λ is

a graphic partition if and only if

hd (λ) ≤ tl (λ).

The criterion for a partition to be graphic specified in Theorem 2 will be called the ht-criterion.

3. About the Gale–Ryser theorem

Our next main goal is to prove Theorem 2 without using the Erdös–Gallai theorem and other
criteria for graphic partitions. To do this, we first give a direct, transparent proof of the well-known
Gale–Ryser theorem on the representation of a pair of partitions by a bipartite graph, in which we
will not use any of the criteria for the graphicity of partitions.

For a bipartite graph H = (V1, E, V2), where V1 and V2 are its parts, we denote by dptH(V1)
and dptH(V2) the degree partitions corresponding to its parts, i. e. partitions composed of the
degrees of the vertices of the corresponding parts in non-increasing order and added with zeros.

Theorem 3 [16, Gale D., Ryser H.J. (1957)]. Let α = (α1, α2, . . . ) and β = (β1, β2, . . . ) be

nonzero partitions. Then there is a bipartite graph H = (V1, E, V2) such that dptH(V1) = α and

dptH(V2) = β if and only if sum(α) = sum(β) and α ≤ β∗.

We need the following

Lemma 3. Let G = (V,E) be a graph, V = {v1, v2, . . . , vn} and λ = (λ1, λ2, . . . ) is a degree

partition corresponding to the graph G such that λi = deg(vi) for any i = 1, . . . , ℓ(λ) and λj = 0
for any j > ℓ(λ). Then hd (λ) ≤ tl(λ).

P r o o f. By virtue of Lemma 1, it suffices to check the validity of inequality (2.1) for any
k = 1, . . . , r = r(λ). For k = 1, . . . , r, we estimate the sum

k∑

i=1

λi.

Let us first estimate the part of this sum contributed by edges from G({v1, v2, . . . , vk}). Ob-
viously, degG(vi) ≤ k − 1 for any i = 1, . . . , k. Therefore, this part of the sum does not exceed
k(k − 1).

Let us now estimate the contribution to the summade by edges of the form vjvi, where 1 ≤ j ≤ k
and k+1 ≤ i ≤ n. For a given i such that k+1 ≤ i ≤ n, the number of such edges does not exceed
k and does not exceed λi, i. e., does not exceed min{k, λi}.
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Consequently, inequality (2.1) is satisfied for any k = 1, . . . , r = r(λ), and therefore, by virtue
of Lemma 1, the inequality hd (λ) ≤ tl (λ) also holds. �

A graph G is said to be splitable if the set of its vertices can be represented as a disjoint union
of a clique V1 and a coclique V2 (i. e., V1 ∩ V2 = ∅, V1 generates a complete subgraph K(V1), and
V2 generates a zero subgraph O(V2) with an empty set of edges). For such a graph G, the set of all
edges can be represented as a disjoint union of the set of all edges of the complete subgraph K(V1)
and the set E of all its edges connecting vertices from V1 with vertices from V2. Therefore, it is
convenient to represent a splitable graph G in the form G = (K(V1), E,O(V2)). We will simply
write G = (K(V1), E, V2).

The following lemma proves the necessity of the conditions in the Gale–Ryser theorem.

Lemma 4. Let H = (V1, E, V2) be an arbitrary bipartite graph and dpt (V1) = α, dpt (V2) = β
be the degree partitions of its parts. Then

1) sum(α) = sum(β) = m, where m = |E|;

2) α ≤ β∗.

(It should be noted that the condition α ≤ β∗ is equivalent to the condition β ≤ α∗, since the
transformation γ → γ∗ is an involutive antiautomorphism of the lattice IPL(m).)

P r o o f. 1) It is obvious.
2) Without loss of generality, we will assume that H does not have any isolated vertices. Let

V1 = {u1, u2, . . . , up} and V2 = {v1, v2, . . . , vq}, where αi = deg(ui) for any i = 1, . . . , p and
βj = deg(vj) for any j = 1, . . . , q.

Let us embed the graph H into a splitable graph H+ = (K(V1), E, V2) by adding to H all
possible edges connecting pairs of different vertices from V1. In the graph H+, the set V1 is a clique
and the set V2 is a coclique. Then

α1 + (p− 1) ≥ α2 + (p− 1) ≥ · · · ≥ αp + (p− 1) ≥ p ≥ β1 ≥ β2 ≥ · · · ≥ βq,

i. e.
dpt (H+) = (α1 + (p− 1), α2 + (p− 1), . . . , αp + (p− 1), β1, β2, . . . , βq).

Let dpt (H+) = λ. Then

r(λ) = p, hd (λ) = (α1, α2, . . . , αp) = α, tl ∗(λ) = (β1, β2, . . . , βq) = β.

By virtue of Lemma 3, we have hd (λ) ≤ tl (λ). Since tl (λ) = β∗, we obtain α ≤ β∗. �

To prove the sufficiency of the Gale–Ryser theorem conditions, we need additional definitions
and two lemmas.

Let (x, v, y) be a triple of different vertices of the graph G = (V,E) such that xv ∈ E and
vy /∈ E. We call such a triple 1) lifting if deg(x) ≤ deg(y), 2) lowering if deg(x) ≥ 2 + deg(y), and
3) preserving if deg(x) = 1 + deg(y).

A transformation ϕ of a graph G such that ϕ(G) = G − xv + vy, i. e., first the edge xv is
removed from G and then the edge vy is added (see Fig. 6), is called the rotation of the edge (in
the graph G around vertex v) corresponding to the triple (x, v, y).

The rotation of an edge in the graph ϕ(G) corresponding to the triple (y, v, x) is called the
reverse rotation of an edge for the rotation ϕ.
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x

v

y

→
x

v

y

Figure 6. The rotation of an edge.

The rotation of an edge in G corresponding to a triple (x, v, y) is called 1) lifting if the triple
(x, v, y) is lifting, 2) lowering if the triple (x, v, y) is lowering, and 3) preserving if the triple (x, v, y)
is preserving.

It should be noted that the cases when deg(x) = 1 or deg(y) = 0 will be considered admissible,
i. e. after the rotation of an edge, an isolated vertex may appear or the rotation of an edge will
occur in the graph G with the addition of a new isolated vertex.

It should be noted that the rotation of an edge in the graph G is lowering if and only if the
reverse rotation of the edge is lifting.

If the graph G2 obtained from the graph G1 by rotating an edge, then we write G1 → G2.
Let dpt (G) be the degree partition corresponding to the graph G and ϕ be the rotation of the

edge in the graph G corresponding to the triple (x, v, y), where xv ∈ E and vy /∈ E. Then the
following assertions are correct.

1. If ϕ is a lifting rotation of an edge, then dpt (G) < dpt (ϕ(G)), moreover, dpt (G) is obtained
from dpt (ϕ(G)) with one elementary transformation of the first type, and G is obtained from
ϕ(G) with the reverse (lowering) rotation of an edge.

2. If ϕ is the lowering rotation of an edge, then dpt (G) > dpt (ϕ(G)), moreover, dpt (ϕ(G)) is
obtained from dpt (G) with one elementary transformation of the first type, and G is obtained
from ϕ(G) with the reverse (lifting) rotation of an edge.

3. If ϕ is the preserving rotation of an edge, then dpt (G) = dpt (ϕ(G)), and G is obtained from
ϕ(G) with the reverse (preserving) rotation of an edge.

Let (x, v, y) be a triple of distinct vertices of a bipartite graph H = (V1, E, V2) such that xv ∈ E
and vy /∈ E. If x, y ∈ V1 and v ∈ V2, then we call the triple V1-triple, but if x, y ∈ V2 and v ∈ V1,
then the triple will be called a V2-triple. We will say that V1-triples correspond to V1-rotations of

edges, and V2-triples correspond to V2-rotations of edges.

Lemma 5. 1. Let H1 = (V1, E1, V2) and H2 = (V1, E2, V2) be bipartite graphs, and the

graph H2 is obtained from the graph H1 by the lowering V1-rotation of the edge H1 → H2.

Then dptH2
(V1) is obtained from dptH1

(V1) with an elementary transformation of the first

type, i. e., dptH1
(V1) ⇁ dptH2

(V1), and dptH2
(V2) = dptH1

(V2).

2. Let H1 = (V1, E1, V2) be a bipartite graph and the partition µ be obtained from the partition

dptH1
(V1) with an elementary transformation of the first type, i. e., dptH2

(V1) ⇁ µ. Then

there exists a bipartite graph H2 = (V1, E2, V2) that is obtained from the graph H1 by means

of a lowering V1-rotation of an edge H1 → H2 and for which µ = dptH2
(V2) and dptH2

(V2) =
dptH1

(V2).

P r o o f. Assertion 1 is obvious. Let us prove the assertion 2. Let dptH1
(V1) =

(λ1, . . . , λi, . . . , λj , . . . , λt), where λi ≥ 2 + λj , 1 ≤ i < j ≤ t and µ = (λ1, . . . , λi − 1, . . . , λj +
1, . . . , λt). Let for vertices x, y ∈ V1, degH1

(x) = λi and degH1
(y) = λj . Since λi > λj, there

is a vertex v ∈ V2 such that xv ∈ E1 and vy /∈ E1. Let ϕ be a lowering V1-rotation of an
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edge corresponding to the triple (x, v, y) in the graph H1. Then µ = dptH2
(V1) in the graph

H2 = ϕ(H1). The equality dptH2
(V2) = dptH1

(V2) is obvious, since the lowering V1-rotation of an
edge does not change the degrees of vertices in V2. �

The following lemma guarantees the sufficiency of the Gale–Ryser theorem conditions.

Lemma 6. Let α = (α1, α2, . . . ) and β = (β1, β2, . . . ) be nonzero partitions such that

sum (α) = sum(β) and α ≤ β∗. Then there is a bipartite graph H = (V1, E, V2) such that

dpt (V1) = α and dpt (V2) = β.

P r o o f. Let ℓ(α) = p and ℓ(β) = q. Take two sets V1 and V2 such that |V1| = |V2| =
m, where m = sum (α) = sum(β). It is clear that p, q ≤ m. Let V1 = {u1, u2, . . . , um} and
V2 = {v1, v2, . . . , vm}.

First, we construct a bipartite graph H0 = (V1, E0, V2). To do this, it suffices to specify the
neighborhoods of its vertices v1, v2, . . . , vm. Let

NH0
(v1) = {u1, u2, . . . , uβ1

}, NH0
(v2) = {u1, u2, . . . , uβ2

}, . . . , NH0
(vq) = {u1, u2, . . . , uβq

}

and NH0
(vi) = ∅ if i > q (for such i, βi = 0). Neighborhoods of vertices v1, v2, . . . , vm form a

system of nested subsets in V1 and uniquely define the graph H0.
Let us consider an m ×m bipartite adjacency matrix A of the bipartite graph H0, where the

columns of the matrix A correspond to the vertices v1, v2, . . . , vm and are numbered from left to
right, and the rows correspond to the vertices u1, u2, . . . , um and are numbered from bottom to
top. In matrix A, boxes containing 1’s are concentrated in the lower left corner and form a Ferrers
diagram for β = (β1, β2, . . . ), and by reading 1’s row by row, we get a Ferrers diagram for β∗, i. e.
dptH0

(V1) = β∗ and dptH0
(V2) = β.

Example 1. Let β = (3, 2, 1, 1, 0, . . . ). Then β∗ = (4, 2, 1, 0, . . . ) and m = 7. Then the matrix
A has the following form:

u7 0 0 0 0 0 0 0

u6 0 0 0 0 0 0 0

u5 0 0 0 0 0 0 0

u4 0 0 0 0 0 0 0

u3 1 0 0 0 0 0 0

u2 1 1 0 0 0 0 0

u1 1 1 1 1 0 0 0

v1 v2 v3 v4 v5 v6 v7

Since β∗ ≥ α and the partitions β∗ and α have the same weight m, in IPL(m) there is a
sequence of elementary transformations of the first type such that

β∗ = ξ(0) ⇁ ξ(1) ⇁ · · · ⇁ ξ(t) = α.

According to this sequence, by applying t times the assertion 2 of Lemma 5, we obtain, with
lowering V1-rotations of edges, a sequence of bipartite graphs:

H0 = (V1, E0, V2) → H1 = (V1, E1, V2) → · · · → Ht = (V1, Et, V2)

such that dptHi
(V1) = ξ(i) and dptHi

(V2) = β for any i = 0, 1, . . . , t. The graph Ht = (V1, Et, V2)
is the sought one, since dptHt

(V1) = ξ(t) = α and dptHt
(V2) = β. �

Gale–Ryser theorem proceeds from Lemmas 4 and 6.
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4. Proof of Theorem 2 using the Gale–Ryser theorem

Now our goal is to prove Theorem 2 without using the Erdös–Gallai theorem and other criteria
for partitions to be graphic. In addition, along the way, we will prove one of the main results of
the paper, Theorem 5, on the existence for any nonzero partition λ of a realization that is obtained
from some splitable graph with a certain sequence of lowering rotations of edges.

For this we need two auxiliary lemmas.

Lemma 7. 1. Let H1 = (V1, E1) and H2 = (V2, E2) be graphs and let the graph H2 be

obtained from the graph H1 with the lowering rotation of an edge H1 → H2. Then dpt (H2)
is obtained from dpt(H1) with an elementary transformation of the first type dpt (H1) ⇁
dpt(H2).

2. Let H1 = (V1, E1) be a graph and let the partition µ be obtained from the partition dpt (H1)
with an elementary transformation of the first type dpt (H1) ⇁ µ. Then there exists a graph

H2 = (V2, E2) which is obtained from the graph H1 by means of a lowering rotation of the

edge H1 → H2 and for which µ = dpt (H2) is satisfied.

P r o o f. Assertion 1 is obvious. Assertion 2 is proved similarly to assertion 2 of Lemma 5. �

Lemma 8. For any partition λ of even weight, the number C = sum tl (λ)−sumhd (λ) is even.

P r o o f. Since
sumλ = sumhd (λ) + r(r − 1) + sumtl (λ),

where r = r(λ), sum tl (λ) + sumhd (λ) is even. It follows that the number sum tl (λ) − sumhd (λ)
is also even. �

The necessity of the condition of Theorem 2 is proved in Lemma 3.
Let us now give a proof of the sufficiency of the condition of Theorem 2, in which the Erdös–

Gallai criterion and other criteria for the graphicity of partitions are not used, but the Gale–Ryser
theorem is used.

Let λ = (λ1, λ2, . . . ) be an arbitrary nonzero partition of even weight, hd (λ) ≤ tl (λ). Our
goal is to prove the existence of a realization for the partition λ and to reveal a special kind of the
realization that we obtain.

Let r = r(λ) be the rank of the partition λ. It should be noted that ℓ(hd (λ)) = r and
ℓ(tl (λ)) = (tl ∗(λ))1 ≤ r, where (tl ∗(λ))1 is the first component of the partition tl ∗(λ).

Since hd (λ) ≤ tl (λ), there is a sequence of elementary transformations from tl (λ) to hd (λ),
and both types of elementary transformations are admissible. Let us apply the algorithm [8] for
constructing the shortest sequence of this type. For this, we take the component wise difference of
the partitions

tl (λ)− hd (λ) = (tl (λ)1 − hd (λ)1, tl (λ)2 − hd (λ)2, . . . , tl (λ)r − hd (λ)r, 0, . . . ).

Example 2. Assuming that λ = (8, 7, 7, 7, 6, 6, 5, 3, 3, 2, 2). Then

r(λ) = 6, hd (λ) = (3, 2, 2, 2, 1, 1), tl ∗(λ) = (5, 3, 3, 2, 2),

C = sumtl ∗(λ) − sumhd (λ) = 15 − 11 = 4, tl (λ) = (5, 5, 3, 1, 1).
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hd(λ)

tl(λ)

Figure 7. The head and the tail of the partition.

It should be noted that the conditions of Theorem 2 are satisfied since sumλ = 56 and

hd (λ) = (3, 2, 2, 2, 1, 1) ≤ (5, 5, 3, 1, 1) = tl (λ),

since the prefix sums of the sequence (3, 2, 2, 2, 1, 1) do not exceed the corresponding prefix sums of
the sequence (5, 5, 3, 1, 1, 0). Take the component-wise difference of the partitions tl (λ) and hd (λ):

tl (λ) = (5, 5, 3, 1, 1, 0)
hd (λ) = (3, 2, 2, 2, 1, 1)

tl (λ)− hd (λ) = (+2 +3 +1 –1 0 –1)

The partition tl (λ) over the partition hd (λ) in components with numbers 1, 2, and 3 has hills
(see [8]) of heights 2, 3, and 1, respectively, and in components with numbers 4 and 6, it has pits
(see [8]), each of which has depth 1. It should be noted that the sum of the heights of all hills
is C plus the sum of the depths of all pits [8]. A pit is called admissible if adding 1 to it does
not change the non-increasing order for the resulting partition (preserves the stepped form of the
Ferrers diagram). Here the 6-pit (in the component with number 6), like the 4-pit, is admissible
for the partition tl (λ). According to [8], if there is a pit, then there should be an admissible pit.

The algorithm for constructing some shortest sequence of elementary transformations from
tl (λ) to hd (λ) [8] consists in sequentially moving a box into an admissible pit from the hill closest
to it on the left or in removal the upper box from the last hill; be removal exactly C boxes. The
admissible pits in the partition to be transformed will be chosen from right to left. The length of
such a sequence is equal to the sum of the heights of all the hills of the partition tl (λ) over the
partition hd (λ). Let us build such a sequence in our example. First we remove two boxes, then we
fill two pits, and finally we remove two more boxes.

tl (λ) = (5, 5, 3, 1, 1, 0)4; (5, 5, 2, 1, 1, 0)3;
+2, +3, +1, –1, 0, –1 +2, +3, 0, –1, 0, –1

(5, 4, 2, 1, 1, 0)2; (5, 3, 2, 1, 1, 1)2; (5, 2, 2, 2, 1, 1)2;
+2, +2, 0, –1, 0, –1 +2, +1, 0, –1, 0, 0 +2, 0, 0, 0, 0, 0

(4, 2, 2, 2, 1, 1)1; (3, 2, 2, 2, 1, 1)0 = hd (λ)
+1, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0

In this context, underlining at each step shows the choice of a hill for the subsequent elementary
transformation of the second type or the choice of a hill and an admissible pit for the subsequent
elementary transformation of the first type. In addition, at the top right of the current partition,
we state the number of boxes that still need to be removed.
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Since the partition λ has an even weight, by virtue of Lemma 8 the number C is even. Assuming
that s = 0.5C. With the component-by-component difference of the partitions tl (λ) and hd (λ), by
using the considered algorithm [8], we construct the shortest sequence of elementary transformations
from tl (λ) to hd (λ), and at the beginning we remove s boxes and at the end we remove s more
boxes:

tl (λ) = η(0) ⇁ η(1) ⇁ · · · ⇁ η(s) = τ = τ(0) ⇁ · · · ⇁ τ(t) = ξ

= ξ(0) ⇁ ξ(1) ⇁ · · · ⇁ ξ(s) = hd (λ).
(4.2)

Since ℓ(tl (λ)) ≤ r and ℓ(hd (λ)) = r, in components with numbers greater than r in the
difference tl (λ)− hd (λ) all components are equal to 0, i. e. among them there are no hills or pits.
Obviously, ℓ(ξ) ≤ r is true, since in (4.2) when the pits are filled and the hills are removed, the
lengths of the partitions cannot become larger than r. Hence, due to the equality ℓ(hd (λ)) = r
and the fact that in the sequence of transformations

ξ = ξ(0) ⇁ ξ(1) ⇁ · · · ⇁ ξ(s) = hd (λ)

only boxes are removed, we get the equality ℓ(ξ) = r, i. e. for ξ = (ξ1, ξ2, . . . , ξr) ξr ≥ 1.
Let us also consider a sequence of inverse transformations in reverse order from τ∗ to tl ∗(λ),

which are box insertions:

τ∗ = η∗(s) ⇁ η∗(s−1) ⇁ · · · ⇁ η∗(0) = tl ∗(λ).

Since in the sequence of transformations from τ∗ to tl ∗(λ) only block insertions occur and in the
partition tl ∗(λ) all components do not exceed r, in this sequence all components of all partitions
do not exceed r and, in particular, (τ∗)1 ≤ r.

Let us now take a pair of partitions: α = ξ and β = τ∗. Then

sumα = sum τ = sum τ∗ = sumβ,

since the transition from τ to ξ in (4.2) does not remove the boxes, and by virtue of (4.2)
α = ξ ≤ τ = β∗ also holds. Therefore, by virtue of the Gale–Ryser theorem, there is a bipar-
tite graph H = (V1, R, V2) such that dptH(V1) = α and dptH(V2) = β. We add V1 to a complete
subgraph by adding 1/2 · r(r − 1) edges. We obtain a splitable graph H+ = (K(V1), R, V2).

Since r ≥ (τ∗)1 = β1 and the partition ξ = (ξ1, ξ2, . . . , ξr) satisfies ξr ≥ 1, we have

ξ1 + (r − 1) ≥ · · · ≥ ξr + (r − 1) ≥ r ≥ β1 ≥ β2 ≥ . . .

Therefore, the degree partition corresponding to the graph H+ has the form:

dpt(H+) = (ξ1 + (r − 1), . . . , ξr + (r − 1), β1, β2, . . . , βℓ(β), 0, . . . ).

Let σ(0) = dpt(H+). Since β = τ∗,

σ(0) = dpt(H+) = (ξ1 + (r − 1), . . . ξr + (r − 1), (τ∗)1, (τ
∗)2, . . . , (τ

∗)ℓ(τ∗), 0, . . . ).

It is clear that r(σ(0)) = r, hd (σ(0)) = ξ = ξ(0) and tl ∗(σ(0)) = τ∗ = η∗(s).

It should be noted that for s = 0, due to (4.2) we have

hd (σ(0)) = ξ = hd (λ), tl ∗(σ(0)) = τ∗ = tl ∗(λ)
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σ(0) =

ξ(0)

η∗(s)

⇁ σ(1) =

ξ(1)

η∗(s−1)

Figure 8. The elementary transformation of the first type obtained by removing and inserting of the box.

and r(dpt(H+)) = r, so dpt(H+) = λ, i. e. the splitable graphH+ is a realization of the partition λ.

Thus, in the case s = 0, the existence of a splitable realization for λ has been proved.

In what follows, we will assume that s > 0.

Starting from the partition σ(0) = dpt(H+), we sequentially perform s elementary transforma-
tions of the first type in the partitions.

At step 1), we remove a box from the head of the partition σ(0) by removing the box ξ(0) ⇁ ξ(1)
and insert this box into the partition η∗(s) by inserting the box η∗(s) ⇁ η∗(s−1).

As a result, we get a partition σ(1) such that r(σ(1)) = r, hd (σ(1)) = ξ(1) and tl ∗(σ(1)) = η∗(s−1),

and η(1) is obtained from σ(0) with an elementary transformation of the first type σ(0) ⇁ σ(1) (see
Fig. 8).

At step 2) remove a box from the head of the current partition σ(1) by removing the box
ξ(1) ⇁ ξ(2) and insert this box into the partition η∗(s−1) by inserting the box η∗(s−1) ⇁ η∗(s−2). As a

result, we get a partition σ(2) such that r(σ(2)) = r, hd (σ(2)) = ξ(2) and tl ∗(σ(2)) = η∗(s−2), and σ(2)
is obtained from σ(1) with an elementary transformation of the first type σ(1) ⇁ σ(2).

We perform such steps s times.

At step s) we obtain a partition σ(s) such that hd (σ(s)) = ξ(s) = hd (λ), tl ∗(σ(s)) = η∗(0) = tl ∗(λ)

and r(σ(s)) = r(λ). Therefore σ(s) = λ and

dpt(H+) = σ(0) ⇁ σ(1) ⇁ σ(2) ⇁ · · · ⇁ σ(s) = λ.

Now, starting from the graph H+, we apply Lemma 7 s times to this sequence, and we obtain
graph G such that dpt(G) = λ.

Thus, in the case s > 0, the sought realization of the partition λ is obtained from the splitable
graph H+ with the s lowering rotations of edges.

The theorem has been proved. �

It is plain to see that this proof also shows the validity of the two assertions as follows.

Theorem 4. Let λ be a graphic partition. Then λ has a realization that is a splitable graph if

and only if sumhd (λ) = sumtl (λ).

Theorem 5. Let λ be a graphic partition and

s =
1

2
[sum tl ∗(λ) − sumhd (λ)].

Then the partition λ has a realization G that is obtained from some splitable graph H by s successive

lowering rotations and, conversely, H is obtained from G by s successive lifting rotations of edges.
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Figure 9. All realizations of the partition.

Example 3. Assuming that λ = (4, 3, 2, 2, 2, 1). Here sumλ = 14, r = 2, hd (λ) = (3, 2) and
tl (λ)∗ = (2, 2, 2, 1), therefore tl (λ) = (4, 3), sum tl (λ) − sumhd (λ) = 7 − 5 = 2 and s = 1. To
get hd (λ) from tl (λ) we need to remove two boxes, hence, hd (λ) ≤ tl (λ).

Up to isomorphism and isolated vertices, there are 4 realization of the partition λ (see Fig. 9).
According to the proof of Theorem 2, we have

tl (λ) = (4, 3) ⇁ (4, 2) = τ = ξ ⇁ (3, 2) = hd (λ).

Therefore, α = ξ = (4, 2) and β = τ∗ = (2, 2, 1, 1). We sequentially construct a bipartite graph H, a
splitable graphH+, two vertices of which generate a clique and six vertices generate a coclique, then
we perform one lowering rotation of an edge, we obtain the sought realization G of the partition
λ = (4, 3, 2, 2, 2, 1) (see Fig. 10). Graph G is shown in Fig. 9a.

2 2 1 1

4 2

→

2 2 1 1

5 3

→

2 2 2 1

4 3

Figure 10. The graph G obtaining.

It is easy to check that in this example, each realization of the partition λ = (4, 3, 2, 2, 2, 1) can
be obtained from a suitable splitable graph with one lowering rotation of an edge.

At the end of this section, we present a brief review of related results previously obtained by
the authors.

It is worth reminding that any graphic partition has an even weight. The set of all graphic
partitions of fixed weight 2m is an order ideal of the lattice IPL(2m), i. e. it is closed under smaller
partitions. A graphic partition λ of weight 2m will be called a maximal graphic partition if it is
maximal in the set of all graphic partitions of the lattice IPL(2m).

The graph G is called a threshold one (see [16]) if its set of vertices can be represented as a
disjoint union of the clique V1 and coclique V2 (i. e. V1∪V2 = ∅, V1 generates the complete subgraph
K(V1) and V2 is the zero subgraph O(V2) in G), and the set of neighbourhoods in G of vertices from
V2 forms a chain of subsets of the set V1 with respect to the set-theoretic inclusion. It should be
noted that the cases V1 = ∅ or V2 = ∅ are allowed, i. e. the complete and zero graphs are threshold.
For the threshold graph G, the set of all edges can be represented as a disjoint union of the set of
all edges of the complete subgraph K(V1) and the set E of all its edges connecting vertices from
V1 with vertices from V2. Thus, the threshold graph can be represented as G = (K(V1), E,O(V2)).
We will simply write G = (K(V1), E, V2). A bipartite subgraph H = (V1, E, V2) will be called its
sandwich subgraph. In the trivial cases when V1 = ∅, or V2 = ∅, or V2 consists of isolated vertices,
the sandwich subgraph H is an empty subgraph in G.
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The following statements are true, which were proved in [6, 7].

1. An arbitrary partition λ is a maximal graphic partition if and only if hd (λ) = tl (λ).

2. A graph is threshold if and only if it does not contain any lifting triples of vertices.

3. The degree partition corresponding to the graph G is the maximum graphic partition if and
only if the graph G is threshold.

4. Any graph can be reduced to a threshold form with a finite sequence of lifting rotations of
edges.

5. For an arbitrary graphic partition λ, all of its realizations H, and only they are obtained
from the threshold realizations G of maximal graphic partitions µ such that µ ≥ λ and
sum(µ) = sum(λ) with the finite sequences of lowering edge rotations from G to H.

Assume that µ and λ are two arbitrary non-zero partitions and µ ≥ λ. The height (µ, λ)
of a partition µ over a partition λ is the number of transformations in the shortest sequence of
elementary transformations transforming µ into λ.

For a given graphic partition λ, a maximal graphic partition µ such that µ ≥ λ and
sum(µ) = sum(λ) is said to be closest in height to a partition λ if it has the minimum possi-
ble height over λ among all such partitions.

The following assertion was proved in [9].

Assume that λ be an arbitrary graphic partition and µ be the maximum graphic partition
closest to it in height. Then

1) either r(µ) = r(λ)− 1 and ℓ(tl(λ)) < r(λ), or r(µ) = r(λ);

2) height(µ, λ) = height(tl(λ),hd(λ)) −
1

2
[sum(tl(λ)) − sum(hd(λ))] =

1

2

∑r
i=1 |tl(λ)i − hd(λ)i|,

where r = r(λ).

An algorithm was found in [9] that constructs some maximum graphic partition µ closest to λ
in height such that r(µ) = r(λ). In the case when ℓ(tl(µ)) < r(µ), we also found an algorithm that
constructs some maximum graphic partition µ closest to λ in height such that r(µ) = r(λ)− 1.

Assuming that λ be an arbitrary non-zero graphic partition of weight 2m and there is maximal
graphic partitions µ such that µ ≥ λ and r(µ) = r, where r is some natural number. Then the set
of heads of all such maximal graphic partitions µ creates an interval in the lattice IPL(m− 1/2 ·
r(r− 1)). This result was obtained by our PhD-student V.V. Zuev (Ural Federal University). The
full version of this result will be published in the article being prepared.

5. Proof of the Gale–Ryser theorem with the ht-criterion

Let us now give another rather simple proof of the Gale–Ryser theorem, in which the ht-criterion
is used.

The necessity of the condition of the theorem is satisfied by virtue of Lemma 4.

Let us prove the sufficiency of the condition of the theorem. Let α = (α1, α2, . . . ) and
β = (β1, β2, β) be non-zero partitions such that sumα = sumβ and α ≤ β∗. Assume that
m = sumα = sumβ, i. e. α, β ∈ IPL(m), p = ℓ(α) and q = ℓ(β).

Since αp + (p− 1) ≥ p ≥ β1, the sequence as follows

λ = (α1 + (p− 1), . . . , αp + (p− 1), β1, β2, . . . , βq, 0, . . . )
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is a partition. Obviously, r(λ) = p and

hd (λ) = (α1, α2, . . . ) = α, tl∗(λ) = (β1, β2, . . . ) = β,

thus, tl (λ) = β∗.
It should be noted that

sumλ = sumhd (λ) + p(p− 1) + sum tl (λ) = sumα+ p(p− 1) + sumβ = 2m+ p(p− 1)

is even number and hd (λ) = α ≤ β∗ = tl (λ). Therefore, by virtue of the ht-criterion, there is a
graphH realizing the partition λ, i. e. a graph H such that dpt(H) = λ. It is clear that ℓ(λ) = p+q.
Without loss of generality, we assume that H has no isolated vertices and VH = {v1, v2, . . . , vp+q}.

Assume that V1 = {v1, v2, . . . , vp}, where degH vi = αi + (p − 1) for any i = 1, 2, . . . , p, and
V2 = {vp+1, vp+2, . . . , vp+q}, where degH vp+j = βj for any j = 1, 2, . . . , q.

Let us remove all edges in H that connect pairs of different vertices from V1. We obtain a
graph G. For each i = 1, 2, . . . , p, the degree αi of the vertex vi will decrease by no more than p−1
when passing from H to G, so degG vi = αi+ δi, where δi will hold in G, where δi is a non-negative
integer. Moreover, δi = 0 is satisfied if, when passing from H to G, the degree of the vertex vi
decreases by p− 1.

Case 1. Assume that the set V1 = {v1, v2, . . . , vp} is not a clique in H.
Then there are vertices vi from the set V1 such that δi > 0. Therefore,

p∑

i=1

degG vi =

p∑

i=1

αi +

p∑

i=1

δi > sumα = m.

Therefore, in the graph G there are more than m edges going from V1 to V2. Since sumβ is greater
than or equal to the number of such edges, we get the sumβ > m, which contradicts sumβ = m.

Therefore, this case is impossible.
Case 2. Let the set V1 = {v1, v2, . . . , vp} is a clique in H.
Then degG vi = αi for any i = 1, 2, . . . , p. Since sumα = m, the number of edges of the graph

G going from V1 to V2 is equal to m. By virtue of the equality sumβ = m, it follows that there are
no edges in the graph G that connect pairs of different vertices from V2. Therefore, V1 and V2 are
two cocliques in G.

Since dptG(V1) = α and dptG(V2) = β, the graph G is the sought bipartite graph with parts
V1 and V2.

The theorem has been proved. �

At the end of this section, we present a brief review of the results previously obtained by the
authors and similar in subject matter to the Gale–Ryser theorem.

We first give the necessary definitions.
We say that a bipartite graph H = (V1, E, V2) contains a bipartite 4-pseudocycle

x1, x2, x3, x4, x1, if x1, x3 ∈ V2; x2, x4 ∈ V1; x1x2 ∈ E; x2x3 /∈ E; x3x4 ∈ E; x4x1 /∈ E.
We call the bipartite graph H = (V1, E, V2) a bipartite-threshold graph [10] if it does not have

any lifting triples of both the first and second parts, i. e. such lifting triples (x, v, y), that x, y ∈ V1,
v ∈ V2, or x, y ∈ V2, v ∈ V1.

It should be reminded [7] that a graph is a threshold one if and only if it does not contain any
lifting triples of vertices. Therefore, bipartite-threshold graphs are analogues of threshold graphs
for the class of bipartite graphs.

In [10], the properties of bipartite-threshold graphs were studied. The following assertion is
true [10].

Let H = (V1, E, V2) be a bipartite graph. Then the following conditions are equivalent
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1. H is a sandwich subgraph of the threshold graph G = (K(V1), E, V2).

2. H is a sandwich subgraph of the threshold graph G = (K(V2), E, V1).

3. The neighborhoods in H of the vertices of each of the parts V1 and V2 are nested, i. e. they
form chains with respect to the set-theoretical inclusion.

4. Neighborhoods in H of the vertices of the part V1 are nested, i. e. it forms a chain with
respect to the set-theoretical inclusion.

5. Neighborhoods in H of the vertices of V2 are nested, i. e. it forms a chain with respect to the
set-theoretical inclusion.

6. H is a bipartite-threshold graph, i. e. it does not contain lifting V1-triples and lifting V2-
triples.

7. H does not contain lifting V1-triples.

8. H does not contain lifting V2-triples.

9. dptH(V2) = dptH(V1)
∗.

10. dptH(V1) = dptH(V2)
∗.

11. H has no bipartite 4-pseudocycles.

Assume that α and β be non-zero partitions such that sumα = sumβ = m and α ≤ β∗.
A bipartite graph H = (V1, E, V2) such that dptH(V1) = α and dptH(V2) = β will be called
a realization of a pair of partitions (α, β). The class of all such bipartite graphs is denoted by
BG (α, β) (the family of bipartite graphs corresponding to the pair (α, β)).

For an arbitrary partition γ, we denote by btg (γ, γ∗) a bipartite threshold graph with parts
V1 and V2 without any isolated vertices such that dptG(V1) = γ and dptG(V2) = γ∗. It should be
noted that this graph is unique up to isomorphism (see [12]).

Any bipartite graph H = (V1, E, V2) from the family of graphs BG (α, β) can be reduced with
finite sequences of bipartite lifting rotations of edges to bipartite threshold graphs, each of which,
up to isomorphism and isolated vertices, has the form btg (γ, γ∗) for a suitable partition γ, and the
graph H = (V1, E, V2) is obtained from such graphs btg (γ, γ∗) with reverse sequences of bipartite
lowering edge rotations.

We denote by BTG↑ (α, β) the family of all bipartite threshold graphs that can be obtained from
the graphs of the family BG (α, β) with bipartite lifting rotations (the family of bipartite threshold

graphs over the pair (α, β)).

Let a bipartite graph H = (V1, E2, V2) be obtained from a bipartite graph G = (V1, E1, V2) with
a finite sequence of bipartite lifting edge rotations. The least number of bipartite lifting rotations
of edges in the sequence taking G to H is denoted by updist (G,H) and is called the upper distance
from G to H.

The following two theorems are valid [12].

1. The family of bipartite threshold graphs BTG↑ (α, β) up to isomorphisms and isolated vertices
consists of graphs of the form btg (γ, γ∗), where α ≤ γ ≤ β∗ (compare with the Zuev theorem
about the interval of heads of maximal graphic partitions over the given partition given at
the end of Section 4).
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2. Let the bipartite threshold graph H = (V1, E2, V2) = btg (γ, γ∗) ∈ BTG↑ (α, β) be obtained
from the graphG = (V1, E1, V2) ∈ BG(α, β) with a finite sequence of bipartite lifting rotations
of edges. Then

updist (G,H) ≥ height (β∗, α) = height (α∗, β).

This estimate is achieved on the graphs btg (β∗, β) and btg (α,α∗), i. e. for γ = β∗ and for γ = α.

It is clear that any bipartite graph is reduced by successive rotations of edges, each of which
corresponds to a lifting triple of only the first part, to a bipartite-threshold graph.

Assume that the bipartite graph H2 = (V1, E2, V2) can be obtained from the graph
H1 = (V1, E1, V2) with a finite sequence of V1-rotations of the edges. Let V1-dist (H1,H2) denote
the smallest number of V1-rotations of edges in the sequence that maps H1 to H2 and call it as the
V1-distance from H1 to H2. In [11], with the Hungarian algorithm, a polynomial algorithm was
constructed that transforms an arbitrary bipartite graph H = (V1, E, V2) into a bipartite-threshold
graph G with a finite sequence of the smallest possible length consisting of V1-rotations of edges,
i. e. the length equal to V1-dist (H,G).

In conclusion we make the following important remark. Let λ be an arbitrary nonzero partition.
It corresponds to two partitions α = hd (λ) and β = tl (λ)∗. According to the ht-criterion, a
partition λ is graphic if and only if its sum is even and α ≤ β∗. It is clear that the ht-criterion is
essentially an analog of the Gale–Reiser criterion when passing from the class of bipartite graphs
to the class of all graphs. There are many facts indicating a deep analogy between the properties
of degree partitions in the class of all bipartite graphs and in the class of all graphs.
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