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Abstract: A simplified mathematical model of a rotary regenerative air pre-heater (RRAP) is suggested
and studied based on the averaged dynamics of the heat exchange process between nozzles and a heat carrier
(i.e. air or gas-smoke mixture). Averaging in both spatial coordinates and time gives a linear discrete system
that allows deriving explicit formulas for determining the characteristics of the air heater and establishing some
properties such as periodicity, stability, ergodicity and others.
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Introduction

A rotary regenerative air pre-heater (RRAP) is a special unit, usually applied in thermal power
plants (TPP) in order to increase its efficiency by heating the air which is blowing into a boiler of the
plant by means of an exhaust of hot mixture of smoke and gas (from now on simply gas) generated
in fuel combustion. The RRAP essentially reduces the thermal pollution of atmosphere [6], [8–12].

Currently, several types of RRAPs are used in TPP. In the present paper, we consider the case
of a unit with the main part consisting of a rotating cylindrical drum with metal nozzles of high
thermal conductivity. The region of space occupied by the wheel of the RRAP is divided into two
parts BA and BG by a fixed conditional plane passing through the axis of the cylinder. During
the work of the RRAP, the atmospheric air passes through the part BA in one direction parallel
to the axis of the drum, being heated by the nozzles; as a result, the temperature of the nozzles is
reduced. Through the part BG, the gas flows in the opposite direction, being cooled by the heat
output to the nozzles. The final transfer of heat from the hot gas to the cool air occurs due to the
rotation of the drum around its axis.

Monitoring and control of the temperatures of air and gas leaving the RRAP and especially the
temperature of the nozzles is the important problem for the effective exploitation of the RRAP [3],
[15], [17–19]. The direct measurement of the temperatures of air and gas of both inlet and outlet
is easily carried out; in contrast, the observation and control of the nozzle temperature require to
use sophisticated measuring tools and represent an important problem. Therefore, the treatment
for mathematical modeling of the heat exchange process in the RRAP is reasonable.

1This work was supported by Committee for Coordination Science and Technology Development Under
Cabinet of Ministers of Uzbekistan (project no F4–FA–F014).
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In recent decades, a variety of mathematical models of the heat exchange process in RRAPs
were suggested [1–3], [5] and see also [8]. It should be noted that the thermodynamic process
in RRAP nozzles can be in principle described by the classical heat conduction equation, but,
without additional simplifying assumptions, it is difficult to write out the boundary conditions
since the nozzle system has a rather complex geometry. On the other hand, modeling of the
thermodynamic process of air heating and gas cooling passing through the drum of the RRAP is
even more challenging problem pertaining to thermos-aerodynamics [8]. Furthermore, the necessity
of considering the turbulence of flow that arises when air and gas pass through the RRAP drum
also adds complexity. Because of these and other features, all mathematical models of the RRAP
are built under essential simplifying assumptions.

In the present paper, we propose a mathematical model of the thermodynamic process in the
RRAP based on averaging the quantities associated with the heat exchange process between the
nozzles, air and gas in both spatial coordinates and time interval. As a result, we obtain rather
simple linear discrete equation. This allows us to write out explicit calculating formulas for the
current values of parameters, and find steady and periodical states, establish the ergodicity and
other properties. Then, we provide appropriate calculations for the case when averaging over the
time variable is carried out on a period of time equal to a half-cycle of rotation of the RRAP drum.
In subsequent parts of the work, models with averaging performed over a small time interval are
considered, a comparative analysis of numerical results and experimental data is fulfilled.

1. Derivation of equations

Let the RRAP drum be of the form of a cylinder x2 + y2 ≤ R2, 0 ≤ z ≤ H. Assume that the
parts BA and BG are described by conditions y ≥ 0 and y ≤ 0, respectively. Let Θ(t, x, y, z) denote
the temperature at the point (x, y, z) of the drum occupied by the nozzles at time t, t ≥ 0, and let
T (t, x, y, z) denote the temperature of heat transfer (air or gas) at the point (x, y, z) of the drum
outside the nozzles. The pair of quantities Θ(t, x, y, z) and T (t, x, y, z) completely characterizes the
heat change process in the RRAP drum. However, as mentioned above, due to the complexity of the
configuration of the nozzles, the initial-boundary problem for corresponding system of equations
of thermo-aerodynamics is too hard to be investigated by analytical methods. One of the ways
to overcome such complexity is the method of averaging [4], [7]. To this end, we consider the
corresponding average values
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where B•

A = BA ∩ B̄, B•

G = BA ∩ B̄, B̄ is the part of the drum occupied by the nozzles, Bo
A =

BA\B
•

A, B
o
G = BG\B

•

G, dv is the volume element, V denotes the volume of the corresponding part
of the drum.

Next, we perform averaging over the time intervals I(n) = [nh, (n+ 1)h) as well, where h is
the half-turn time of the RRAP drum, n = 0, 1, 2, . . .. Denote the average temperatures obtained
in this way by

xn =
1

h

∫

I(n)
ΘA(t)dt, yn =

1

h

∫

I(n)
ΘG(t)dt,
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1

h

∫
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1

h

∫

I(n)
TG(t)dt.

Equations connecting these quantities are derived under the following simplifying assumptions:
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1. for nh ≤ t < (n + 1)h, the RRAP drum is motionless, the portion of air (respectively, gas)
filling the part Bo

A (respectively, Bo
G) is also motionless, the heat exchange between the heat

carrier and nozzles occurs in accordance with the linear Newton law [8];

2. at the time t = (n + 1)h, the heated portion of air with temperature un leaves the area
Bo

A, the gas portion cooled down to temperature vn leaves the region Bo
G, the drum turns to

180o with jump (i.e., the part B•

A goes to the part B•

G and vice versa); then the part Bo
A is

filled in by a new portion of air from outward (or from calorifer in case of its connection to
the RRAP, [12]) of temperature pn, and the part Bo

G is filled in by a new portion of gas of
temperature qn.

In accordance with the Newton law, we have the following relations:

xn+1 = (1− βh)yn + βhqn, yn+1 = (1− αh)xn + αhpn, (1.1)

un = pn + γh(xn − pn), vn = qn + δh(yn − qn), (1.2)

where α, β, γ, δ are parameters depending on characteristics of the heat exchange process in the
RRAP (the geometry, the heat capacity of the carcass of drum, the system of nozzles and their
structure, the humidity of air and gas and their thermodynamic characteristics, the coefficients
of heat conductivity and diffusion, parameters that characterize the heat exchange process on the
contact surface of the nozzles with air and gas and etc.).

Relations (1.1) and (1.2) have been obtained as a result of extremely simplifying assumptions
on the heat exchange process in the RRAP. Nevertheless, due to such simplification, system (1.1)
allows a fairly complete analysis; therefore, it can serve as a basic model to describe the work of
the RRAP.

2. Solution of the system

Introducing the vectors zn = (xn, yn)
T and rn = h(βqn,αpn)

T , where T is the transpose sign
to transform the row-vector to the column-vector, and the matrix

A =





0 1− βh

1− αh 0



 ,

one can rewrite system (1.1) as follows:

zn+1 = Azn + rn, n = 0, 1, 2, . . . . (2.1)

All further reasoning is conducted under the assumption 0 < αh, βh < 1, called the physical
realizability of the model. This condition implies the fact that the eigenvalues of the matrix A,
which are ±µ where µ =

√

(1− αh)(1 − βh), belong to the interval (−1, 1) and therefore all the
solutions of system (1.1) are asymptotically stable [13,14], [16].

The solution of equation (2.1) can be written by the Cauchy formula [13]

zn = Anz0 +

n−1
∑

k=0

An−1−krk. (2.2)

Since An = µnE for even numbers n, and An = µn−1A for odd numbers n, then equation (2.2) can
be transformed to the form

zn = µnz0 +A

n/2−1
∑

j=0

µn−2−2jr2j +

n/2−1
∑

j=0

µn−2−2jr2j+1,



30 A. Azamov and M.A.Bekimov

for even n, and to the form

zn = µn−1Az0 +A

(n−1)/2
∑

j=1

µn−1−2jr2j−1 +

(n−1)/2
∑

j=0

µn−1−2jr2j

for odd n.
Based on these relations, one can easily obtain explicit formulas for xn and yn. In practice,

however, it is more convenient to calculate them, in case of need, directly from equations (1.1) that
are accommodated to computer calculations. In the rest of the paper, some properties of solution
of systems (1.1), (1.2) are established.

3. Steady state and periodic regimes

Let us first consider the case of a steady state, which occurs under the assumption of constant
incoming flows. Such a state can be established in the periods of time measured in hours, if the
parameters of the air and the energy load at the TPP remain virtually unchanged. Since h is
measured in minutes, the work of the RRAP actually consists of long periods of steady states and
relatively short transition intervals from one steady state to another. Therefore, it is important to
determine the parameters of the RRAP under steady state conditions.

Thus, let
pn ≡ p̄, qn ≡ q̄, n = 0, 1, 2, . . . , r̄ = (βq̄, αp̄)T .

Then formula (2.2) can be simplified even more: for even n

zn = µnz0 + (1− µn)(E −A)−1r̄, (3.1)

or in the component form

xn = µnx0 +
1− µn

α+ β − αβh
[p+ q(1− βh)],

yn = µny0 +
1− µn

α+ β − αβh
[q + p(1− αh)],

and for odd n

zn = µn−1Az0 +
1

α+ β − αβh
(E − µnA)(E −A)−1r,

or

xn = µn−1(1− βh)y0 +
1

α+ β − αβh
[p(1− µn+2) + q(1− βh)(1 − µn−1)],

yn = µn−1(1− αh)x0 +
1

α+ β − αβh
[q(1− µn+2) + p(1− αh)(1 − µn−1)].

For the steady state, we obtain z̄ = (E −A)−1r̄ from the equation z̄ = Az̄ + r̄ (the invertibility of
the matrix E −A follows from the condition of physical realizability) or in the component form

x̄ =
1

α+ β − αβh
(αp+ βq(1− βh)),

ȳ =
1

α+ β − αβh
(βq + αp(1− αh)) .

(3.2)

Due to the fact noticed above, steady state (3.2) is asymptotically stable. On time intervals
measured in weeks, a periodic state for the RRAP can be formed.
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Theorem 1. Let the sequence rn be periodic with the period m, m ≥ 2, i.e. rn+m = rn, where

n = n0, n0 + 1, n0 + 2, . . . ; n0 is some fixed value of n. Then system (2.1) has a unique periodic

solution of period m, which is asymptotically stable.

P r o o f. The uniqueness and asymptotic stability follows from the condition of physical real-
izability. To establish the existence, we set

z∗n = (E −Am)−1
m−1
∑

k=0

Am−1−krk (3.3)

(it follows from the condition of physical realizability that the matrix E −Am is invertible).

Let z∗n be a trajectory with the initial point z∗0 . Rewrite relation (3.3) as follows:

z∗n = Amz∗0 +
m−1
∑

k=0

Am−1−krk = z∗m.

Then,

z∗n+m = An+mz∗0 +

m−1
∑

k=0

An+m−1−krk +

n+m−1
∑

k=m

An+m−1−krk. (3.4)

The sum of the first two summands in the right hand side of (3.4) is Anz∗m, the third one is equal
to

n−1
∑

k=0

An−1−krk+m =

n−1
∑

k=0

An−1−krk

since rk is periodic. Thus,
n−1
∑

k=0

An−1−krk = zn −Anz0.

Now, in accordance with (3.4), we obtain

z∗n+m = Anz∗m + zn −Anz∗0 = zn,

and the proof is complete. �

4. Boundedness and ergodicity of the solutions

In time intervals of longer duration, in a changeable external environment and energy load at
the TPP, the sequence rn is not periodic, a fortiori, it is not stationary. In this regard, we give
two properties of the solution for more general classes of systems (2.1), which models more or less
irregular regime of the heat exchange process.

Theorem 2. If rn is a bounded sequence, then each solution of equation (2.1) is also bounded.

This statement is also a special case of more general theorem [11].

Theorem 3. Let lim
n→∞

rn = l. Then each solution zn approaches the limit (E−A)−1l as n → ∞

independently of z0.
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P r o o f. First assume that l = 0. Let M = max
n

|rn|. Given any ε > 0, choose n0(ε) such that

|rn| <
1

2
(1− ||A||)ε at n ≥ n0(ε). Then choose N(n0(ε)) such that

µn <
1− ||A||

2M (1− ‖An0‖)
ε

for all n ≥ N(n0(ε)). Clearly, N(n0(ε)) can be chosen to satisfy N(n0(ε)) ≥ n0(ε). Then, for
n ≥ N(n0(ε)), we have

|zn| < ‖An‖ |z0|+

∣

∣

∣

∣

∣

n0−1
∑

k=0

An−1−krk

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

n−1
∑

k=n0

An−1−krk

∣

∣

∣

∣

∣

∣

.

Since 0 < αh, βh < 1, the first summand tends to zero as n → ∞. Denote two other terms by SI
n

and SII
n . Then, in view of ‖A‖ = µ ∈ (0, 1), we get

SI
n <

∥

∥An−n0

∥

∥

n0−1
∑

k=0

∥

∥

∥An0−1−k
∥

∥

∥ |rk| < M
∥

∥An−n0

∥

∥

n0−1
∑

k=0

∥

∥

∥An0−1−k
∥

∥

∥ < Mµn1− ‖An0‖

1− ‖A‖
<

ε

2
,

SII
n <

n−1
∑

k=n0

∥

∥

∥An−1−k
∥

∥

∥ |rk| <
1− ‖A‖

2
ε

∞
∑

k=0

∥

∥

∥Ak
∥

∥

∥ =
1− ‖A‖

2
ε

1

1− ‖A‖
<

ε

2
.

Hence, |zn| ≤ SI
n + SII

n < ε at n ≥ N(n0(ε)), i.e. zn → 0.

Let now rn → l as n → ∞, where l 6= 0. We make the change of variables

zn = z̄n + (E −A)−1l, r̄n = rn − l.

Then
z̄n+1 + (E −A)−1l = A

[

z̄n + (E −A)−1l
]

+ r̄n + l = Az̄n + r̄n,

where r̄n → 0. As proved, z̄n → 0. Therefore, zn → (E −A)−1l. �

In general, the change of the parameters characterizing the state of air, as well as the variation
of the load at the TPP is random with a hard-determinable distribution function.

Considering the work of the RRAP as a stochastic process, we leave it for the next part of the
paper, and we now present another property, taking into account irregular characters of values of
phase variables of system (1.1), (1.2).

A sequence an is called almost-periodic, if it can be represented in the form bn + cn, where bn
is periodic and cn → 0 as n → ∞.

Corollary 1. If rn is almost-periodic, then each solution of (2.2) is also almost-periodic.

Definition. A sequence xn is called ergodic, if the sequence of Cesaro means

σn =
x1 + x2 + · · · + xn

n

converges as n → ∞.

Theorem 4. If the sequence rn is ergodic, namely

ρn =
r0 + r1 + · · ·+ rn−1

n
→ l,

then each solution zn is also ergodic with

Sn =
z1 + z2 + · · · + zn

n
→ (E −A)−1l.
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P r o o f. Express SN as the sum of two terms: SN = ΣI +ΣII , where

ΣI =
1

N

N
∑

n=1

Anz0, ΣII =
1

N

N
∑

n=1

n−1
∑

k=0

An−1−krk.

Then

ΣI =
1

N

N
∑

n=1

Anz0 =
1

N
A(E −A)−1(E −AN )z0 → 0

as n → ∞.
For ΣII , we have

ΣII =
1

N

N−1
∑

k=0

N
∑

n=k+1

An−1−krk =
1

N

N−1
∑

k=0

(

N−1−k
∑

n=0

An

)

rk

=
(E −A)−1

N

[

N−1
∑

k=0

rk −

N−1
∑

k=0

AN−1−krk

]

= (E −A)−1 ρn −
(E −A)−1

N

N−1
∑

k=0

AN−1−krk.

By hypothesis of the theorem, (E −A)−1 ρn → (E −A)−1 l as N → ∞. Assuming ρk = ξk + l,

where ξk → 0, we arrive at the equation

rk = (k + 1)ρk+1 − kρk = (k + 1)ξk+1 − kξk + l.

Thus,

(E −A)−1

N

N−1
∑

k=0

AN−1−krk =
(E −A)−1

N

[

N−1
∑

k=0

AN−1−k [(k + 1)ξk+1 − kξk]−

N−1
∑

k=0

AN−1−kl

]

.

Obviously,
N−1
∑

k=0

AN−1−kl → 0

as N → ∞. Let

S =
1

N

N−1
∑

k=0

AN−k−1kξk.

Show that S → 0 as N → ∞. Indeed,

|S| ≤
N−1
∑

k=0

µN−1−k k

N
|ξk| ≤

N−1
∑

k=0

µN−1−k |ξk| .

By Theorem 3, the right-hand side of this inequality tends to 0 as N → ∞. Thus, finally we obtain

SN =
1

N

N
∑

n=1

zn → (E −A)−1l,

which is our claim. �
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5. Finding the coefficients of the system

As mentioned above, besides the temperature and velocity of incoming air and gas, the drum
rotation speed, the heat exchange process in the RRAP depends on many parameters expressing
the thermodynamic characteristics of air and gas, the material and geometry of the nozzles of the
RRAP, thermal properties of the drum casing etc.

There are a number of works devoted to the mathematical modeling of the RRAP where for-
mulas are given to calculate the values of the parameters above on the basis of molecular physics
laws [1–3], [8], [9]. In addition, finding the numerical parameters characterizing the RRAP is only
possible with a certain accuracy. From this point of view, it is much easier to define them with a
satisfactory accuracy by solving the inverse problem for system (1.1), (1.2) on the basis of empirical
data. With regard to model (1.1), (1.2), such a problem consists in calculating the values of α, β, γ,
and δ based on the results of measurements of temperatures of outgoing air un and gas vn. Here,
there is a wide field of application of the least squares method and tools of mathematical statis-
tics. Here, we confine ourselves to the simplest case, when α, β, γ, and δ are found by measuring
u1, u2, v1, and v2 assuming that incoming streams pn = p, qn = q are stationary. We can assume
that u0 = p, v0 = q, and the values of u1, u2, v1, and v2 are found by the direct measurements.
As a result, we arrive at the problem of finding the unknowns α, β, γ, δ based on the given values
h, p, q, u1, u2, v1, v2, without measuring the values xn, yn (the nozzle temperature).

We have
x2 = (1− βh)y1 + βhq, y2 = (1− αh)x1 + αhp, (5.1)

u1 = p+ γh(x1 − p), v1 = q + δh(y1 − q), (5.2)

u2 = p+ γh(x2 − p), v2 = q + δh(y2 − q). (5.3)

Set ūk = uk − p, v̄k = vk − q, k = 1, 2, (these values have the clear physical meaning).
Substituting the values of x2 and y2 from (5.1) into (5.3), we obtain the following system

γh(x1 − p) = ū1, δh(y1 − q) = v̄1, (5.4)

γh[(1− βh)y1 + βhq − p] = ū2, δh[(1 − αh)x1 + αhp − q] = v̄2, (5.5)

with 6 unknowns α, β, γ, δ, x1, y1. It is nonlinear and, in general, cannot be solved explicitly.
Therefore, we use the fact that, for the values of α, β, γ, δ, there is a priori estimate 0.1÷ 0.6

and h < 1. This allows us to neglect the terms containing βγh2 and αδh2.
Then equations (5.5) take the form γh(y1 − p) = ū2, δh(x1 − q) = v̄2. As a result, for the

intermediate unknowns x1, y1, we obtain the linear system

x1 − p

y1 − p
=

ū1

ū2
,

y1 − q

x1 − q
=

v̄2

v̄1
, (5.6)

with the determinant equal to ū1v̄1 − ū2v̄2. We call the quantity χ = |ū1v̄1 − ū2v̄2| the divergence
coefficient of the RRAP. The deviation of χ from zero is a characteristic of the RRAP that expresses
how the rates of air heating and gas cooling differ. Further, we assume χ 6= 0. It follows from (5.6)
that

x1 =
(ū1 − ū2)v̄2p+ (v̄1 − v̄2)ū1q

ū1v̄1 − ū2v̄2
, y1 =

(ū1 − ū2)v̄1p+ (v̄1 − v̄2)ū2q

ū1v̄1 − ū2v̄2
.

Substituting the values x1, y1 into (5.4), (5.5), we obtain the final formulas

αh =
x1 − q

x1 − p
v̄1 −

y1 − q

x1 − p
v̄2, βh =

y1 − p

y1 − q
ū1 −

x1 − p

y1 − q
ū2
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γh =
ū1

x1 − p
, δh =

v̄1

y1 − q
.

Table 1 shows posteriori values of parameters α, β, γ, δ calculated by these formulas under the
assumption that p = 32◦, q = 282◦, h = 0.25 [4, 5].

ū1 v̄1 ū2 v̄1 α β γ δ

3.61 −2.58 6.75 −4.82 0.048 0.068 0.041 0.029

Table 1. Posteriori values of parameters α, β, γ, δ.

6. Conclusion

In the present paper, we have proposed the mathematical model of thermodynamic process of
the RRAP, which is described by linear discrete equations. To obtain this, we have used averaging
the quantities associated with the heat exchange process between the nozzles, air and gas in both
the spatial coordinates and time interval. We have found steady and periodical states, established
the ergodicity and other properties. Next, we have studied the cases when the time averaging is
performed over the period of time equal to the half-cycle of rotation of the RRAP drum as well
as when the time averaging is performed over a small time interval. Finally, we have provided the
comparative analysis of the numerical results obtained and the experimental data.
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