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Abstract: Using the technique of generalized inequalities of the Hamilton–Jacobi–Bellman type, we study
here the state estimation problem for a control system which operates under conditions of uncertainty and
nonlinearity of a special kind, when the dynamic equations describing the studied system simultaneously contain
the different forms of nonlinearity in state velocities. Namely, quadratic functions and uncertain matrices of
state velocity coefficients are presented therein. The external ellipsoidal bounds for reachable sets are found,
some approaches which may produce internal estimates for such sets are also mentioned. The example is
included to illustrate the result.
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1. Introduction

In the paper the nonlinear dynamical control systems with unknown but bounded uncertainties
with its set-membership description [20–22, 24] are studied and the main goal of the present research
is to construct the outer (external) estimates for related reachable sets. Several approaches may
be used for these purposes but most of them are suitable only for the case of linear dynamical
systems [8, 24, 26]. However researches in nonlinear control systems theory are very important
for various applications, e.g., [3–7]. The key issue in nonlinear set-membership estimation theory
is to find suitable techniques, which allow to find estimates (of external and internal kind) for
unknown system states and do not involve difficult and lengthy computations. Some approaches
to achieve this goal may be taken and further developed using techniques of differential inclusions
theory [5] but in general these ideas produce very complicated numerical schemes and hard working
algorithms.

We use here the advantages of ellipsoidal calculus [8, 24, 26] and further develop the Hamilton-
Jacobi-Bellmann (HJB) techniques initiated in researches [12, 17, 19] to construct computationally
acceptable set-valued estimates of reachable sets for a new class of nonlinear control systems under
uncertainty [9–11, 13–16, 25].

The paper is organized as follows. First, in Section 2 we introduce some notations, give necessary
definitions and formulate the main problem. Ellipsoidal external estimates are developed further
in Section 3 where equations describing parameters of estimating ellipsoids are presented. The
example is given in Section 4 to illustrate the theoretical results.

The study continues previous researches in this field and deals now with a special case, when
a nonlinearity of quadratic type together with bilinear terms defined by uncertain matrix are
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presented in the dynamical equations having also an uncertainty in initial states. This case is both
of theoretical and of applied importance. Note, however, that the structure of the system under
consideration differs from that previously studied, including that given in earlier papers [16, 17].

The problems studied in this paper are generated both by the problems of the theory of guar-
anteed state estimation for nonlinear dynamical systems with uncertain dynamics and by practical
problems of control-estimation under unpredictable interferences.

2. Main notations and problem statement

We introduce first a short list of main notations. Let R
n be the n–dimensional Euclidean

space with the inner product x′y =
∑n

i=1 xiyi for x, y ∈ R
n, here a prime indicates a transpose,

‖x‖ = (x′x)1/2. Let compRn be the set of all compact subsets of Rn, h(A,B) be the Hausdorff
distance between A,B ∈ compRn. We denote also B(a, r) = {x ∈ R

n : ‖x − a‖ ≤ r}, a symbol I
will stand for the identity n× n-matrix.

We use the symbol Rn×n for a set of all n × n–matrices and E(a,Q) for an ellipsoid in R
n,

E(a,Q) = {x ∈ R
n : (Q−1(x−a), (x−a)) ≤ 1} with a center a ∈ R

n and with a symmetric positive
definite n× n–matrix Q. For any n× n–matrix M = {mij} we denote Tr (M) =

∑i=n
i=1 mii.

We will study the control nonlinear system

ẋ = A(t)x+ f(x)d+ u(t), t ∈ [t0, T ], x0 ∈ X0. (2.1)

We assume further that ‖x‖ ≤ K (K > 0), x, d ∈ R
n, the nonlinear function f(x) is quadratic in x,

f(x) = x′Bx, and B is a symmetric and positive definite n× n-matrix. Here the coordinates di of
the vector d are the coefficients with which the nonlinear function f(x) enters the right side of the
differential control system (2.1), in particular, they can be interpreted as independent parameters of
the studied model or as coefficients of approximate estimates of the state velocities of the simulated
system.

The n× n-matrix function A(t) in (2.1) is assumed to be of the form

A(t) = A1(t) +A0, (2.2)

where the matrix A0 (with its dimension n×n) is given and the measurable n×n-matrix function
A1(t) is unknown but bounded, A1(t) ∈ A1 (t ∈ [t0, T ]). Namely, we have

A(t) ∈ A = A0 +A1, (2.3)

A1 =
{

A = {aij} ∈ R
n×n : |aij | ≤ cij , i, j = 1, . . . n

}

,

where the numbers cij ≥ 0 (i, j = 1, . . . n) are given.
We will assume that X0 in (2.1) is an ellipsoid,

X0 = E(a0, Q0),

with a symmetric and positive definite matrix Q0 ∈ R
n×n and with a center a0.

It is assumed that f(x) in (2.1) is a scalar function of the form f(x) = x′Bx, with a given
symmetric positive definite n× n–matrix B. The set U of admissible controls u(·) in (2.1) consists
of all functions u(t) which are measurable in Lebesgue sense on [t0, T ] and such that the constraint

u(t) ∈ U for a.e. t ∈ [t0, T ] (2.4)

is fulfilled, where U is a given set, U ∈ compRn.
Let the absolutely continuous function x(t) = x

(

t;u(·), A(·), x0
)

be a solution to dynamical
system (2.1)–(2.4) with initial state x0 ∈ X0, with admissible control u(·) and with a matrix A(·)
satisfying (2.2)–(2.3).
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Definition 1. The reachable set X(t) at time t (t0 < t ≤ T ) of system (2.1)–(2.4) is defined
as follows

X(t) =
{

x ∈ R
n : ∃u(·) ∈ U , ∃x0 ∈ X0, ∃A(·) ∈ A, x = x(t) = x

(

t;u(·), A(·), x0
)}

.

It is well known that the exact construction of reachable sets X(t) of a control system is very
difficult even for systems with a linear dynamics. The theory based on ideas of construction external
and internal ellipsoidal estimates of reachable sets for systems with a linear dynamics have been
deeply developed in [8, 24]. Recent new results devoted to construction of external (and in some
special cases internal) set-valued estimates of reachable sets X(t) for separate kinds of nonlinear
systems may be found in [10–12, 14, 15, 25].

The approach presented here for estimating reachable sets of the system (2.1)–(2.3) is based on
the techniques of developed ellipsoidal calculus and uses also approach connected with Hamilton–
Jacobi–Bellman equations which is applied to nonlinear control systems of the class described above.
Therefore this research establishes a connection between these two approaches to the estimation of
unknown states of uncertain dynamical systems of the considered type.

We need to define also an additional trajectory tube X(t;u(·)) (t0 < t ≤ T, u(·) ∈ U) which
depends on a control u(·).

Definition 2. Let u(·) be an admissible control. The set X(t;u(·)) at time t (t0 < t ≤ T ) of
system (2.1) is defined as the set

X(t;u(·)) =
{

x ∈ R
n : ∃x0 ∈ X0, ∃A(·) ∈ A, x = x

(

t;u(·), A(·), x0
)}

.

Note that for each fix t (t0 < t ≤ T ) and for a fixed control u(·) (u(·) ∈ U) the set X(t;u(·))
represents the reachable set of system (2.1) taken with respect to x0 ∈ X0 only. Accordingly, the
estimating ellipsoidal tubes and their cross-sections, generally speaking, also depend on admissible
controls u(·), so in the formulations of main problems we would like to emphasize this circumstance
by using a slightly modified notation E(â, Q̂;T, u(·)) for estimating ellipsoids, adding a time moment
and control here as additional arguments.

Thus, the main two problems considered here are as follows.

Problem 1. For each feasible control u(·) ∈ U , find the optimal (closest with respect to in-
clusion of sets) external ellipsoidal estimate E(â, Q̂;T, u(·)) of the reachable set X(T ;u(·)) of the
dynamical system (2.1),

X(T ;u(·)) ⊂ E(â, Q̂;T, u(·)).

Problem 2. Given a vector x∗ ∈ R
n, find the feasible control u∗(·) ∈ U and a number ǫ∗ > 0

such that
d(x∗, E(â∗, Q̂∗;T, u∗(·))) = inf

u(·)∈U
d(x∗, E(â∗, Q̂∗;T, u(·))) = ǫ∗.

3. Main results

Here we describe the general scheme which allows to find the solutions of Problems 1–2. This
scheme uses the dynamic programming ideas which are slightly modified to apply to the class of
systems under study.

Let us mention first some important results [19, 21] from the optimal control theory which serve
as the basis for further constructions.

Consider the control system described by the ordinary differential equation

ẋ = f(t, x, u(t)), t ∈ [t0, T ] (3.1)
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with function f : [t0, T ]× R
n × R

m → R
n measurable in t and continuous in other variables. Here

x stands for the state vector, t stands for time and control u(·) is a measurable function satisfying
the constraints

u(·) ∈ U =
{

u(·) : u(t) ∈ U, t ∈ [t0, T ]
}

(3.2)

where U ∈ compRm.
Assume that the initial condition x(t0) to the system (3.1) is unknown but bounded

x(t0) = x0, x0 ∈ X0 ∈ compRn. (3.3)

Assume that an absolutely continuous function x(t) = x(t, u(·), t0, x0) is a solution to (3.1) and
we have x(t0) = x0 which satisfies (3.3) and a related control function u(t) satisfies (3.2).

We study the control system (3.1)–(3.3) and we will assume further that f(t, x, u) in (3.1)
is continuous in {t, x, u} and continuously differentiable in x. We also suppose that solutions to
(3.1)–(3.3) may be extended to the whole interval [t0, T ].

We use the notation X(t) = X(t; t0,X0) for the reachable set of the system (3.1)–(3.3) at
time t. It is well known that the set X(t) may be interpreted as a level set of a value function
V (t, x) for an special auxiliary control problem [19, 24]. This value function for the new auxiliary
problem satisfies the HJB equation of the following type

Vt(t, x) + max
u∈U

(Vx, f(t, x, u)) = 0.

Generally the value function may not be differentiable. So a solution to the HJB equation may
be treated as a minmax or viscosity solution [9]. The precise solutions to such HJB-equations are
difficult to find and the corresponding variational inequalities and related comparison theorems
may be used to obtain approximate estimates of reachable sets [19].

3.1. Auxiliary constructions

The following auxiliary result will be needed further.

Lemma 1 [21]. Assume that there exists a function µ(t) which is integrable on [t0, T ] and such
that the inequality

max
u∈U

(Vx, f(t, x, u)) + Vt(t, x) ≤ µ(t)

is fulfilled. Then the following external estimate of the reachable set X(t) of the system (3.1)–(3.3)
is true

X(t) ⊆
{

x : V (t, x) ≤

∫ t

t0

µ(s)ds+ max
x∈X0

V (t0, x)
}

, t0 ≤ t ≤ T.

Remark 1. It is known that we may take here µ(s) = 0 [19].

The following more general inequality may be used also in the estimation context, namely

Vt(t, x) + max
u∈U

(Vx, f(t, x, u)) ≤ g(t, V (t, x)) (3.4)

where g(t, V ) is integrable in t ∈ [t0, T ] and is continuously differentiable in V .
Due to above property the ordinary differential equation

U̇(t) = g(t, U), U(t0) = U0, (3.5)

is called a comparison equation for (3.1)–(3.3). We will need further the following result.
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Theorem 1 [19]. Assume that the relations (3.4) and (3.5) are satisfied and the inequality

max
x∈X0

V (t0, x) ≤ U0

is true. Then the upper estimate

X(t) ⊆ {x : V (t, x) ≤ U(t)}, t0 ≤ t ≤ T.

is valid.

3.2. External estimates of reachable sets under uncertainty via HJB tech-

niques

A number of approaches had been proposed recently to derive differential equations which
describe the dynamics of external ellipsoidal estimates of reachable sets of uncertain control systems.
In particular, the differential equations of ellipsoidal estimates for reachable sets of a nonlinear
dynamical control system were derived in [12]. There the case was studied when state velocities of
the contain special quadratic forms but in that case the presence of uncertainty in matrix coefficients
was not investigated.

The following result continues this research and describes the dynamics of external ellipsoidal es-
timates of the reachable set X(t) = X(t; t0,X0) (t0 ≤ t ≤ T ) for the special case when U = E(â, Q̂)
with a center â and a positive definite matrix Q̂ given.

First we find the smallest number k > 0 for which the inclusion

X0 = E(a0, Q0) ⊆ E(a0, k
2B−1) (3.6)

is true, this initial step will help to get better resulting estimate for the whole trajectory tube
X(t) = X(t; t0,X0) (t0 ≤ t ≤ T ). The smallest number k > 0 satisfying (3.6) may be determined
using the procedure described, for example, in [15].

The following main result is true.

Theorem 2. For any t ∈ [t0, T ] the following inclusion is true

X(t; t0,X0) ⊆ E(a+(t), r+(t)B−1), (3.7)

here functions a+(t), r+(t) are the solutions of the following system

ȧ+(t) = A0a+(t) + ((a+(t))′Ba+(t) + r+(t))d + â, t0 ≤ t ≤ T,

ṙ+(t) = max
‖l‖=1

{

l′
(

2r+(t)B1/2(A0 + 2d(a+(t))′B)B−1/2

+(q(r+(t)))−1r+(t)B1/2Q̂∗B1/2)
)

l
}

+ q(r+(t))r+(t),

q(r) = ((nr)−1Tr(BQ̂∗))1/2,

(3.8)

the matrix Q̂∗ is positive definite and satisfies the inclusion

A1a0 + E(0, Q̂) + k0D
1/2B1/2B(0, 1) ⊆ E(0, Q̂∗) (3.9)

and the initial state is the following

a+(t0) = a0, r+(t0) = k2. (3.10)



HJB-Inequalities in Estimating Reachable Sets under Uncertainty 39

P r o o f. Using the result of Theorem 1 and basing on the scheme of reasoning discussed in
[15] and [19] with necessary modifications because of the special structure of the system (2.1)–(2.3),
we derive the estimates (3.7)–(3.10). Note that the above result is essentially and ideologically
close to the estimates given in [13] (see Theorem 2), but it differs significantly in details and
in final relations, thereby supplementing the already existing range of methods and providing a
deeper theoretical basis for solving problems of estimating the states of uncertain systems of the
class under study. �

Despite the seeming cumbersomeness of the formulas describing the ellipsoid that is external
in terms of inclusion for the reachable set (at the current moment of time), the calculations of the
external estimates given in the Theorem 2 are fast enough (performed ”in real time”) and easy to
implement.

The outer ellipsoids obtained by the scheme of Theorem 2 are optimal in the sense that they
touch the real reachable sets at some points and cannot be reduced without violating the basic
requirement to contain the estimated reachable set.

Theorem 2 solves the Problem 1 and gives the way to find an approximate solution for the
Problem 2.

4. Example

We illustrate here the proposed state estimation scheme for a nonlinear uncertain system of the
studied kind. The external estimates calculated on the base of Theorem 2 remain ellipsoidal-valued
(and therefore convex) and contain reachable sets of the considered system.

Example 1. Consider the control system







ẋ1 = (2 + ν)x1 + u1,

ẋ2 = (2 + ν)x2 + u2,

ẋ3 = (2 + ν)x3 + x21 + x22 + x23 + u3.

(4.1)

Here we take x0 ∈ X0 = B(0, 1), 0 ≤ t ≤ T = 0.4 and U = B(0, 0.1), a parameter ν is unknown
but bounded, namely ν ∈ [0, 0.1]. We emphasize that the constraint on the unknown parameter ν
in the control system (4.1) has a different form than in the example (13) in [17], in accordance with
a different formulation of the main problem studied here and because of a different technique used
for its solution.

The reachable set X(T ) and its external ellipsoidal estimate found on the base of Theorem 2
E(a+(t), Q+(t)) for t = T are shown in Fig. 1.

The following Fig. 2 for which different results [12, 17] were used is included to illustrate the pos-
sibilities of the approach in common, in particular of obtaining two-sided (external and internal) el-
lipsoidal estimates for the reachable sets of control systems with uncertainty. Fig. 2 presents two sets
also, the same reachable set X(T ) and its internal estimating ellipsoid E−(T ) = E(a−(T ), Q−(T )),

Here, in both Fig. 1 and Fig. 2, one can see a possible gap between the external and internal
estimates of the reachable sets under study, this gap cannot be eliminated within the framework
of the approach described here. We also note that the ellipsoidal estimates constructed above
(each in its own class, of internal or external kind) are exact in the sense that these estimates
are unimprovable (they cannot be reduced or increased, respectively) without violating the basic
requirements for their construction. It can also be underlined that the algorithms for constructing
these ellipsoidal estimates are very simple to implement (for example, through the Matlab system)
and do not require much computation time.
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Figure 1. External estimating ellipsoid E+(T ) = E(a+(T ), Q+(T )) (blue color) and the reachable set (black
color) X(T ) in the space of {x1, x2, x3}-coordinates.

Figure 2. Internal estimating ellipsoid E−(T ) = E(a−(T ), Q−(T )) (red color) and the reachable set (black
color) X(T ) in the space of {x1, x2, x3}-coordinates.

Remark 2. The above results are also applicable to more complicated classes of problems
of control under nonlinearity and uncertainty including [1, 12, 15, 17–19, 25] and to the case of
presence of additional state constraints, in this case it is also possible to use basic ideas of the
research [23].

Remark 3. A detailed description of somewhat different, but similar in essence, approaches
to solving problems of control and state estimation and using special information sets for studying
control problems under uncertainty can be found in [2].
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5. Conclusion

A new method of external estimation of the states of a nonlinear control system with uncertainty
is proposed, based on the ideas and results of the theory of Hamilton–Jacobi–Bellmann equations.
The relationship between the new approaches proposed here and the ideas and results of earlier
studies in the theory of estimating the states of dynamical systems under conditions of uncertainty
and nonlinearity is established. The possibilities of computer simulation for problems of this class
are discussed. The numerical simulation results for constructing upper and inner estimates of
reachable sets related to the proposed techniques and illustrating the basic ideas and algorithms
are included.
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