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Abstract: In this paper we consider a class of impulsive stochastic functional differential equations driven
simultaneously by a Rosenblatt process and standard Brownian motion in a Hilbert space. We prove an existence
and uniqueness result and we establish some conditions ensuring the approximate controllability for the mild
solution by means of the Banach fixed point principle. At the end we provide a practical example in order to
illustrate the viability of our result.
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1. Introduction

It is well known that approximate controllability is one of the fundamental concepts in math-
ematical control theory for infinite differential systems and plays a significant role in both deter-
ministic and in stochastic dynamical systems. Approximate controllability means that the system
can be moved to an arbitrary small neighborhood of the final state. Some recent researches on the
existence results of approximate controllability are [8, 9, 14, 25].

Recently, there has been increasing interest in the analysis of control synthesis problems for im-
pulsive systems due to their significance both in theory and applications, for example, in problems
of sudden environmental changes, radiation of electromagnetic waves and changes in the intercon-
nections of subsystems. For some recent researches on the existence results for impulsive stochastic
differential equations, we refer the reader to monographs [3-5, 10, 23, 24, 29]. In these models,
the processes are characterized by the fact that they undergo abrupt changes of state at certain
moments of time between intervals of continuous evolution. For basic concepts about the impulsive
systems see [12, 17].

In recent years, there has been a growing interest in stochastic functional differential equations
driven by the Rosenblatt process [2, 19, 20, 22]. The theory of Rosenblatt process has been devel-
oped accordingly due to its nice properties see [13, 16, 27]. Tudor [28] investigated the Rosenblatt
process which is Gaussian and the calculus for it is much easier than other processes. However,
in concrete situations where the Gaussianity is not plausible for the model, one can employ the
Rosenblatt process. There is corresponding literature devoted to various theoretical aspects of
impulse systems controlled by Rosenblatt processes [7, 15, 18, 20].

Some dynamical systems of a special kind require a mixed process to model their dynamics [1,
26].

Inspired by the above studies, this article is devoted to demonstrating the approximate control-
lability of a soft solution for a class of neutral functional-stochastic differential equations controlled
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by a Wiener process and a Rosenblatt process independent of the form

da(t) = Ax(t)dt + Bu(t)dt + f (t,z(t)) dt + g (t,z(t)) dW (t) + o (t)dZ g (t),

te[0,T], t#ty, (1.1)
Ax(ty) = =) — x(ty) = L(z(t)), k=1,2,..,m, '
z(0) = 29 € X,

where z(-) takes values in the separable Hilbert space X, A : D(A) C X — X is a closed, linear,
and densely defined operator on X. Let B be a bounded linear operator from the Hilbert space U
into X.

Let the control u € £ ([0,T],U) which is the Hilbert space of all square integrable and J;-
adapted processes with values in U. Let Qg be a positive, self adjoint and trace class operator
on K and let Lo(K, X) be the space of all Qg-Hilbert—Schmidt operators acting between K and
X equipped with the Hilbert-Schmidt norm |.|,. The W is a Qx-Wiener process on Hilbert
space K.

Let Q be a positive, self adjoint and trace class operator on Y and let £3(Y, X) be the space
of all @ -Hilbert—Schmidt operators acting between Y and X equipped with the Hilbert—Schmidt
norm ||.|| 9. Let Zy be a @-Rosenblatt process on a Hilbert space Y. The process W and Zp are
independent. The functions f, g and ¢ will be specified later. Moreover, the fixed moments of
times ¢y, satisfy 0 = tg < t1 < ... <ty < tms1 =T, z(t}) and z(t; ) represent the right and left
limits of x(t) at t = t. Here Az(tx) = x(t;) — x(t; ) represents the jump in the state = at time t,
where I, determines the size of the jump.

Let (2, Fr, P) be the complete probability space with the natural filtration {F; | t € [0,7T}
generated by random variables {Zp(s), W(s), s € [0,T]}. Let xzy be an Fp-measurable random
variable independent of W and Zp satisfying E ||zo||* < co. We define the following classes of func-
tions: let Lo(2, Fpr, X) be the Hilbert space of all Fp—measurable, square integrable variables with
values in X, £§ ([0, 7], X) is the Hilbert space of all square integrable and J;—adapted processes
with values in X.

The space C ([0,T], L2(2, Fr, X)) is the Banach space of continuous maps except for a finite
number of points ¢, at which x(¢, ) and z(t™) exists and (¢, ) = x(tx) satisfying the condition

supepo 77 B [lo(t)]|* < oo

and Al is the closed subspace of C ([0, 7], L2(52, Fr, X)) consisting of measurable and F;-adapted
processes z(t), then Al is a Banach space with the norm defined by

1/2
lellag = (supreior B o))

Let {Zu(t), t € [0,T]} be the one-dimensional Rosenblatt process with parameter H € (1/2,1),
Zy has the following representation (see Tudor [28])

H B B
) A /0 |: Alva ou (U7 yl) ou (u7 y2)du:| d (yl)d (y2)7

B(t)ico,r) 1 the Wiener process,

where

B(-,-) is the Beta function,

g oA+l H(2H — 1)
2 H+1 2H—1 B(2—-2H,H—1/2)’

KH(t,s) = lpssycHs 1/2— H/ — s)H- 3/2, H-1/2 4,
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Let X and Y be two real separable Hilbert spaces, L(Y'; X) be the space of bounded linear operator
from Y to X, Q € L(Y; X) be an operator defined by Qe,, = A\, e,, with finite trace

rQ =Y Ay <00, Ay >0
n=1

and {e,} is a complete orthonormal basis in Y.
We define the infinite dimensional @Q-Rosenblatt process on Y as

= Z \/Tnenzn(t)

n=1

where (Zn)nzo is a family of real independent Rosenblatt processes. Consider the following funda-
mental inequality.

Lemma 1 [21]. If ¢: [0,T] — LY(Y; X) satisfies

T
| 16@gds < o,
0

EH /O t &(5)dZ1(s)

Definition 1. For each u € £ ([0,T],U), a stochastic process x € AL is a mild solution
of (1.1) if we have

then we have .
2
<208 [ o(s)|y ds.
0

2(t) = S(t xmg/St—sMBm>+f@x<mds

/St—s) (s,z(s))dW (s /St—s s)dZpy (s Z St —tp)Ip(2(t;)).

O<tp<t

Let x(T;u) be the state value of system (1.1) at terminal time 7" corresponding to control u.
The set
R(T) = {x(T; u):u € EQF([O,T], U)}

is called the reachable set of (1.1) at the terminal time 7'
Definition 2. The stochastic control system (1.1) is called approzimately controllable on the
interval [0,T) if
R(T) = L2, Fr, X).

For the proof of the main result, we impose the following conditions on data of the problem.

(Hyp 1) A is the infinitesimal generator of a compact semigroup {S(¢), ¢ >0} on X such that

IIS(t)|| < M, for some constant M > 0.

(Hyp 2) 1. The function f :[0,7] x X — X is continuous and there exists a constant Cy such that

for x,y € X and t € [0, 7]

(2" < Cp(L+ [l=]®),
£t 2) = F(t,9)I* < Cp lz —y*.
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2. The function g : [0,T] x X — Lo(K, X) is continuous and there exists a constant Cy such
that for z,y € X and ¢ € [0, 7]

lg(t, 2|1z, < Cy(L + |z,
lg(t.2) = gt )1z, < Cyllz —yl*.
(Hyp 3) The function o : [0,T] — £9 is bounded by a positive constant L for all t € [0, 7.

(Hyp 4) I : X — X is continuous and there exist constants dg, g > 0 such that, for z,y € X

(@) Mx(2) = L@)I* < dillz —yl*, ke {L,.sm},

) 1Te@)|? < a (1+ [2]%) k€ {1,.m},

(d34) z\ﬁm(kﬁnj1 dk> < %.

(Hyp 5) For each 0 < t < T, the operator a(al +I'/)™' — 0 in the strong operator topology as
a — 0%, with TT € £(X, X) and

T
7 = / S(T —t)BB*S*(T — t)dt.
S
(Hyp 6) 1. The function f :[0,7] x X — X is continuous and there exists a constant Cy such that
for x,y € X and t € [0, 7]

I (t.2) = f(EyI* < Cpllz =yl

2. The function g : [0,7] x X — L5(K, X) is continuous and there exists a constant Cy such
that for z,y € X and t € [0, T

lg(t,2) = g(t. 9z, < Cgllz —yl*.
3. The functions f and g are uniformly bounded, then there exists C' > 0 such that
1£ (s, 2()I* + llg(s, 2(s)IIZ, < C.

Lemma 2 [6]. For any zr € L2(Q, Fr, X) there exists a unique ¥ € £ ([0,T]; L2(K, X)) such
that

T
xr = E(z7) —i—/o U(s)dW (s).

For any a > 0 and an arbitrary function z(.), we define the control function for system (1.1) in
the following form

u“(t,z) = B*S*(T — t)(al + TE) ™ (E(zr) — S(T)x0)

+B*S*(T —t) /t(aI + T~ (s5)dW (s) — B*S*(T —t) /t(aI +TTY=L8(T — 5)o(s))dZu (s)
0 0
—B*S*(T —t) /0 (ol +TH)71S(T — 5) f(s,2(s))ds

—B*S*(T—t)/o (ol +TH)Y7LS(T — 5)g(s,z(s))dW (s)
—B*SY (T —t)(@l +T7)7" Y S(t — te)I((ty)),
0<t) <t

the function u®(t,x) is defined so that the system driven by this command has a unique solution
(see Theorem 1) and moreover the system is approximately controllable (see Theorem 2).
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Lemma 3. There exists positive real constant M, such that, for all x, y € AL we have

M,
B uc(t,2) — u(t,)|* < =3 |1z~ ylAy - (12)
M,
2 2
E Ju(t,)|]” < = (1+ allhg ) - (1.3)

Proof. Letz, yeAg,wehave

t

Bl (t0) — u*(0)]|* < 3B BT — ) [ (@l + 7T ST = 5) [ (s.0(6)) = Fsvu(s))] |

2

t 2
BB (T = 1) [ (ol +TT) IS - 9 gl 2(5)) g5, y(6)) W )|
0
m 2
+3B|[BS* (T = ) (al +T§) 1" ST — ) [Lu(a(t) = Lyt )] |
k=1
Using the Holder inequality, Ito isometric theorem and the assumptions on the data, we obtain

E|[u®(t,2) — u®(t,y)|* < ) ||B\|21\44ch/O E |l2(s) — y(s)|* ds

2

5 I1BIEACy [ Blja(s) —y(s)| P ds + 5 B M (X)) - )|
k=1

3
< S |IB|P M*TCsT sup E|lz(s) — y(s)|
« s€[0,77]

F 2 IBIPMC,T sup Ba(s) — y(@) + m( D di) sup Bla(s) - y(s)|P
s€[0,T =1 s€[0,T

m

3
< 1B M [Tch +TC,y + m(deﬂ lz = yllas
k=1

Mu 2
=2 [l — yHAg ,
where
m
M, = 3| B|> M* [Tch +TC, + m(de)}
k=1
The proof of the second (1.3) is similar. O

2. Approximate controllability

For any a > 0, define the operator F, : Al — Al by
(Foz)(t) = S(t :U0+/ S(t—s) (Bu“(s,z) + f(s,z(s)))ds

/St—s) (s,z(s))dW (s /St—s s)dZpy (s Z St —tp)Ip(2(t;)).

O<tp<t

The first main result is the following theorem.
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Theorem 1. Under assumptions (Hyp 1)-(Hyp 5), the system (1.1) has a mild solution
on [0, 7).

Proof. Step 1. Let 0 <ty <t9 <T. Then for any ﬁxedxeAg

E ||(F 2)(t2) — (Faz)(t1)|* < 6E [[(S(t2) — S(t1)) ol
S (ta —s)f(s,z(s))ds — ; 1 S(t; — s)f(s,av(s))ds”2

%ﬂ

to 2
—|—6EH / S(ta — s)g(s,z(s))dW (s) — Sty — s)g(s,x(s))dW(s)H
0 0

t1

+6] [ (62~ syot6)0zn(6) ~ [ 5002~ oazuo)|

0
H6E| 30 St - t)(a(t) = > St — )kl (ty) H
0<trp<ta 0<ty <t
to 4 )
+ﬁw/ S(ts — ) Bu®(s, 2(s))ds — | S(t1 — s)Bu®(s, z(s))ds
0 0

=6(J1+J2+J3+Jy+ 5+ Jo).
Thus we obtain by Holder inequality, Ito isometric theorem and the assumptions (Hyp 1)—(Hyp 5)
Ji < ||S(t2) = S(t) > E [l

Lb§2EH%?Q%Q—$)—S@1—$)ﬂ&x@Wk2+QEHA?S@2—Qf@@@»m;2

<ot /0 VB ((S(tr — 5) — S(t1 — )) £(s,2(5))| ds + 20t — 1) / B f(s,2(s)|2 ds,

t1

J3 < QEH /Otl (S(ty —s) — S(t1 — S))g(S,Z’(S))dW(s)HQQ + EH /:2 S(ta — s)g(s,x(s))dW(s)H2

ggfﬁ“ﬂt

Jy < QEH /Ot1 (S(ty — ) — S(t; — s)) a(s)dZH(s)H2 N 2EH /:2 S(ty — S)a(s)dZH(s)HQ

to
ds + 201 / E|lg(s, 2(s))||2, ds,

t1

2 5) = S( = ) gls. )|

t1 t2
<an " [TE(S(2 - 9) = St = ) o)y ds + 4V (897 = 857) [T ot as,

t1

J<om Y E|S(t—s)L(z)|* +2m Y B[St —s) — S(t - 5)) Iu(x(t)||

1 <tp <t2 O<tp<t1
<omM? > E| L) +2m Y B[Stz —s) — St — ) I(z(t))]*
t1<tp<to O<tp<t1

t1 2 t2 2
%5&EW/(&Q—$—S@erBW@mMS +ﬂﬂ/ ﬂ@-@BW@@m4
0 t1

t1 to
gzm/ EW&@—@—&Q—$ﬂ%%&mW@+2MWBW@y%Q/ E |u® (s, 2)|? ds.
0 t1

Consequently, using the strong continuity of S(t), as well as the Lebesgue’s dominated convergence
theorem, we conclude that the right side of the above inequality tends to zero when t5 —t; — 0.
Thus we conclude that (F,z)(t) is continuous in [0, 7.
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Step 2. Let z € Al then we have

2

E ||(Faz)(1)])? < 6B ||S(£)o] 2 +6EH/O S(t — s)Bu®(s, z)ds

g GEH /Ot S(ty — S)g(saﬁﬂ(s))dW(S)‘r

+6EH /Ot S(t — s)f(s,2(s))ds

+6EH/OtS(t—s)a(s)dZH(s)Hz+6EH ¥ S(t—tk)fk(x(t;))(f.

O<tp<t

By Holder inequality, Lemma 3, Ito isometric theorem and the assumptions (Hyp 1)—(Hyp 5), we
have

t
B ||(Faz) (1)]]? < 6B |S(t)zo® + 6M | B|2 TE /0 (s, )12 ds
t t
L6MTE / 1 (s, 2(s))|2 ds + 6M?E / lg(s, 2(s)]13, ds
0 0

t m
+12M2HT2H—1E/0 lo ()11 ds + 6mM? B ||L(z(t;)]*
k=1

Hence
2 2 2 2 2 2Mu 2
E |[(Foa) (O < 6M2E o> + 6312 | BI* T* =3 (1+ |3 )

+6M2T2Cy (14 |allyy ) +6M>TCy (1+ 231 )

m
+12M?HT*ITL + 6mM2(Z Qk> (1 + HmHig)
k=1

< 60> <E ol + 2HT2H*1TL>

+6M3 < |B|? T2 [% + Cf] +TC,+ m(iqk>> <1 + HxHi;) ,
k=1

we thus obtain that H(Fax)HiQT < 00. Since (F,x)(t) is continuous on [0, T], therefore Fy, maps AZ,
in itself.

Step 3. Let 2,y € AL, then for any fixed ¢ € [0, 7] we have

B 3 s () - L)) |

0<trp<t

By assumptions (Hyp 1)—(Hyp 5) combined with Hélder’s inequality, Lemma 3 and Ito isometric
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theorem, we get that
I(Fa)®) — ()]
t t
< [B e [ (o0 —u ) ds+ 402 [ 17 (s.0(5) — S(s.p(s) | ds
0 0

+4M? /0 lo(s, 2()) — (s, 9 (), ds +402m (S ) 1ol = Tyt

Therefore,
|(Fa)() = (Fay) ()]
2 2, M, ¢ 2 2 ! 2
< AM7| Bl t— ; [2(s) — y(s)[|” ds + 4M"tCy ; [z(s) — y(s)[I” ds

0820, [ ats) — y(o? s+ 40m( Y- de) () — wle) P
k=1

Then we have

sup B||(Faz)(t) — (Fay)(®)II*

M m
< 4M2(||Bu2t2a—; +1(tCy + C) +m(§jdk)) sup E|la(s) - y(s)|’

=1 s€[0,t]

= o(t) sup Ez(s) —y(s)|”,
s€[0,t]

where

M m
p(t) = 40> | BI* 2= + 4MH(1Cy + Cy) + 4M2m< 3 dk>.
k=1

We have (see (Hyp 4)—(iii))
(0) = 4M>m (de> <1

So there is T with 0 < T} < T such that 0 < ¢(77) < 1 and F, is a contraction mapping on Agl
and consequently has a unique fixed point. So by repeating the procedure, we extend the solution
to the interval [0, 7] in several finite steps. O

The second main result is the following theorem.

Theorem 2. Under assumptions (Hyp 1), (Hyp 3), (Hyp 4), (Hyp 5) and (Hyp 6), the sys-
tem (1.1) is approzimately controllable on [0, T].

Proof. Let z, the solution of system (1.1) corresponding to u(t,z) = u®(¢t,z). We obtain
by the stochastic Fubini theorem

2o(T) = xp — alad + T (Ezp — S(T)x0)

T T
—|—a/ (ol +TTY7LS(T — 5) f (s, 2(s)ds + a/ (ol +TTY7L[S(T — 5)g(s, 2(s) — U(s)] dW (s)
0 0

+a/OT(oJ+rsT)1S(T—s)a(s)dZH( ) +a(al +T) 1§:S T — t) I (x*(t},)).
k=1
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By the hypotheses (Hyp 6-2), there is a subsequence still designated by {f(s,za(s),9(s,za(s)}
which converges weakly to some {f(s),g(s)} in X x Lo and {I(x(t;))} weakly converging to
{Ix(w)} in X. By the compactness of {S(t) : ¢ > 0}, we have

S(T = 5)f(s,za(s) = S(T — 5)f(s),
S(T = s)g(s, xals) = S(T' — s)g(s)
S(T = ty) I (2%(t),) = S(T — ) I (w).

By hypothesis (Hyp 5), we have

alal +TH)=1 -0 strongly as a— 0%, forall 0<s<T,
la(al +TT)7H| < 1.

So, by the Lebesgue dominated convergence theorem we obtain

)

E|jzo(T) — 27]* < 9E ||a(al + TF) ™ (ExT—S(T)mO)H2+9E/ |alal + )10 (s HE
T T 9
—|—18HT2H1/0 Ha(aI—FI’ST)AS(T—S)U(S)Hig d8+9E(/0 Ha(a[—{—l‘z)*ls(T—s)f(s)Hds)
T 2
+9E</O |alad +TD)HIS(T = 5) (f(5,2a(s)) = £(s))]] ds)
o [ [la(al +T7)1S(T ’d
+98 [ fatal + TS - 9)9(0) [, 0
T T\—1(|2 2
<98 [ latal + D) IS(T = 5) (g(s.20(5) ~ (o) 2,

+98| f: alal +TT)1S(T — tk)Ik(w)HQ

m
2
+9EHaaI+FT lH HZS — tg) I (x ZS — tg) I ( )H —0 as a—0".
k=1 k=1
Then the system (1.1) is approximately controllable. O
3. Example

In this section we present an example. Let X = Ly[0,7], U = L2[0,n] and xy € Lo[0,7].
Let A C D(A): X — X be the linear operator given by Ay = y”, where
D(A) ={y € X /vy, y are absolutely continuous y"” € X, y(0) = y(7) = 0}.
Let B € L(R, X) be defined as
(Bu)(z) =b(z)u, 0<z<m, welR, bx)e L0,n].

Here W (t) denotes a one dimensional standard Brownian motion and Zp is a Rosenblatt process,
the processes W and Zp are independent.
Consider the control system driven by the process W and Zp to illustrate the obtained theory
( 82
da(t,2) = (5o(t.2) + b()ult) + i o(t,2)) )t
z
+q1 (t,2(t, 2)) dw(t) + o(t)dZy, t€][0,T], =z€][0,n],

1
Aw(tk,Z) - x(t:,z) - m(t];7 ) 2k (tka )7 t= tka k= 17 ey M,
x(t,0) = z(t,7) =0, te€][0,T],
x(0,2) = xo(2), z€][0,n].
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Suppose f1,91: RT x R — R are continuous, satisfy the Lipschitz condition and the linear growth
condition and are uniformly bounded.
First of all, note that there exists a complete orthonormal set {e,}, ., of eigenvectors of A with

en(2) =/ (2/m)sinnz, 0<z<m, mn=12 ..

and the compact semigroup S(t), ¢ > 0, that is generated by A such that

Ay== 3 n* (e eals). v € D(A),

Sty =3 e wen)enly), yEX.
n=1
Now define the functions: f:[0,7] x X — X, g:[0,7] x X — L(K;X) as follows

[t 2)(2) = f1(t, 2(2)),
9(t,7)(2) = g1(t, (2))

for t € [0,T], € X and 0 < z < 7. Consequently, by [11, Theorem 4.1.7], we have that the
deterministic linear system (3.1) is approximately controllable on every [0,¢], ¢t > 0, provided that

/ b(z)en(z)dz #0, for n=1,23,...
0

Hence, all conditions of Theorem 2 are satisfied, and consequently system (3.1) is approximately
controllable on [0, 7).

4. Conclusion

Approximate controllability of a class of impulsive stochastic functional differential equations
driven simultaneously by a Rosenblatt process and standard Brownian motion in a Hilbert space
are obtained. The controllability problem is transformed into a fixed point problem for an appro-
priate nonlinear operator in a function space. By using some famous fixed point theorems and the
approximating technique some new existence and controllability results are obtained.

We also remark that the same idea can be used to study the controllability and the exponential
stability of impulsive stochastic functional differential equations driven simultaneously by a Rosen-
blatt process and standard Brownian motion under non-Lipschitz condition and with non local
conditions.
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