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Abstract: We consider a family of equations with two free functional parameters containing the classical
Black–Scholes model, Schönbucher–Wilmott model, Sircar–Papanicolaou equation for option pricing as partial
cases. A five-dimensional group of equivalence transformations is calculated for that family. That group is
applied to a search for specifications’ parameters specifications corresponding to additional symmetries of the
equation. Seven pairs of specifications are found.
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Introduction

In the paper a nonlinear model

ut +
w(t, x)uxx

2 (1− xv(ux)uxx)
2 + r(xux − u) = 0. (0.1)

from the theory of financial markets is considered. In the case of v ≡ 0 it is generalized Black—
Scholes equation [1], if, besides, w(t, x) = σ2x2 (0.1) is the classical Black—Scholes model [2].
For arbitrary v and w(t, x) = σ2x2 (0.1) is the Sircar—Papanicolaou nonlinear feedback pricing
equation [1]. If v is arbitrary, w(t, x) = σ2x2 and r = 0, it is the equilibrium pricing model or
Schönbucher—Wilmott nonlinear feedback pricing model [3–6]. The last two models take into
account a feedback effect of the presence of two types of traders. The programm traders are the
portfolio insurers and the reference traders are the Black—Scholes uploaders.

The aim of the paper is to obtain a group classification [7] of equation (0.1) with free parameters
v and w. The group of equivalence transformations [7,8] of equation (0.1) will be found. By means
of this group symmetries for the equation with all specifications will be calculated. Further these
results will be applied to the theory of financial markets, particularly, they will allow to calculate
various exact solutions of equation (0.1).

The groups of classical Black—Scholes model and their accordance to the groups of the heat
equation were found in [9]. Research of symmetries of Schönbucher—Wilmott model and of some
other nonlinear pricing models was made in [10–13].

1The work is partially supported by Laboratory of Quantum Topology of Chelyabinsk State University
(Russian Federation government grant 14.Z50.31.0020).
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1. Group of the equivalence transformations

Let us find the continuous group of equivalence transformations of equation (0.1) for the ap-
plying to the search of specifications of the functions v = v(ux), w = w(t, x) in the equation, that
corresponds to additional symmetries for the symmetries of the kernel of principal Lie group for
the equation. We rewrite equation (0.1) in the form

ut +
wuxx

2 (1− xvuxx)
2 + r(xux − u) = 0, (1.1)

where v, w are the additional variables, depending on t, x, u, ut and ux. Generators of a continuous
group of equivalence transformations will be searched in the form Y = τ∂t+ξ∂x+η∂u+µ∂v+ν∂w,
where the functions τ, ξ, η depend on t, x, u, and µ ν depend on t, x, u, ut, ux, v, w. For brevity
hereafter ∂

∂t ≡ ∂t and similar notations are used. We add to (1.1) the equations

vt = 0, vx = 0, vu = 0, vut = 0, (1.2)

wu = 0, wut = 0, wux = 0, (1.3)

meaning that in the statement of the problem the function v depends only on ux and the function
w depends on t, x.

We consider the system of equations (1.1)–(1.3) as a manifold N in an expanded space of
corresponding variables. Let us act on the left-hand side of system (1.1)–(1.3) by the extended
operator

Ỹ = Y + φt∂ut + φxx∂uxx + µt∂vt + µx∂vx + µu∂vu + µut∂vut + νu∂wu + νut∂wut
+ νux∂wux

,

we restrict a result of the action on N and we obtain the equations

φt +
vwu2xxξ

(1− xvuxx)
3 +

w(1 + xvuxx)φ
xx

2 (1− xvuxx)
3 +

uxxν

2 (1− xvuxx)
2 +

wxu2xxµ

(1− xvuxx)
3+

+r(uxξ + xφx − η)

∣∣∣∣
N

= 0, (1.4)

µt|N = 0, µx|N = 0, µu|N = 0, µut |N = 0, (1.5)

νu|N = 0, νut |N = 0, µux |N = 0. (1.6)

From (1.2) and (1.3) it follows that

D̃t = ∂t + wt∂w + wtt∂wt + wtx∂wx + . . . , D̃x = ∂x + wx∂w + wtx∂wt + wxx∂wx + . . . ,

D̃u = ∂u, D̃ut = ∂ut , D̃ux = ∂ux + v′(ux)∂v + v′′(ux)∂v′(ux) + . . . ,

µt = µt + wtµw − v′(ux)φ
x
t = µt + wtµw − v′(ux)(ηtx + uxηtu − utτtx − utuxτtu − uxξtx − u2xξtu),

µx = µx +wxµw − v′(ux)φ
x
x = µx +wxµw − v′(ux)(ηxx + uxηxu − utτxx − utuxτxu − uxξxx − u2xξxu),

µu = µu − v′(ux)φ
x
u = µu − v′(ux)(ηxu + uxηuu − utτxu − utuxτuu − uxξxu − u2xξuu),

µut = µut − v′(ux)φ
x
ut

= µut + v′(ux)τx + uxv
′(ux)τu,

νu = νu − wtτu − wxξu, νut = νut , νux = νux + v′(ux)νv.

Therefore, equations (1.5) and (1.6) have the form

µt + wtµw − v′(ux)(ηtx + uxηtu − utτtx − utuxτtu − uxξtx − u2xξtu)|N = 0, (1.7)
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µx + wxµw − v′(ux)(ηxx + uxηxu − utτxx − utuxτxu − uxξxx − u2xξxu)|N = 0, (1.8)

µu − v′(ux)(ηxu + uxηuu − utτxu − utuxτuu − uxξxu − u2xξuu)|N = 0, (1.9)

µut + v′(ux)τx + uxv
′(ux)τu = 0, (1.10)

νu − wtτu − wxξu = 0, νut = 0, νux + v′(ux)νv = 0. (1.11)

By equality (1.1) equations (1.7)–(1.9) can be rewritten in the form

µt + wtµw − v′(ux)
(
ηtx + uxηtu − uxξtx − u2xξtu+

+
wuxx(τtx + uxτtu)

2 (1− xvuxx)
2 + (rxux − ru)(τtx + uxτtu)

)
= 0,

(1.12)

µx + wxµw − v′(ux)
(
ηxx + uxηxu − uxξxx − u2xξxu+

+
wuxx(τxx + uxτxu)

2 (1− xvuxx)
2 + (rxux − ru)(τxx + uxτxu)

)
= 0,

(1.13)

µu − v′(ux)
(
ηxu + uxηuu − uxξxu − u2xξuu+

+
wuxx(τxu + uxτuu)

2 (1− xvuxx)
2 + (rxux − ru)(τxu + uxτuu)

)
= 0.

(1.14)

By means of the equality

φxx = ηxx + 2uxηxu + ux
2ηuu + uxxηu − utτxx − 2utuxτxu − 2utxτx − utux

2τuu−
−2uxutxτu − utuxxτu − uxξxx − 2ux

2ξxu − 2uxxξx − ux
3ξuu − 3uxuxxξu

equation (1.4) is rewritten as

ηt + utηu − utτt − u2t τu − uxξt − utuxξu +
1

2 (1− xvuxx)
3

(
2vwu2xxξ + 2xwu2xxµ +

+uxxν − xu2xxvν + w(1 + xvuxx)(ηxx + 2uxηxu + ux
2ηuu + uxxηu−

−utτxx − 2utuxτxu − 2utxτx − utux
2τuu − 2uxutxτu−

−utuxxτu − uxξxx − 2ux
2ξxu − 2uxxξx − ux

3ξuu − 3uxuxxξu)
)
+

+ruxξ + rx(ηx + uxηu − utτx − utuxτu − uxξx − u2xξu)− rη|N =

= ηt +
wuxx(τt − ηu)

2 (1− xvuxx)
2 + (rxux − ru)(τt − ηu)−

w2u2xxτu

4 (1− xvuxx)
4−

−(rxux − ru)2τu +
wuxx(rxux − ru)τu

(1− xvuxx)
2 − uxξt+

+
wuxuxxξu

2 (1− xvuxx)
2 + (rxux − ru)uxξu +

1

2 (1− xvuxx)
3

(
2vwu2xxξ + 2xwu2xxµ +

+uxxν − xu2xxvν + w(1 + xvuxx)
(
ηxx + 2uxηxu + ux

2ηuu + uxxηu+

+
wuxxτxx

2 (1− xvuxx)
2 + (rxux − ru)τxx +

wuxuxxτxu

(1− xvuxx)
2 + 2(rxux − ru)uxτxu−

−2utxτx +
wu2xuxxτuu

2 (1− xvuxx)
2 + (rxux − ru)u2xτuu − 2uxutxτu +

wu2xxτu

2 (1− xvuxx)
2+

+(rxux − ru)uxxτu − uxξxx − 2ux
2ξxu − 2uxxξx − ux

3ξuu − 3uxuxxξu)
)
+

+ruxξ + rx(ηx + uxηu − uxξx − u2xξu)− rη+

+
rxwuxx(τx + uxτu)

2 (1− xvuxx)
2 + rx(rxux − ru)(τx + uxτu) = 0.

(1.15)
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We differentiate the last equations with respect to utx and obtain w(1 + xvuxx)(τx + uxτu) = 0,
consequently, τ = τ(t), if w ̸= 0. Therefore, equations (1.11)–(1.15) have the form

µut = 0, νu − wxξu = 0, νut = 0, νux + v′(ux)νv = 0, (1.16)

µt + wtµw − v′(ux)
(
ηtx + uxηtu − uxξtx − u2xξtu

)
= 0, (1.17)

µx + wxµw − v′(ux)
(
ηxx + uxηxu − uxξxx − u2xξxu

)
= 0, (1.18)

µu − v′(ux)
(
ηxu + uxηuu − uxξxu − u2xξuu

)
= 0, (1.19)

ηt +
wuxx(τ

′(t)− ηu)

2 (1− xvuxx)
2 + (rxux − ru)(τ ′(t)− ηu)− uxξt+

+
wuxuxxξu

2 (1− xvuxx)
2 + (rxux − ru)uxξu +

1

2 (1− xvuxx)
3

(
2vwu2xxξ + 2xwu2xxµ +

+uxxν − xu2xxvν + w(1 + xvuxx)
(
ηxx + 2uxηxu + ux

2ηuu + uxxηu − uxξxx−
−2ux

2ξxu − 2uxxξx − ux
3ξuu − 3uxuxxξu)

)
+ ruxξ+

+rx(ηx + uxηu − uxξx − u2xξu)− rη = 0.

We multiply by 2(1− xvuxx)
3 the last equation, then

2(1− xvuxx)
3(ηt + (rxux − ru)(τ ′(t)− ηu + uxξu)) + (1− xvuxx)wuxx(τ

′(t)− ηu)−
−2(1− xvuxx)

3uxξt + (1− xvuxx)wuxuxxξu + 2vwu2xxξ + 2xwu2xxµ+

+uxxν − xu2xxvν + w(1 + xvuxx)
(
ηxx + 2uxηxu + ux

2ηuu + uxxηu − uxξxx−
−2ux

2ξxu − 2uxxξx − ux
3ξuu − 3uxuxxξu)+

+2(1− xvuxx)
3(ruxξ + rx(ηx + uxηu − uxξx − u2xξu)− rη) = 0.

(1.20)

Equation (1.20) for the case v ̸= 0 has at u3xx multiplier

ηt + rxuxτ
′(t)− ru(τ ′(t)− ηu + uxξu)− uxξt + ruxξ + rx(ηx − uxξx)− rη,

after its splitting with respect to ux, we obtain two equations

ηt + rxηx + ruηu − rη − ruτ ′(t) = 0, (1.21)

rxτ ′(t)− ξt − rxξx − ruξu + rξ = 0. (1.22)

After the splitting with respect to ux of the multiplier at uxx in zero degree it follows that

ξ = A(t, x)u+B(t, x),

η = Ax(t, x)u
2 + C(t, x)u+D(t, x)

and by (1.21), (1.22)

2ηt − 2ruτ ′ + 2ruηu + 2rxηx − 2rη + wηxx = wηxx = 0,

2rxτ ′ − 2ruξu − 2ξt + 2rξ − 2rxξx − 2wξxx + 4wηxu = −wξxx + 2wηxu = 0.
(1.23)

The last equality implies that

Axx = 0, A(t, x) = A1(t)x+A0(t), C(t, x) =
1

2
Bx(t, x) + E(t),

ξ = A1(t)xu+A0(t)u+B(t, x), η = A1(t)u
2 +

1

2
Bx(t, x)u+E(t)u+D(t, x).
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Then from (1.23) it follows that

Bxxx = 0, Dxx = 0, ξ = A1(t)xu+A0(t)u+B2(t)x
2 +B1(t)x+B0(t),

η = A1(t)u
2 +B2(t)xu+

1

2
B1(t)u+ E(t)u+D1(t)x+D0(t).

Now the equality (1.22) implies that A1(t) = Fe−rt, A0(t) is a constant,

B2(t) = Ge−rt, B1(t) = rτ(t) +H, B0(t) = Jert,

ξ = Fe−rtxu+A0u+Ge−rtx2 + rτ(t)x+Hx+ Jert,

η = Fe−rtu2 +Ge−rtxu+
1

2
(rτ(t) +H)u+E(t)u+D1(t)x+D0(t).

By (1.21) D1 is a constant,

D0(t) = Kert, E(t) =
1

2
rτ(t) + P,

η = Fe−rtu2 +Ge−rtxu+ rτ(t)u+ Pu+D1x+Kert.

From (1.16) it follows that ν = wx(Fe−rtx+A0)u+ S(t, x, ux, v, w).
The coefficient at uxx in equation (1.20) is equated to zero and we obtain the equation

−6xvηt − 6xv(rxuxτ
′(t)− ruτ ′(t) + ruηu − ruuxξu) + wτ ′(t)+

+6xvuxξt + wuxξu + ν − 2wξx − 3wuxξu + 2xvwuxηxu + xvwu2xηuu−
−xvwuxξxx − 2xvwu2xξxu − 6xv(ruxξ + rxηx − rxuxξx − rη) = 0.

Let us substitute in it the expressions for ξ, η, ν that were found before, and splitting with respect
to the variable u leads to the equations

−2Fe−rtw + wx(Fe−rtx+A0) = 0, (1.24)

S = 4Ge−rtxw − wτ ′ + 2rwτ + 2Hw + 2Fe−rtxuxw + 2A0uxw.

The last of them implies the equalities νv = Sv = 0, consequently, by (1.16) we obtain

νux = Sux = 2Fe−rtxw + 2A0xw = 0, A0 = F = 0.

Thus,

ξ = Ge−rtx2 + rτ(t)x+Hx+ Jert,

η = Ge−rtxu+ rτ(t)u+ Pu+D1x+Kert,

ν = 4Ge−rtxw − wτ ′ + 2rwτ + 2Hw.

Analogous calculations are made with the coefficient at u2xx in equation (1.20), we obtain the
equation

6x2v2(ηt + rxuxτ
′ − ruτ ′ + ruηu)− xvw(τ ′ − ηu)− 6x2v2uxξt + 2vwξ + 2xwµ− xvν+

+xvw(ηu − 2ξx) + 6x2v2(ruxξ + rxηx − rxuxξx − rη) = 0,

that implies the equality µ = v
(
H − P − J

xe
rt + 2Ge−rtx

)
. Therefore µu = µw = 0, and for the

case v′ ̸= 0 obtain G = 0 from equation (1.19). Then equation (1.18) implies that µx = 0, hence
J = 0. From equation (1.17) it follows that µt = 0, it corresponds to the resulting formula
µ = (H − P )v. Thus, τ(t) is an arbitrary function,

ξ = Hx+ rτ(t)x, η = Kert +D1x+ Pu+ rτ(t)u,

µ = (H − P )v, ν = 2Hw + (2rτ(t)− τ ′(t))w.

Let us formulate the result in the form of theorem.
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Theorem 1. The Lie algebra of infinitesimal generators of the equivalency transformations
groups for equation (0.1), is generated by operators

Y1 = x∂u, Y2 = ert∂u, Y3 = x∂x + u∂u + 2w∂w, Y4 = x∂x + v∂v + 2w∂w,

Y5 = τ(t)∂t + rτ(t)x∂x + rτ(t)u∂u + (2rτ(t)− τ ′(t))w∂w,

when v′, w are identically unequal to zero.

Remark 1. It is easy to check that the infinitely-dimensional part of the Lie algebra from
Theorem 1 consists of operators of the form Y5 only.

The extensions of the operators Yk, k = 1, 2, 3, 4, 5, are

Ỹ1 = x∂u + ∂ux , Ỹ2 = ert∂u, Ỹ3 = x∂x + u∂u + 2w∂w,

Ỹ4 = x∂x + v∂v + 2w∂w − ux∂ux , Ỹ5 = τ∂t + rτx∂x + rτu∂u + (2rτ − τ ′)w∂w.
(1.25)

Therefore, the kernel of the principal Lie algebras for equation (0.1) is one-dimensional with the
basis Y2, because the corresponding group only doesn’t transform the additional variables v, w and
their arguments t, x, ux.

Corollary 1. The kernel of the principal Lie algebras for equation (0.1) is spanned by the
operator X1 = ert∂u when v′, w are identically unequal to zero.

2. Group classification

Consider Lie algebra of projections of operators (1.25) on the subspace of the variables t, x, ux,
v, w, i. e. the algebra generated by

Z1 = ∂ux , Z2 = v∂v − ux∂ux ,

Z3 = x∂x + 2w∂w, Z4 = τ∂t + rτx∂x + (2rτ − τ ′)w∂w.
(2.1)

It is the direct sum of subalgebras ⟨Z1, Z2⟩ and ⟨Z3, Z4⟩ that corresponds to two different functions
v and w and their different arguments. Therefore, the subalgebras can be considered separately.

Nonzero structure constants of ⟨Z1, Z2⟩ are c112 = −1, c121 = 1. Therefore, the inner automor-
phisms are E1 : ē

1 = e1−e2a1, E2 : ē
1 = e1ea2 . Here ei, i = 1, 2 are the coefficients at Zi respectively

in the basis decomposition of Z. If e2 ̸= 0, then e1 = 0 by the acting of E1. Therefore the optimal
system of one-dimensional subalgebras consists of subalgebras with bases Z1 and Z2.

In the subalgebra ⟨Z3, Z4⟩ there are no nontrivial inner automorphisms, consequently, the op-
timal system of one-dimensional subalgebras has a form Θ1 = {⟨Z2⟩, ⟨bZ2 + Z4⟩, b ∈ R}.

For operators Z from optimal systems we calculate the expressions

Z(V (ux)− v)|v=V = 0, Z(W (t, x)− w)|w=W = 0.

Note, that if Z contains Z1 with a nonzero coefficient and doesn’t contain Z2, then v′ = 0. Such
case doesn’t correspond to the conditions of Theorem 1. If an operator Z has nonzero coefficients
at Z1 and at Z3, then by E1 the coefficient at Z1 can be equated to zero for equivalent operator
to Z. Therefore, the operator Z1 can be excluded from further considerations.

We have

Z2(V (ux)− v)|w=W = −V − uxV
′ = 0, V = β/ux
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for arbitrary β ∈ R. Further,

Z3(W (t, x)− w)|w=W = xWx − 2W = 0, W = D(t)x2

for arbitrary function D(t). Finally,

(bZ3 + Z4(W (t, x)− w)|w=W = τ(t)Wt + (rτ(t) + b)xWx − (2rτ(t)− τ ′(t) + 2b)W = 0,

W =
e
2rt+2b

∫
dt

τ(t)

τ(t)
φ(xe

−rt−b
∫

dt
τ(t) )

for arbitrary functions φ ̸= 0, τ ̸= 0.
Optimal system of two-dimensional subalgebras consists of ⟨Z2, Z3⟩, ⟨Z2, bZ3 + Z4⟩, ⟨Z3, Z4⟩.

In the first two cases we have the simultaneous specifications for v and w that are already known.
In the last one specification we have the form W = γx2/τ(t).

For the Lie algebra ⟨Z2, Z3, Z4⟩ the specifications are V = β/ux, W = γx2/τ(t).
For every basis operator from the optimal systems calculate the projection of the corresponding

generator of the group of equivalency transformations on the space of the variables t, x, u. Then
Z2 corresponds to pr(t,x,u)(Y4 − Y3) = −u∂u, for the operator Z3 it will be pr(t,x,u)Y3 = x∂x + u∂u,
and pr(t,x,u)(bY3+Y5) = τ(t)∂t+(rτ(t)+ b)x∂x+(rτ(t)u+ b)∂u corresponds to bZ3+Z4. It implies
the next theorem.

Theorem 2. Let v′, w be identically unequal to zero i. Then next assertions are true.
1. The principal Lie algebra of the equation

ut +
w(t, x)uxx

2

(
1− βx

uxx
ux

)2 + r(xux − u) = 0, β ̸= 0,

is generated by the operators X1 = ert∂u, X2 = u∂u.

2. The principal Lie algebra of the equation

ut +
T ′(t)e2rt+2bT (t)φ(xe−rt−bT (t))uxx

2 (1− xv(ux)uxx)
2 + r(xux − u) = 0, T ′(t) ̸= 0, φ(z) ̸= 0,

is generated by the operators X1 = ert∂u, X2 =
1

T ′(t)
∂t +

(
r

T ′(t)
+ b

)
x∂x +

(
r

T ′(t)
+ b

)
u∂u.

3. The principal Lie algebra of the equation

ut +
T ′(t)e2rt+2bT (t)φ(xe−rt−bT (t))uxx

2

(
1− βx

uxx
ux

)2 + r(xux − u) = 0, T ′(t) ̸= 0, φ(z) ̸= 0, β ≠ 0,

is generated by the operators

X1 = ert∂u, X2 = u∂u, X3 =
1

T ′(t)
∂t +

(
r

T ′(t)
+ b

)
x∂x +

(
r

T ′(t)
+ b

)
u∂u.

4. The principal Lie algebra of the equation

ut +
D(t)x2uxx

2 (1− xv(ux)uxx)
2 + r(xux − u) = 0, D(t) ̸= 0,
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is generated by the operators

X1 = ert∂u, X2 = x∂x + u∂u, X3 =
1

D(t)
∂t +

r

D(t)
x∂x +

r

D(t)
u∂u.

5. The principal Lie algebra of the equation

ut +
D(t)x2uxx

2

(
1− βx

uxx
ux

)2 + r(xux − u) = 0, D(t) ̸= 0,

is generated by the operators

X1 = ert∂u, X2 = x∂x, X3 = u∂u, X4 =
1

D(t)
∂t +

r

D(t)
x∂x +

r

D(t)
u∂u.

Remark 2. Theorem 1 and Theorem 2 are valid for the case r = 0.

3. Conclusion

Further Theorem 2 will be applied to the search of exact solutions of the option pricing nonlinear
models. Specification W (t, x) = σ2x2 as partial case of D(t)x2 corresponds to the Scönbucher—
Wilmott model, if r = 0, and to Circar—Papanicolaou model for r ̸= 0.
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