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Abstract: Let ℜn be the set of all rational functions of the type r(z) = p(z)/w(z), where p(z) is a polynomial
of degree at most n and w(z) =

∏n
j=1

(z − aj), |aj | > 1 for 1 ≤ j ≤ n. In this paper, we set up some results
for rational functions with fixed poles and restricted zeros. The obtained results bring forth generalizations
and refinements of some known inequalities for rational functions and in turn produce generalizations and
refinements of some polynomial inequalities as well.
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1. Introduction

Let Pn denote the class of all complex polynomials of degree at most n. For aj ∈ C,
j = 1, 2, . . . , n, we write

w(z) :=

n
∏

j=1

(z − aj), B(z) :=

n
∏

j=1

(

1− ajz

z − aj

)

and

ℜn := ℜn(a1, a2, . . . , an) =

{

p(z)

w(z)
; p ∈ Pn

}

.

Then ℜn is the set of all rational functions with poles aj, j = 1, 2, . . . , n at most and with finite
limit at infinity. It is clear that B(z) ∈ ℜn and |B(z)| = 1 for |z| = 1. Throughout this paper, we
shall assume that all the poles aj, j = 1, 2, . . . , n lie in |z| > 1.

If p ∈ Pn, then concerning the estimate of |p′(z)| on the unit disk |z| ≤ 1, we have the following
famous result known as Bernstein’s inequality [3].
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Theorem 1 [3]. If p ∈ Pn, then

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|

with equality only for p(z) = λzn, λ 6= 0 being a complex number.

For polynomials having all their zeros in |z| ≤ 1, Turàn [14] proved

Theorem 2 [14]. If p ∈ Pn and p(z) has all its zeros in |z| ≤ 1, then

max
|z|=1

|p′(z)| ≥
n

2
max
|z|=1

|p(z)| (1.1)

with equality for those polynomials, which have all their zeros on |z| = 1.

In literature, there exists several generalizations and refinements of inequality (1.1) (see [10–12]).
V.K. Jain [6] in 1997 introduced a parameter β and proved the following result which is an
interesting generalization of inequality (1.1).

Theorem 3 [6]. If p ∈ Pn and p(z) has all its zeros in |z| ≤ 1, then for |β| ≤ 1

max
|z|=1

∣

∣

∣

∣

zp′(z) +
nβ

2
p(z)

∣

∣

∣

∣

≥
n

2
{1 + Re (β)}max

|z|=1
|p(z)|. (1.2)

By involving the coefficients of polynomial p(z), Dubinin [4] refined inequality (1.1) and proved the
following result.

Theorem 4 [4]. If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n having all its zeros in |z| ≤ 1,

then

max
|z|=1

|p′(z)| ≥
n

2

{

1 +
1

n

(

|αn| − |α0|

|αn|+ |α0|

)}

max
|z|=1

|p(z)|.

As a generalization of Theorem 4, Rather et al. [9] proved the following result.

Theorem 5 [9]. If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n having all its zeros in |z| ≤ k,

k ≤ 1, then for |z| = 1

max
|z|=1

|p′(z)| ≥
n

1 + k

{

1 +
k

n

(

kn|αn| − |α0|

kn|αn|+ |α0|

)}

max
|z|=1

|p(z)|. (1.3)

Li, Mohapatra and Rodriguez [7] extended the inequality (1.1) to the rational functions r ∈ ℜn

with prescribed poles and replace zn by Blaschke product B(z). Among other things they proved
the following result.

Theorem 6 [7] . Suppose r ∈ ℜn, where r has exactly n poles at a1, a2, . . . , an and all the zeros
of r lie in |z| ≤ 1, then for |z| = 1

|r′(z)| ≥
1

2

{

|B′(z)| − (n−m)
}

|r(z)|, (1.4)

where m is the number of zeros of r.

As a generalization of inequality (1.4), Aziz and Shah [2] proved the following result.
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Theorem 7 [2]. Suppose r ∈ ℜn, where r has exactly n poles at a1, a2, . . . , an and all the zeros
of r lie in |z| ≤ k, k ≤ 1, then for |z| = 1

|r′(z)| ≥
1

2

{

|B′(z)| +
2m− n(1 + k)

1 + k

}

|r(z)|, (1.5)

where m is the number of zeros of r.

Concerning the estimation of the lower bound of Re
(

zp′(z)/p(z)
)

on |z| = 1, Dubinin [4] proved
the following result.

Theorem 8 [4] . If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n which has all its zeros in

|z| ≤ 1, then for all z on |z| = 1 for which p(z) 6= 0

Re

(

zp′(z)

p(z)

)

≥
n

2

{

1 +
1

n

(

|αn| − |α0|

|αn|+ |α0|

)}

.

Rather et al. [9] generalized Theorem 8 by proving the following result.

Theorem 9 [9]. If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n and p(z) has all its zeros in

|z| ≤ k, k ≤ 1, then for all z on |z| = 1 for which p(z) 6= 0,

Re

(

zp′(z)

p(z)

)

≥
n

1 + k

{

1 +
k

n

(

kn|αn| − |α0|

kn|αn|+ |α0|

)}

.

Concerning the estimation of the lower bound of Re
(

zr′(z)/r(z)
)

on |z| = 1, Dubinin [5] extended
Theorem 8 to the rational functions and proved the following result.

Theorem 10 [5]. Let r be a rational function of the form r(z) = p(z)/w(z), where

p(z) = αmzm + αm−1z
m−1 + · · ·+ α1z + α0, αm 6= 0, m ≥ n

and the poles cν , ν = 1, 2, ..., n of r are arbitrary with |cν | 6= 1 and let all the zeros of the function r
lie in the disk |z| ≤ 1. Then, at points of the circle |z| = 1, other than the zeros of r, the following
inequality holds

Re

{

zr′(z)

r(z)

}

≥
1

2

{

m− n+
zB′(z)

B(z)
+

|αm| − |α0|

|αm|+ |α0|

}

. (1.6)

For m = n inequality (1.6) reduces to

Re

{

zr′(z)

r(z)

}

≥
1

2

{

zB′(z)

B(z)
+

|αm| − |α0|

|αm|+ |α0|

}

. (1.7)

2. Main results

In this section, we first present the following result, which in particular furnishes a compact
generalization of Theorem 10 for the case when all the poles of r lie outside the unit disk and as a
consequence of this result, we get various generalizations and refinements of the above mentioned
results. More precisely we prove.
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Theorem 11. Suppose r ∈ ℜn, where r has exactly n poles and all the zeros of

p(z) = αmzm + αm−1z
m−1 + · · ·+ α1z + α0, αm 6= 0,

lie in |z| ≤ k, k ≤ 1. Then for all z on the circle |z| = 1, other than the zeros of r and |β| ≤ 1

Re

{

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

}

≥
1

2

[{

1 +
2Re(β)

1 + k

}

|B′(z)|+
2m− n(1 + k)

(1 + k)
+

2k

1 + k

{

km|αm| − |α0|

km|αm|+ |α0|

}]

.

(2.1)

The result is best possible in the case β = 0, and equality holds for

r(z) =
(z + k)m

(z − a)n
and B(z) =

(

1− az

z − a

)n

, at z = 1, a > 1 and β = 0.

Remark 1. Taking β = 0, and using the fact that

|B′(z)| =
zB′(z)

B(z)

on |z| = 1, inequality (2.1) reduces to the following inequality

Re

{

zr′(z)

r(z)

}

≥
1

2

[

zB′(z)

B(z)
+

2m− n(1 + k)

(1 + k)
+

2k

1 + k

{

km|αm| − |α0|

km|αm|+ |α0|

}]

. (2.2)

One can easily note that for β = 0, Theorem 11 is an extension of Theorem 9 to the rational
functions. On the other hand if we take k = 1 and m = n in inequality (2.2), we shall obtain
inequality (1.7).

Remark 2. Now for the points on the circle |z| = 1, other than the zeros of r and |β| ≤ 1, one
can easily prove that

∣

∣

∣

∣

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

∣

∣

∣

∣

≥ Re

{

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

}

.

In view of this, Theorem 11 reduces to the following result, which contributes a generalization and
refinement of inequality (1.5).

Corollary 1. Suppose r ∈ ℜn, where r has exactly n poles and all the zeros of r lie in |z| ≤ k,
k ≤ 1, that is r(z) = p(z)/w(z) with

p(z) = αmzm + αm−1z
m−1 + · · ·+ α1z + α0, αm 6= 0.

Then for all z on |z| = 1 other than the zeros of r and |β| ≤ 1

∣

∣

∣

∣

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

∣

∣

∣

∣

≥
1

2

[{

1 +
2Re (β)

1 + k

}

|B′(z)| +
2m− n(1 + k)

(1 + k)
+

2k

1 + k

{

km|αm| − |α0|

km|αm|+ |α0|

}]

.

The result is best possible in the case β = 0, and equality holds for

r(z) =
(z + k)m

(z − a)n
and B(z) =

(

1− az

z − a

)n

, at z = 1, a > 1 and β = 0.



Inequalities Pertaining to Rational Functions 147

Remark 3. For k = 1, Corollary 1 reduces to the following result, which yields a generalization
as well as refinement of inequality (1.4).

Corollary 2. Suppose r ∈ ℜn, where r has exactly n poles and all the zeros of r lie in |z| ≤ 1,
that is r(z) = p(z)/w(z) with

p(z) = αmzm + αm−1z
m−1 + · · ·+ α1z + α0, αm 6= 0.

Then for all z on |z| = 1 other than the zeros of r and |β| ≤ 1
∣

∣

∣

∣

zr′(z)

r(z)
+

β

2
|B′(z)|

∣

∣

∣

∣

≥
1

2

[

{1 + Re (β)} |B′(z)| − (n−m) +

{

|αm| − |α0|

|αm|+ |α0|

}]

. (2.3)

Inequality (2.3) is sharp in the case β = 0 and equality holds for

r(z) =
(z + 1)m

(z − a)n
and B(z) =

(

1− az

z − a

)n

, at z = 1, a > 1 and β = 0.

Remark 4. Taking w(z) = (z − α)n, |α| > 1, so that

B(z) =

(

1− αz

z − α

)n

with m = n in Corollary 1, we get
∣

∣

∣

∣

z

(

p′(z)

p(z)
+

n

z − α

)

+
β

1 + k
|B′(z)|

∣

∣

∣

∣

≥
1

2

[{

1 +
2Re (β)

1 + k

}

|B′(z)| +
n(1− k)

1 + k
+

2k

1 + k

(

kn|αn| − |α0|

kn|αn|+ |α0|

)]

.

(2.4)

Letting |α| → ∞ in inequality (2.4) and noting that |B′(z)| → n|z|n−1 = n for |z| = 1, we get the
following result.

Corollary 3. If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n, having all its zeros in |z| ≤ k,

k ≤ 1, then for |β| ≤ 1 and |z| = 1
∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
n

1 + k

{

1 + Re(β) +
k

n

(

kn|αn| − |α0|

kn|αn|+ |α0|

)}

|p(z)|. (2.5)

Since kn|αn| ≥ |α0|, therefore Corollary 3 refines as well as generalizes the well known polynomial
inequality (1.2) due to Jain [6].

Remark 5. For β = 0, inequality (2.5) reduces to inequality (1.3).

Next, we prove the following refinement of Corollary 3.

Theorem 12. If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n, having all its zeros in |z| ≤ k,

k ≤ 1, then for |β| ≤ 1 and |z| = 1

∣

∣

∣
zp′(z) +

nβ

1 + k
p(z)

∣

∣

∣
≥

n

1 + k

{

1 + Re (β) +
k

n

(

kn|αn| −m∗ − |α0|

kn|αn|+m∗ + |α0|

)}

|p(z)|

+
nm∗

1 + k

{
∣

∣

∣

∣

1 + Re (β) +
k

n

(

kn|αn| −m∗ − |α0|

kn|αn|+m∗ + |α0|

)

− |β|

∣

∣

∣

∣

}

,

where m∗ = min|z|=k |p(z)|.
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Taking β = 0 in Theorem 12, we get the following result.

Corollary 4. If p(z) =
∑n

j=0 αjz
j is a polynomial of degree n, having all its zeros in |z| ≤ k,

k ≤ 1, then for |z| = 1

|p′(z)| ≥
n

1 + k

{

1 +
k

n

(

kn|αn| −m∗ − |α0|

kn|αn|+m∗ + |α0|

)}

|p(z)|+
nm∗

1 + k

{
∣

∣

∣

∣

1 +
k

n

(

kn|αn| −m∗ − |α0|

kn|αn|+m∗ + |α0|

)
∣

∣

∣

∣

}

,

where m∗ = min|z|=k |p(z)|.

Remark 6. Since m∗ ≥ 0, hence Corollary 4 is a refinement Theorem 5.

3. Lemmas

For the proof of our results, we need the following lemmas. The first lemma is due to A. Aziz
and B.A. Zargar [1].

Lemma 1 [1]. If |z| = 1, then

Re

(

zw′(z)

w(z)

)

=
n− |B′(z)|

2
,

where w(z) =
∏n

j=1(z − aj).

The following lemma is due to Rather et al. [9].

Lemma 2 [9]. If 〈ζj〉
m
j=1 be a finite collection of real numbers such that 0 ≤ ζj ≤ 1,

j = 1, 2, . . . ,m, then
m
∑

j=1

1− ζj
1 + ζj

≥
1−

∏m
j=1 ζj

1 +
∏m

j=1 ζj
.

The next lemma is due to Mezerji et al. [13].

Lemma 3 [13]. If p(z) is a polynomial of degree n, having all its zeros in |z| ≤ k, k ≤ 1, then
for any β with |β| ≤ 1,

min
|z|=1

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
nm∗

kn

∣

∣

∣

∣

1 +
β

1 + k

∣

∣

∣

∣

,

where m∗ = min|z|=k |p(z)|.

4. Proof of Theorem 11

P r o o f. Since r ∈ ℜn and all the zeros of r(z) lie in |z| ≤ k, k ≤ 1, that is r(z) = p(z)/w(z)
with

p(z) = αm

m
∏

j=1

(z − bj) = αmzm + αm−1z
m−1 + · · ·+ α1z + α0,

αm 6= 0, |bj | ≤ k ≤ 1, j = 1, 2, 3, ...,m.
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Then for |β| ≤ 1 and for all z on |z| = 1, where r(z) 6= 0, we have

Re

{

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

}

= Re

{

zr′(z)

r(z)

}

+
|B′(z)|

1 + k
Re {β}

= Re

{

zp′(z)

p(z)
−

zw′(z)

w(z)

}

+
|B′(z)|

1 + k
Re {β}

= Re

{

zp′(z)

p(z)

}

− Re

{

zw′(z)

w(z)

}

+
|B′(z)|

1 + k
Re {β} .

Using Lemma 1, we have for |β| ≤ 1 and for all z on |z| = 1, where r(z) 6= 0,

Re

{

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

}

= Re

m
∑

j=1

{

z

z − bj

}

−

{

n− |B′(z)

2

}

+
|B′(z)|

1 + k
Re {β}

=
m
∑

j=1

Re

{

z

z − bj

}

−
n

2
+

1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|.

(4.1)

Now it can be easily verified that for |z| = 1 and |bj | ≤ k ≤ 1, we have

Re

{

z

z − bj

}

≥

{

1

1 + |bj |

}

.

Using this in inequality (4.1), we get for |β| ≤ 1 and for all z on |z| = 1, where r(z) 6= 0,

Re

{

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

}

≥

m
∑

j=1

{

1

1 + |bj |

}

−
n

2
+

1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|

=
1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|+
m
∑

j=1

{

1

1 + |bj|
−

1

1 + k

}

+
m

1 + k
−

n

2

=
1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)| +
2m− n(1 + k)

2(1 + k)
+

k

1 + k

m
∑

j=1

{

k − |bj |

k + k|bj |

}

≥
1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|+
2m− n(1 + k)

2(1 + k)
+

k

1 + k

m
∑

j=1

{

k − |bj |

k + |bj |

}

=
1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|+
2m− n(1 + k)

2(1 + k)
+

k

1 + k

m
∑

j=1

{

1− |bj |/k

1 + |bj |/k

}

. (4.2)

Since |bj|/k ≤ 1, therefore by invoking Lemma 2, we conclude from inequality (4.2) that for |β| ≤ 1
and for all z on |z| = 1, where r(z) 6= 0,

Re

{

zr′(z)

r(z)
+

β

1 + k
|B′(z)|

}

≥
1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|+
2m− n(1 + k)

2(1 + k)
+

k

1 + k

{

1−
∏m

j=1 c|bj |/k

1 +
∏m

j=1 |bj|/k

}

=
1

2

{

1 +
2Re(β)

1 + k

}

|B′(z)|+
2m− n(1 + k)

2(1 + k)
+

k

1 + k

{

km|αm| − |α0|

km|αm|+ |α0|

}

.

�
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5. Proof of Theorem 12

P r o o f. If p(z) has a zero on |z| = k, then the result follows from Corollary 3. We assume
that all the zeros of p(z) lie in |z| < k, k ≤ 1, so that m∗ > 0 and we have m∗ ≤ |p(z)| for |z| = k.
By Rouche’s theorem for every λ with |λ| < 1, the polynomial h(z) = p(z) − λm∗ has all its zeros
in |z| < k, k ≤ 1. Applying Corollary 3 to the polynomial h(z), we get for λ, β ∈ C with |λ| < 1,
|β| ≤ 1 and |z| = 1,

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
{p(z)− λm∗}

∣

∣

∣

∣

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λm∗ − α0|

kn|αn|+ |λm∗ − α0|

)}

|p(z)− λm∗|.

or
∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)−

nβ

1 + k
λm∗

∣

∣

∣

∣

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}

|p(z)− λm∗|.

(5.1)

Now for every β ∈ C with |β| ≤ 1 and k > 0,

k|β| ≤ |1 + k + β|.

or,
∣

∣

∣

∣

1 +
β

1 + k

∣

∣

∣

∣

≥
k

1 + k
|β|, for |β| ≤ 1 and k > 0.

Using this in Lemma 3, we have for |z| = 1, |β| ≤ 1 and k ≤ 1,

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
nm∗

kn

∣

∣

∣

∣

1 +
β

1 + k

∣

∣

∣

∣

≥
nm∗

kn−1

|β|

1 + k
≥

∣

∣

∣

∣

nβ

1 + k
λm∗

∣

∣

∣

∣

for |λ| < 1.

In view of this, choosing argument of λ in left hand side of (5.1) such that

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)−

nβ

1 + k
λm∗

∣

∣

∣

∣

=

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

−
n|β|

1 + k
|λ|m∗,

we obtain from inequality (5.1), for |β| ≤ 1 and |z| = 1,

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

−
n|β|

1 + k
|λ|m∗

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}

{|p(z)| − |λ|m∗} .

or
∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}

|p(z)|

+
nm∗

2
|λ|

[

2|β|

1 + k
−

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}]

.

(5.2)
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Again by inequality (5.1), we have for |λ| < 1, |β| ≤ 1 and |z| = 1,

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

+

∣

∣

∣

∣

nβ

1 + k
λm∗

∣

∣

∣

∣

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}

{|p(z)|+ |λ|m∗} .

or
∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}

|p(z)|

+
nm∗

2
|λ|

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)

−
2|β|

1 + k

}

.

(5.3)

Now from inequality (5.2) and inequality (5.3), we get for |β| ≤ 1 and |z| = 1,

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
n

2

{

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)}

|p(z)|

+
nm∗

2
|λ|

{∣

∣

∣

∣

1 +
2Re(β)

1 + k
+

1− k

1 + k
+

2k

n(1 + k)

(

kn|αn| − |λ|m∗ − |α0|

kn|αn|+ |λ|m∗ + |α0|

)

−
2|β|

1 + k

∣

∣

∣

∣

}

.

Letting |λ| → 1, we obtain for |z| = 1,

∣

∣

∣

∣

zp′(z) +
nβ

1 + k
p(z)

∣

∣

∣

∣

≥
n

1 + k

{

1 + Re(β) +
k

n

(

kn|αn| −m∗ − |α0|

kn|αn|+m∗ + |α0|

)}

|p(z)|

+
nm∗

1 + k

{∣

∣

∣

∣

1 + Re(β) +
k

n

(

kn|αn| −m∗ − |α0|

kn|αn|+m∗ + |α0|

)

− |β|

∣

∣

∣

∣

}

,

which proves Theorem 12. �

6. A remark on a recent result concerning rational functions

Recently Idrees Qasim [8] claimed to have proved various results regarding Bernstein-type
inequalities for rational functions with prescribed poles and restricted zeros. Among other things
he claimed to have proved the following result.

Theorem 13 [8]. If r(z) = p(z)/w(z) ∈ ℜn, where p(z) =
∑n

j=0 αjz
j, |b|.|αn| ≤ |α0|, r has

exactly n poles at a1, a2, . . . , an, and r(z) 6= 0 in |z| > 1, then for |z| = 1,

|r′(z)| ≥
1

2

[

|B′(z)| +

√

|αn| −
√

|α0|
√

|αn|

]

(|r(z)|+m∗∗) ,

where m∗∗ = min|z|=1 |r(z)| and b = a1a2 . . . an.

Since it is assumed throughout the paper that all the poles (a1, a2, ..., an) of rational function r lie
outside unit disk, therefore,

|b| = |a1 × a2 × ...× an| > 1. (6.1)
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On the other hand, it is also assumed that all the zeros (z1, z2, ..., zn) of r lie in the disc |z| ≤ 1,
implies

|α0|

|αn|
= |z1 × z2 × ...× zn| ≤ 1. (6.2)

From (6.1) and (6.2), it follows that |b|.|αn| > |α0|, which is contrary to the hypothesis |b|.|αn| ≤ |α0|
given in the statement of the Theorem 13. Hence the statement of the Theorem 13 is self-
contradicting, as such Theorem 13 and its consequences are never applicable.
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