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Abstract: The properties of a minimax piecewise smooth solution of the Hamilton–Jacobi–Bellman equation
are studied. We get a generalization of the nesessary and sufficient conditions for the points of nondifferentiability
(singularity) of the minimax solution and the Rankine–Hugoniot condition. We describe the dimensions of
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Introduction

As is known [1–3], the first-order partial differential equations of the Hamilton–Jacobi–Bellman
type are associated with problems of optimal control theory. In the present paper, we study the
properties of the generalized (minimax) solution of the Hamilton–Jacobi–Bellman equation (HJBE)
proposed by A.I. Subbotin. Necessary and sufficient conditions for a point belonging to the singular
set of the minimax solution, i. e., to the set of points of nondifferentiability, were obtained by
E.A. Kolpakova [4, 5]. These results are developed in the present paper. We study properties of
the singular set of a minimax piecewise smooth solution and establish connections between the
dimension of singular submanifolds and the state characteristics that come to these submanifolds.
We also obtain the connection between the structure of the Hamiltonian and the structure of the
singular set in the case when the Hamiltonian depends only on the impulse variable.

One of the close works in this area is the book by A.A. Melikyan [6], where partial differential
equations of the first order. Where considered in the class of continuously differentiable and piece-
wise smooth input data. His work is mainly devoted to the issue of development of the method of
characteristics and its further application to constructions of solutions in the following cases: a) the
generalized viscosity solution is not smooth and then the Hamiltonian is smooth or non-smooth
function; b) the solution is smooth, but the Hamiltonian is non smooth. The Poisson brackets are
the main tools in the study [6].

Another work deserves special attention. It is the monograph P. Cannarsa and C. Sinestari [7].
The authors study solutions of the Hamilton–Jacobi–Bellman equation in the class of semiconvex
or semiconcave functions. This solutions have the bounded second derivatives along any direction.
Singular set has a simple structure in the case when a solution is in the class of semiconvex or
semiconcave functions. The class of semiconvex or semiconcave functions is more narrow then the
class of piecewise smooth functions in the presenting paper.

1This work was supported by the Russian Foundation for Basic Research (project no. 14-01-00168) and by
the Program of the Presidium of the Russian Academy of Sciences “Mathematical Problems of Contemporary
Control Theory”(project no. 387-2015-0075).
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1. Piecewise smooth solution of Hamilton–Jacobi–Bellman equation and its
singular set

1.1. Problem statement

Consider the Cauchy boundary value problem for the Hamilton–Jacobi–Bellman equation

∂ϕ(t, x)
∂t

+ H(t, x, Dxϕ(t, x)) = 0, ϕ(T, x) = σ(x), (1.1)

where t ∈ [0, T ], x ∈ Rn, and Dxϕ(t, x) =
(∂ϕ(t, x)

∂x1
,
∂ϕ(t, x)

∂x2
, . . . ,

∂ϕ(t, x)
∂xn

)
= s.

Define ΠT = {(t, x) : t ∈ [0, T ] , x ∈ Rn}, the symbol intΠT denote the interior of the set ΠT .

We investigate problem (1.1) under the following assumptions:
(A1) the function H(t, x, s) is continuously differentiable with respect to the variables t, x, s

and is concave with respect to the variable s;
(A2) the functions DsH(t, x, s), DxH(t, x, s) are Lipschitz continuous on the variables x and

s, there exist constants L1 > 0, L2 > 0 such that:

||DsH(t, x
′
, s
′
)−DsH(t, x

′′
, s
′′
)|| ≤ L1(||x′ − x

′′ ||+ ||s′ − s
′′ ||),

||DxH(t, x
′
, s
′
)−DxH(t, x

′′
, s
′′
)|| ≤ L2(||x′ − x

′′ ||+ ||s′ − s
′′ ||)

for any (t, x
′
), (t, x

′′
) ∈ ΠT and for any s

′
, s

′′ ∈ Rn;
(A3) the function σ(x) is continuously differentiable;
(A4) there exist α > 0 and β > 0 such that

‖DxH(t, x, s)‖ ≤ α(1 + ‖x‖+ ‖s‖), ‖DsH(t, x, s)‖ ≤ β(1 + ‖x‖+ ‖s‖)

for any point (t, x, s) ∈ ΠT × Rn. Here, the symbol ‖ · ‖ denotes the Euclidean norm in Rn.

The aim of this paper is to study the structure of a solution ϕ(·) to problem (1.1).

1.2. Generalized solution to problem (1.1)

Under the above assumptions, a classical solution ϕ(·) to problem (1.1) may exist only locally
in a neighborhood of the boundary manifold

CT = {(t, x, z) : t = T, x = ξ, z = σ(ξ); ξ ∈ Rn} .

This solution ϕ(·) can be constructed using the Cauchy method of characteristics [8]. Let us write
the characteristic system with the boundary conditions at t = T for problem (1.1):

˙̃x = DsH(t, x̃, s̃), ˙̃s = −DxH(t, x̃, s̃), ˙̃z = 〈s̃, DsH(t, x̃, s̃)〉 −H(t, x̃, s̃), (1.2)

x̃(T, ξ) = ξ, s̃(T, ξ) = Dxσ(ξ), z̃(T, ξ) = σ(ξ) ∀ξ ∈ Rn. (1.3)

The symbol 〈·, ·〉 denotes the inner product.
The solutions x̃, s̃, and z̃ are called, respectively, the state, impulse, and cost of characteristics

of the Hamilton–Jacobi–Bellman equation (1.1).
We note that, under conditions (A1)–(A4), for any ξ ∈ Rn a solution of the characteristic

system exists, is unique, and can be extended to the interval [0, T ] .
According to the Cauchy method [8], we have the formulas x = x̃(t, ξ), ϕ(t, x) = z̃(t, ξ) and

Dxϕ(t, x) = s̃(t, ξ), t ∈ [0, T ], ξ ∈ Rn, if the Jacobian
∂x̃(t, ξ)
∂(t, ξ)

is not equal to zero.
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In what follows, we consider nonclassical, nonsmooth solutions to problem (1.1). We apply the
following generalization of the notion of differentiability of a function [9]; this generalization is a
useful tool of nonsmooth analysis.

Definition 1. The superdifferential D+ϕ(t0, x0) of a function ϕ(·) : ΠT → R at a point (t0, x0)
is defined as the following set

D+ϕ(t0, x0) = co
{

(α, s) ∈ Rn+1 :

lim sup
∆t→0, ∆x→0

ϕ(t0 + ∆t, x0 + ∆x)− ϕ(t0, x0)− 〈(α, s), (∆t,∆x)〉
|∆t|+ ‖∆x‖ ≤ 0

}
.

The superdifferential of a function ϕ(·) at the points of its differentiability consists of the unique
element equal to the gradient of this function.

We recall (see [4, 5]) the definition of a generalized solution to problem (1.1).

Definition 2. A generalized solution to problem (1.1) is a locally Lipschitz superdifferentiable
function ΠT 3 (t, x) 7→ ϕ(t, x) ∈ R such that, for any point (t0, x0) ∈ ΠT , there exist ξ0 ∈ Rn and
solutions x̃(·, ξ0), s̃(·, ξ0), and z̃(·, ξ0) of system (1.2), (1.3) satisfying the condition

x̃(t0, ξ0) = x0, z̃(t0, ξ0) = ϕ(t0, x0), z̃(t, ξ0) = ϕ(t, x̃(t, ξ0)) ∀t ∈ [t0, T ].

A superdifferential function is the function ϕ(·) : ΠT → R such that D+ϕ(t, x) 6= ∅ for any
(t, x) ∈ intΠT .

The following assertion on the connection of Definition 2 with the definitions of the minimax
solution and the viscosity solution is a consequence of results in [4, 5, 10–12].

Proposition 1. If conditions (A1)–(A4) are satisfied to problem (1.1), then there exists a
unique generalized solution to problem (1.1) in the sense of Definition 2. In addition, Definition 2
is equivalent to the definitions of minimax solution and viscosity solution to problem (1.1).

1.3. Singular set

Let us recall the definition of the singular set of a generalized solution ϕ(·) to problem (1.1).

Definition 3. The singular set Q of a generalized solution ϕ(·) to problem (1.1) is the set of
points (t, x) ∈ ΠT where the function ϕ is not differentiable.

According to [4, 5], the following assertions hold.

Proposition 2. Let conditions (A1)–(A4) be satisfied for problem (1.1). Then (t, x) ∈ Q if
and only if there exist ξ1, ξ2 ∈ Rn, ξ1 6= ξ2, such that

x̃(t, ξ1) = x̃(t, ξ2) = x, z̃(t, ξ1) = z̃(t, ξ2) = ϕ(t, x), s̃(t, ξ1) 6= s̃(t, ξ2),

where x̃(·, ξi), s̃(·, ξi), and z̃(·, ξi), i = 1, 2, are solutions of the characteristic system (1.2), (1.3).

Proposition 3. If the singular set Q contains the curve given by a continuously differentiable
function t 7→ x(t), 0 < t0 < t ≤ T , then

〈
s̃(t, ξ1)− s̃(t, ξ2),

dx(t)
dt

〉
= H(t, x(t), s̃(t, ξ1))−H(t, x(t), s̃(t, ξ2)) ∀t ∈ (t0, T ] .

This relation generalizes the known Rankine–Hugoniot condition to the case of the n-dimensional
state variable x.
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1.4. Class of piecewise smooth functions

In the present paper, we consider generalized solutions ϕ(·) to problem (1.1) in the class of
piecewise smooth functions (see, for instance, [10]).

Definition 4. A function ϕ(·) : ΠT → R is called piecewise smooth in ΠT if
(1) The domain of this function ΠT has the following structure:

intΠT =
⋃

i∈I

Mi, Mi ∩Mj = ∅ for i, j ∈ I, i 6= j,

where I = {1, 2, . . . , N}, Mi are differentiable submanifolds in ΠT .

(2) The restriction of a piecewise smooth function ϕ(·) to M j , j ∈ J , is a continuously differ-
entiable function, where

J := {i ∈ I : Mi is an (n + 1)-dimensional manifold}, M j is the closure of the set Mj .

(3) For any i ∈ I, (t1, x1), (t2, x2) ∈ Mi, the condition J(t1, x1) = J(t2, x2) holds, where

J(t, x) := {j ∈ J : x ∈ M j}.

Let us explain Definition 4. The manifolds Mj , j ∈ J ⊂ I, of dimension n + 1 are open, and⋃
j∈J M j = ΠT . All the remaining manifolds Mi, i ∈ I \ J , of dimension less then n + 1 belong to

the boundary of the closure of (n + 1)-dimensional manifolds. In addition, the following property
holds: J(t1, x1) = J(t2, x2) for any points (t1, x1) and (t2, x2) belonging to the same manifold.
Therefore, for any point (t, x) ∈ Mi, i ∈ I, we have (t, x) ∈ M j1 ∩ . . . ∩M jk

for j1, . . . , jk ∈ J(t, x)
and (t, x) /∈ M i for i ∈ J \ J(t, x).

2. Characteristics and dimension of a singular manifold

2.1. Structure of a singular manifold

Let us consider a minimax solution ϕ(·) to problem (1.1) in the class of piecewise smooth
functions.

We fix a manifold Mi, i ∈ I, of dimension n + 1 − k, where k ∈ 1, n, and denote it by M[k] to
simplify the further presentation.

Let L[k](t, x) be the tangent subspace to the manifold M[k] at the point (t, x). We call the set
of vectors orthogonal to vectors from the tangent subspace at point (t, x) as the normal subspace
at point (t, x). The projection of the superdifferential of the function ϕ(·) to the normal subspace
at the point (t, x), is denoted as

S+
[k](t, x) :=

{
q+ ∈ Rn+1 : ∃p ∈ L[k](t, x), p + q+ ∈ D+ϕ(t, x),

〈
q+, (1, f)

〉
= 0 ∀(1, f) ∈ L[k](t, x)

}
.

The normal subspace at point (t, x) is the subspace of the minimal dimention containing the
set S+

[k](t, x).
Fix a point (t, x) ∈ Q. The symbol Index (t, x) denotes the set consisting two or more parameters

ξ ∈ Rn, such that for any pairs ξ∗, ξ∗∗ ∈ Index (t, x) the following conditions are valid:

x̃(t, ξ∗) = x̃(t, ξ∗∗) = x, z̃(t, ξ∗) = z̃(t, ξ∗∗) = ϕ(t, x), s̃(t, ξ∗) 6= s̃(t, ξ∗∗), ξ∗ 6= ξ∗∗. (2.1)

According to Assertion 2, this set is nonempty for all (t, x) ∈ Q.
Let us fix a point (t, x) ∈ M[k] ⊂ Q.
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Lemma 1. If the superdifferential D+ϕ(t, x) of a piecewise smooth minimax solution ϕ(·) to
problem (1.1) at a point (t, x) ∈ M[k] ⊂ ΠT consists of more then one element, then the difference
of two elements d∗ and d∗ of this superdifferential belongs to the normal subspace to manifold at
the point (t, x). If the dimension of the normal subspace is k, where 1 ≤ k ≤ n, then there exist k
linearly independent vectors of the form d∗ − d∗, where d∗, d∗ ∈ D+ϕ(t, x).

P r o o f. The proof follows from the properties of a piecewise smooth minimax solution ϕ(·)
to problem (1.1) [10]. Any element d of the superdifferential D+ϕ(t, x) can be represented as the
sum p + q+, where p belongs to the tangent subspace to the singular set at the point (t, x) and q+

belongs to the normal subspace at the same point. It was shown in [10] that the projection of the
superdifferential D+ϕ(t, x) to the tangent subspace is a singleton.

As is known (see [4]), the superdifferential of a locally Lipschitz minimax solution ϕ(·) to
problem (1.1) is a closed bounded set and has the form

D+ϕ(t, x) := co{d(ξ∗) ∈ Rn+1 : ξ∗ ∈ Index (t, x)}, d(ξ∗) = (−H(t, x̃(t, ξ∗), s̃(t, ξ∗)), s̃(t, ξ∗)). (2.2)

Let the tangent subspace to the singular set at a point (t, x) have dimension n + 1 − k. We
consider the vectors d(ξ∗)− d(ξ∗1), where ξ∗, ξ∗1 ∈ Index (t, x) and d(ξ∗)− d(ξ∗1) = q+(ξ∗)− q+(ξ∗1).
The symbol q+(ξ∗) denotes the projection of d(ξ∗) to the normal subspace at the point (t, x).
Since q+(ξ∗), q+(ξ∗1) ∈ S+

[k](t, x), ξ∗, ξ∗1 ∈ Index (t, x), we find that the vectors q+(ξ∗) − q+(ξ∗1),
ξ∗, ξ∗1 ∈ Index (t, x), also lie in the normal subspace of dimension k. We will show that there exist
no less than k linearly independent differences following form

q+(ξ∗i )− q+(ξ∗1), ξ
∗
i , ξ∗1 ∈ Index (t, x), i ∈ 2, k + 1.

We show that there is no element ‖q∗‖ 6= 0 satisfing the following condition: q∗ is ortogonal to the
set S+

[k](t, x) and q∗ belongs to the normal subspace.
We prove the fact by reductio ad absurdum. Let the convex set S+

[k](t, x) has dimention k − l,
0 < l ≤ k [9]. Then there is an element q∗ such that q∗ is ortogonal to the set S+

[k](t, x) and q∗
belongs to the normal subspace. The equality 〈p, q∗〉 = 0 follows from p ∈ L[k](t, x), q∗ belongs to
the normal subspace, 〈q+(ξ∗), q∗〉 = 0, ξ∗ ∈ Index (t, x), q+(ξ∗) ∈ S+

[k](t, x), q∗ is ortogonal to the
set S+

[k](t, x). This implies that 〈
p + q+(ξ∗), q∗〉 = 0,

for any p ∈ L[k](t, x), ξ∗ ∈ Index (t, x), q+(ξ∗) ∈ S+
[k](t, x), as any supergradient may be represented

as the sum p + q+(ξ∗) [10], than q∗ is ortogonal to any supergradient. Therefore q∗ belongs in
intersection of hyperplanes whose normals are the supergradients. Consecuently, q∗ belongs to
tangent subspace, but q∗ belongs to normal subspace and ‖q∗‖ 6= 0. This is a contradiction. ¤

Theorem 1. Let conditions (A1)–(A4) be satisfied for problem (1.1), and let (t, x) ∈ Q. Then
(t, x) ∈ M[k], where dimM[k] = n + 1 − k, k ∈ 1, n, if and only if there exist solutions x̃(·, ξ∗i ),
s̃(·, ξ∗i ), and z̃(·, ξ∗i ), of system (1.2), (1.3), ξ∗i ∈ Index (t, x), i ∈ 1, k + 1, such that properties (2.1)
hold and the k × (n + 1)-matrix

D =




−(H2 −H1) s1
2 − s1

1 s2
2 − s2

1 . . . sn
2 − sn

1

−(H3 −H1) s1
3 − s1

1 s2
3 − s2

1 . . . sn
3 − sn

1

. . . . . . . . . . . . . . .
−(Hk+1 −H1) s1

k+1 − s1
1 s2

k+1 − s2
1 . . . sn

k+1 − sn
1


 (2.3)

has the rank equal to k. Here (s1
i , s

2
i , . . . , s

n
i ) = s̃(t, ξi) and Hi = H(t, x̃(t, ξi), s̃(t, ξi)). If one adds

any row of the form

(−(Hk+2 −H1) s1
k+2 − s1

1 s2
k+2 − s2

1 ... sn
k+2 − sn

1 )
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where (s1
k+1, s

2
k+1, . . . , s

n
k+1) = s̃(t, ξk+1), Hk+1 = H(t, x̃(t, ξk+1), s̃(t, ξk+1)), ξk+1 ∈ Index (t, x), to

the matrix of D, then the rank of the received (k + 1)× (n + 1)-matrix equal to k.

P r o o f. Necessity. Let (t, x) ∈ M[k] ⊂ Q. We note that the dimension of the tangent
subspace L[k](t, x) coincides with the dimension of the manifold M[k].

Since dimL[k](t, x) = n+1−k, we conclude that the dimension of the normal subspace S+
[k](t, x)

is n + 1− (n + 1− k) = k.
It follows from Lemma 1 that there exist elements q+(ξ∗i ) ∈ S+

[k](t, x), ξ∗i ∈ Index (t, x) i ∈
1, k + 1, such that the vectors q+(ξ∗i ) − q+(ξ∗1), ξ∗i , ξ∗1 ∈ Index (t, x) i ∈ 2, k + 1, are linearly inde-
pendent.

We denote by Basic[k](t, x) the following set

{{ξ∗1 , ξ∗2 , . . . , ξ∗k+1} : ξ∗i ∈ Index (t, x), i ∈ 1, k + 1, q+(ξ∗i )− q+(t, ξ∗1)− linearly independent}.

Consequently, the matrix D consisting of rows of the form q+(ξ∗i )− q+(ξ∗1), ξ∗i , ξ∗1 ∈ Index (t, x),
i ∈ 2, k + 1, has the rank k.

If we add a row of the form q+(ξ∗) − q+(ξ∗1), ξ∗, ξ∗1 ∈ Index (t, x), to the matrix consisting of
rows of the form q+(ξ∗i ) − q+(ξ1), {ξ∗1 , ξ∗2 , . . . , ξ∗k+1} ∈ Basic[k](t, x), then the rank of the matrix
remains the same.

Sufficiency. Assume that the rank of the matrix

D =




−(H2 −H1) s1
2 − s1

1 s2
2 − s2

1 . . . sn
2 − sn

1

−(H3 −H1) s1
3 − s1

1 s2
3 − s2

1 . . . sn
3 − sn

1

. . . . . . . . . . . . . . .
−(Hk+2 −H1) s1

k+2 − s1
1 s2

k+2 − s2
1 . . . sn

i+1 − sn
1




is k, for any parameter ξ∗k+2 ∈ Index (t, x). The rows of this matrix are elements d(ξ∗i ) − d(ξ∗1),
where d(ξ∗i ), d(ξ∗1) ∈ D+ϕ(t, x), i ∈ 2, k + 1. In addition, they can be considered as normals to
hyperplanes of dimension n. Moreover, k of these normals are linearly independent.

From Lemma 1, the vectors d(ξ∗i )− d(ξ∗1) = q+(ξ∗i )− q+(ξ∗1), {ξ∗1 , ξ∗2 , . . . , ξ∗k+1} ∈ Basic[k](t, x),
belong to the normal subspace at point (t, x). The vectors d(ξ∗i ) − d(ξ∗1), {ξ∗1 , ξ∗2 , . . . , ξ∗k+1} ∈
Basic[k](t, x) form a basic of the normal subspace. It implies that the dimension of the normal
subspace at the point (t, x) is k and the dimension of the tangent subspace is n + 1 − k. Hence,
(t, x) ∈ M[k].

Remark 1. According to [5], the inclusions (t, x) ∈ Q and d(ξ∗i ) ∈ D+ϕ(t, x),
{ξ∗1 , ξ∗2 , . . . , ξ∗k+1} ∈ Basic[k](t, x), imply that the following Rankine–Hugoniot condition holds for a
curve x(·) lying on M[k]:

〈
s̃(t, ξ∗i )− s̃(t, ξ∗1),

dx(t)
dt

〉
= H(t, x(t), s̃(t, ξ∗i ))−H(t, x(t), s̃(t, ξ∗1)), (2.4)

{ξ∗1 , ξ∗2 , . . . , ξ∗k+1} ∈ Basic[k](t, x).

We rewrite this condition in the form
〈(

− (
H(t, x(t), s̃(t, ξ∗i ))−H(t, x(t), s̃(t, ξ∗1))

)
, s̃(t, ξ∗i )− s̃(t, ξ∗1)

)
, (1, ẋ(t))

〉

=
〈
q+(ξ∗i )− q+(ξ∗1), (1, ẋ(t))

〉
= 0, (2.5)

{ξ∗1 , ξ∗2 , . . . , ξ∗k+1} ∈ Basic[k](t, x). We see from condition (2.5) that the vector (1, ẋ(t)) is orthogonal
to all the vectors q+(ξ∗i )−q+(ξ∗1), ξ∗i , ξ∗1 ∈ Basic[k](t, x), i ∈ 2, k + 1, that form a basis in the normal
subspace. Hence, we conclude that the vector (1, ẋ(t)) belongs to the tangent subspace L[k](t, x).
The Theorem 1 is proven. ¤
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2.2. Properties of the superdifferential

Theorem 2. Let conditions (A1)–(A4) be satisfied for problem (1.1). Let (t, x) ∈ Q and
(t, x) ∈ M[k], where dimM[k] = n + 1 − k and 1 ≤ k ≤ n. Assume that the Hamiltonian H =
H(s) is concave in variable s. For any characteristics x̃(·, ξi), s̃(·, ξi), z̃(·, ξi), {ξ∗1 , ξ∗2 , . . . , ξ∗k+1} ∈
Basic[k](t, x) such that the k × (n + 1)-matrix D of the form (2.3) has the rank k, there is no
characteristic x̃(·, ξk+2), s̃(·, ξk+2), z̃(·, ξk+2), ξk+2 ∈ Index (t, x) satysfing the condition

s̃(t, ξk+2) =
k+1∑

i=1

αis̃(t, ξi), αi ≥ 0,
k+1∑

i=1

αi = 1.

P r o o f. Let us introduce the convenient notation

qi,j(t, x) = q+(ξi)−q+(ξj) = d(ξi)−d(ξj) =
(
−(

H(s̃(t, ξi))−H(s̃(t, ξj))
)
, s̃(t, ξi)− s̃(t, ξj)

)
, (2.6)

ξi, ξj ∈ Index (t, x).
Assume that the statement of Theorem 2 does not hold and there exists a characteristic

x̃(t, ξk+2), z̃(t, ξk+2), s̃(t, ξk+2), ξk+2 ∈ Index (t, x), satisfying condition (2.1) and such that

s̃(t, ξk+2) =
k+1∑

i=1

αis̃(t, ξi), αi ≥ 0,
k+1∑

i=1

αi = 1. (2.7)

In view of Theorem 1 and the inclusion (t, x) ∈ M[k], the rank of the (k +1)× (n+1)-matrix D̃
obtained by adding to the matrix D the row qk+2,1(t, x) is equal to k. The added row qk+2,1(t, x)
is a linear combination of rows of the matrix D, i.e. exist bi ∈ R, i ∈ 1, k, such that

qk+2,1(t, x) =
k∑

i=1

biqi+1,1(t, x). (2.8)

Relations (2.6) and (2.8) imply that

d(ξk+2) =
(
1−

k∑

i=1

bi

)
d(ξ1) +

k∑

i=1

bid(ξi+1). (2.9)

Since equality (2.9) is applicable to all the components of the vector d(ξk+2), we rewrite equality
(2.9) in the form of the following two equalities:

H(s̃(t, ξk+2)) =
(
1−

k∑

i=1

bi

)
H(s̃(t, ξ1)) +

k∑

i=1

biH(s̃(t, ξi+1)), (2.10)

s̃(t, ξk+2) =
(
1−

k∑

i=1

bi

)
s̃(t, ξ1) +

k∑

i=1

bis̃(t, ξi+1). (2.11)

It follows from (2.10) and (2.11) that

H
((

1−
k∑

i=1

bi

)
s̃(t, ξ1) +

k∑

i=1

bis̃(t, ξi+1)
)

=
(
1−

k∑

i=1

bi

)
H(s̃(t, ξ1)) +

k∑

i=1

biH(s̃(t, ξi+1)).

We also note that the sum of the coefficients at H(s̃(t, ξi)) and s̃(t, ξi) is equal to 1, i ∈ 1, k + 1.
There exist two representations for s̃(t, ξk+2): formula (2.7) from the above assumption con-

dition of the problem that s̃(t, ξk+2) is a convex combination of s̃(t, ξi), i ∈ 1, k + 1, and formula
(2.11) obtained from the linear of the row qk+2,1(t, x) reletive rows of the matrix D.
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Subtracting (2.7) from (2.11), we get

0 =
((

1−
k∑

i=1

bi

)
− α1

)
s̃(t, ξ1) +

k∑

i=1

(bi − αi+1)s̃(t, ξi+1). (2.12)

We subtract and add the term
k∑

i=1

(bi − αi+1)s̃(t, ξ1)

to the right-hand side of (2.12). Then, grouping the terms, we get

0 =
(
1− α1 −

k∑

i=1

(bi − bi + αi+1)
)
s̃(t, ξ1) +

k∑

i=1

(bi − αi+1)
(
s̃(t, ξi+1)− s̃(t, ξ1)

)
.

Hence, taking into account that the coefficient at s̃(t, ξ1) is equal to zero, we obtain

0 =
k∑

i=1

(bi − αi+1)
(
s̃(t, ξi+1)− s̃(t, ξ1)

)
. (2.13)

If the differences s̃(t, ξi+1) − s̃(t, ξ1), i ∈ 1, k, are linearly independent, then equality (2.13) is
equivalent to the equalities bi = αi+1, i ∈ 1, k. In this case, equality (2.13) and the condition∑k+1

i=1 αi = 1 imply α1 = (1−∑k
i=1 bi).

Let b1 6= α2 and vector s̃(t, ξ2) − s̃(t, ξ1) be a linear combination of the differences s̃(t, ξi+1) −
s̃(t, ξ1), i ∈ 2, k. Let multiply scalarly both sides of identity (2.13) by ẋ 6= 0, where (1, ẋ) ∈ L[k](t, x).
Taking into account the Rankine–Hugoniot condition (2.4), we get

0 =
k∑

i=1

(bi − αi+1)
(
H(s̃(t, ξ1))−H(s̃(t, ξi+1))

)
.

This implies that the difference H(t, ξ1) − H(t, ξ2) is a linear combination of the differences
H(s̃(t, ξ1))−H(s̃(t, ξi+1)), i ∈ 2, k, and the rank of the matrix D is equal k − 1.

However, this is not possible, because of the assumption of the Theorem 2, that the rank of the
k × (n + 1)-matrix D is equal k.

The Rankine–Hugoniot condition (2.4) for ẋ = 0 imply, that H(t, ξ1)−H(t, ξi+1) = 0, i ∈ 1, k.
Therefore, the differences s̃(t, ξi+1) − s̃(t, ξ1), i ∈ 1, k, are linearly independent. Then, as

mentioned above, bi = αi+1, i ∈ 1, k, and α1 = 1−∑k
i=1 bi.

It follows from (2.10) and (2.11), that

H(s̃(t, ξk+2)) =
k+1∑

i=1

αiH(s̃(t, ξi)), s̃(t, ξk+2) =
k+1∑

i=1

αis̃(t, ξi), (2.14)

k+1∑

i=1

αi = 1, αi ≥ 0, i ∈ 1, k + 1.

Let’s consider the simplex S of dimension of k spanned by the points

(−H(s̃(t, ξi)), s̃(t, ξi)), i ∈ 1, k + 1.

Convexity of function s → −H(s) and (2.14) imply that the simplex S lies on the graph of function
s → −H(s). Smoothness of function of H(s) in variable s (condition A1), implies that the sup-
porting hyperplane to the hypograph of −H(·) at any point (−H(s̃(t, ξi)), s̃(t, ξi)) ∈ S, i ∈ 1, k + 1,
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is unique and contains the simplex S. We will denote the normal to the supporting hyperplane
containing simplex S by (−1,−N) ∈ Rn+1, where

DsH(s̃(t, ξi)) = N, i ∈ 1, k + 2. (2.15)

Since H = H(s), we can obtained from (1.2) and (1.3) the relations

˙̃s(t, ξi) = −DxH(s̃(t, ξi)) = 0, ξi ∈ Index(t, x), i ∈ 1, k + 2, t ≤ T.

Therefore, s̃(t, ξi) ≡ Dxσ(ξi).
It follows from (2.1) and (2.15), that

x = x(t) = ξi −
∫ T

t

∂H

∂s
(Dxσ(ξi))dτ = ξi −

∫ T

t
Ndτ = ξj −

∫ T

t
Ndτ, (2.16)

ξi, xj ∈ Index (t, x), i, j ∈ 1, k + 2.
Relation (2.16) implies that ξi = ξj where i, j ∈ 1, k + 2 what the contradicts condition (2.1).

The Theorem 2 is proven. ¤

Remark 2. It follows from the statement of Theorem 2 in case H=H(s) that the points of the
form

(−H(s̃(ξ∗)), s̃(ξ∗)), ξ∗ ∈ Index (t, x), ∀(t, x) ∈ Q, (2.17)

are corner points of the convex set D+ϕ(t, x).

Really, let (t, x) ∈ M[k] ⊂ Q. It follows from (2.2) and Theorem 1, that the superdifferential
is convex, closed set and it lies in the subspace of dimension k. According to the Caratheodory
theorem [9] any element of D+u(t, x) can be presented as a convex combination of no more then
(k + 1) supergradients of the form (2.17) and such that the differences

d(ξi)− d(ξ1) = (−H(s̃(ξi)) + H(s̃(ξ1)), s̃(ξi)− s̃(ξ1)),

where ξi, ξ1 ∈ Index (t, x), i ∈ 2, k + 1, are linearly independent.
If a supergradient (−H(s̃(ξ∗)), s̃(ξ∗)) ∈ D+u(t, x) would be presented in the form

(−H(s̃(ξ∗)), s̃(ξ∗)) =
k+1∑

i=1

αi(−H(s̃(ξi)), s̃(ξi)) ξi ∈ Index (t, x), i ∈ 1, k + 1,

where αi ≥ 0,
∑k+1

i=1 αi = 1, then his component s̃(ξ∗) should be also presented as the convex
combination s̃(ξi) ξi ∈ Index (t, x), i ∈ 1, k + 1. That contradicts Theorem 2. Therefore, the
statement of remark 2 is true.

Corollary 1. If conditions (A1)–(A4) are satisfied, (t, x) ∈ Q and H = H(s), then the relation

〈s̃(ξ∗)− s̃(ξ∗∗), DsH(s̃(ξ∗∗))〉 6= H(s̃(ξ∗))−H(s̃(ξ∗∗)),

is valid for any ξ∗, ξ∗∗ ∈ Index (t, x) and ξ∗ 6= ξ∗∗.

We will prove the corollary by reductio ad absurdum. Let there exist ξ∗, ξ∗∗ ∈ Index (t, x),
ξ∗ 6= ξ∗∗, satisfied the relations

〈s̃(ξ∗)− s̃(ξ∗∗), DsH(s̃(ξ∗∗))〉 = H(s̃(ξ∗))−H(s̃(ξ∗∗)).

The equality can be rewritten in the form

〈(s̃(ξ∗)− s̃(ξ∗∗),H(s̃(ξ∗))−H(s̃(ξ∗∗))), (DsH(s̃(ξ∗∗)),−1)〉 = 0. (2.18)
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Note that the vector (DsH(s̃(ξ∗∗)),−1) is the normal to the supporting hyperplane Γ to the hy-
pograph of function s → H(s) at point (s̃(ξ∗∗),H(s̃(ξ∗∗))). The difference (s̃(ξ∗)−s̃(ξ∗∗),H(s̃(ξ∗))−
H(s̃(ξ∗∗))) lies in the supporting hyperplane Γ following condition (2.18). The point (s̃(ξ∗),H(s̃(ξ∗)))
belongs to the graph of the concave function s → H(s) and lies in the hyperplane Γ. It follows that
Γ is the supporting hyperplane to the hypograph of H(·) at this point. As H(·) is continuously
differentiable, then Γ is the tangent hyperplane to the hypograph of H(·) at point (s̃(ξ∗),H(s̃(ξ∗))).
Consequently,

(DsH(s̃(ξ∗∗)),−1) = (DsH(s̃(ξ∗)),−1).

We remain that
DsH(s̃(ξ∗∗)) = DsH(s̃(ξ∗)) = N.

As the Hamiltonian has the form H = H(s), then ˙̃s = −DxH(s̃) = 0 (1.2), (1.3). It implies that
s̃(t, ξ∗) ≡ Dxσ(ξ∗), s̃(t, ξ∗∗) ≡ Dxσ(ξ∗∗).

Using condition (2.1), we get that states of characteristics x̃(·, ξ) with parameters ξ∗ and ξ∗∗

satisfy the relation

x = x(t) = ξ∗ −
∫ T

t

∂H

∂s
(Dxσ(ξ∗))dτ = ξ∗∗ −

∫ T

t

∂H

∂s
(Dxσ(ξ∗∗))dτ.

This equality can be rewritten in the following form

x = x(t) = ξ∗ −
∫ T

t
Ndτ = ξ∗∗ −

∫ T

t
Ndτ.

This equality imply that ξ∗ = ξ∗∗. It contradicts the assumption ξ∗ 6= ξ∗∗.

3. Conclusion

In this paper results presented in [13] are modified and developed. New properties of superdif-
ferentials of a piece-smooth minimax solution of the HJBE and characteristics of the HJBE on the
singular set are obtained and discussed.
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