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Abstract: The solution of the Cauchy problem for the vector Burgers equation with a small parameter
of dissipation ε in the 4-dimensional space-time is studied:

ut + (u∇)u = ε△u, uν(x,−1, ε) = −xν + 4−ν(ν + 1)x2ν+1
ν ,

With the help of the Cole–Hopf transform u = −2ε∇ lnH, the exact solution and its leading asymptotic
approximation, depending on six space-time scales, near a singular point are found. A formula for the growth
of partial derivatives of the components of the vector field u on the time interval from the initial moment
to the singular point, called the formula of the gradient catastrophe, is established:

∂uν(0, t, ε)

∂xν
=

1

t

[

1 + O
(
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)]

,
t

εν/(ν+1)
→ −∞, t → −0.

The asymptotics of the solution far from the singular point, involving a multistep reconstruction of the space-
time scales, is also obtained:
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1. Statement of the problem

In the present work, we study the solution of the following Cauchy problem for the vector
Burgers equation in the (3 + 1)-dimensional space-time:

∂u

∂t
+ (u∇)u = ε△u, t > −1, (1.1)

uν(x,−1, ε) = −xν +
ν + 1

4ν
x2ν+1
ν , (1.2)

where x = (x1, x2, x3) ∈ R
3, u = (u1, u2, u3) is a potential vector field, ε is a small positive param-

eter of dissipation frequently called viscosity, and the index ν changes from 1 to 3.

The evolutionary equation (1.1) is widely used in the mechanics of continuous media [5], in par-
ticular, for modeling the formation and the propagation of shock waves (in limit of vanishing
viscosity ε), in addition, it successfully serves as a basic instrument of the theoretical investigation
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of the large-scale structure of the Universe [6]; it is worth noting that the Burgers equation, in the
case of small values of parameter ε, simulates good enough the observed mosaic distribution of the
matter in the space at the distances measured by billions of light-years.

The aim of the present work is to study the arising microlocal singularity, i.e., the solution
of problem (1.1), (1.2) as ε → +0 near the singular point, which coincides with the origin because
of the special choice of the initial data for t = −1. Our investigation has to find the scales of the
localization of the singularity and explicit asymptotic formulas for the solution u(x, t, ε).

In the context of the present paper, the terms “singularity” and “singular point” are understood
in the sense of a large space gradient of the solution u(x, t, ε) in some small neighborhood of the
origin, while the solution itself is smooth; in this connexion, see [8, Sect. 2] or detailed explanations
in the introductory part of survey [9].

Here, it is appropriate to mention that Arnold’s scientific school performed a detailed topological
classification of singular points and reconstructions1 of singular sets of the solution of equation (1.1)
in limit of vanishing viscosity ε [1, Ch. 2, § 2.5], including the theorems forbidding some metamor-
phoses of singularities of solutions, for example, see [3, § 3; 4]; while, in the present investigation,
we are mainly interested in analytical results of studying the asymptotic behavior of the solution
for small, however, not equal to zero, values of parameter ε.

2. Exact solution and its asymptotics

By the standard Cole–Hopf transform

u = −2ε∇ lnH (2.1)

equation (1.1) is reduced to the linear heat equation ∂H/∂t = ε△H, whose solution with the initial
condition (1.2) is easily obtained in the explicit form:

H(x, t, ε) =
1

8π3/2(1 + t)3/2

∫

R3

exp

{

1

ε

[

− |x− s|2
4(1 + t)

+
|s|2
4

−
3

∑

µ=1

(sµ
2

)2µ+2
]} 3

∏

µ=1

dsµ. (2.2)

With the help of the scaling change of variables of integration

sµ = 2ε1/(2µ+2)σµ,

from expression (2.2), we find the following formula:

H(x, t, ε) =
ε13/24

π3/2(1 + t)3/2
exp

{

− |x|2
4ε(1 + t)

}

×
∫

R3

exp
3

∑

µ=1

[

− σ2µ+2
µ +

tσ2
µ

εµ/(µ+1)(1 + t)
+

xµσµ

ε(2µ+1)/(2µ+2)(1 + t)

]

3
∏

µ=1

dσµ.

(2.3)

Whence, by elementary differentiation, we obtain

∂H(x, t, ε)

∂xν
=− 1

2ε11/24π3/2(1 + t)5/2
exp

{

− |x|2
4ε(1 + t)

}

×
∫

R3

(

xν−2ε1/(2ν+2)σν

)

exp
3

∑

µ=1

[

−σ2µ+2
µ +

tσ2
µ

εµ/(µ+1)(1 + t)
+

xµσµ

ε(2µ+1)/(2µ+2)(1 + t)

]

3
∏

µ=1

dσµ.
(2.4)

1The equivalent terms used in the relevant literature are as follows: bifurcations, metamorphoses, pere-
stroikas, transitions.
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Using formulas (2.3) and (2.4), from transform (2.1) we immediately get the exact solution of the
Cauchy problem (1.1), (1.2) in the component-wise form:

uν(x, t, ε) =

∫ +∞

−∞

(

xν − 2ε1/(2ν+2)σν

)

exp
[

− σ2ν+2
ν +

Θνσ
2
ν +Λνσν
(1 + t)

]

dσν

(1 + t)

∫ +∞

−∞
exp

[

− σ2ν+2
ν +

Θνσ
2
ν + Λνσν
(1 + t)

]

dσν

, (2.5)

where, for convenience, the inner variables

Θν =
t

εν/(ν+1)
, Λν =

xν

ε(2ν+1)/(2ν+2)
(2.6)

are introduced.
First of all, we must find the leading approximation of the exact solution obtained above, since

the explicit expression (2.5) itself tells us few about the asymptotic structure of the solution.

Statement 1. As |x|+ |t| → 0 and ε → +0, for the solution of problem (1.1), (1.2), there holds

the asymptotic formula

uν(x, t, ε) = −2ε1/(2ν+2) ∂

∂Λν
ln

+∞
∫

−∞

exp
(

−σ2ν+2
ν +Θνσ

2
ν + Λνσν

)

dσν +O(|x|+ |t|). (2.7)

P r o o f. Near the origin, by the elementary passage to the limit |x|+ |t| → 0 in formula (2.5),
we obtain the expression for the leading approximation:

Uν(x, t, ε) = −2ε1/(2ν+2)

∫ +∞

−∞
σν exp

(

−σ2ν+2
ν +Θνσ

2
ν + Λνσν

)

dσν

∫ +∞

−∞
exp

(

−σ2ν+2
ν +Θνσ

2
ν + Λνσν

)

dσν

. (2.8)

In the argument of the integrand exponent of this expression, we recognize the truncated generating
family (in other words, the truncated versal deformation of the germ) of the Lagrange singulari-
ties A2ν+1; the first of them A3 is usually called the Whitney fold; see [1, Ch. 2; 2, Ch. II, § 11,
§ 17].

With the help of some obvious transforms of formula (2.8), by formula (2.5) for small values
of the independent variables (x, t), we arrive at the desired result. �

Now, we are ready to move to the very center of the singularity of the solution uν(x, t, ε).

Statement 2. As Θν = ε−ν/(ν+1)t → −∞, there holds the asymptotic formula

∂Uν(0, t, ε)

∂xν
=

1

t

[

1 +O
(

ε|t|−1−1/ν
)]

. (2.9)

P r o o f. Using formula (2.8), let us show that the point (x, t) = (0, 0) is singular by computing
the asymptotics of the derivative

∂Uν(0, t, ε)

∂xν
= −2ε−ν/(ν+1)

∫ +∞

−∞
σ2 exp

(

−σ2ν+2 − |Θν |σ2
)

dσ

∫ +∞

−∞
exp

(

−σ2ν+2 − |Θν |σ2
)

dσ

(2.10)
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as Θν → −∞. After the change of the variable of integration σ = |Θν |1/2νη, we have:

∂Uν(0, t, ε)

∂xν
= −2ε−ν/(ν+1)|Θν |1/ν

∫ +∞

−∞
η2 exp

(

−|Θν |1+1/νS(η)
)

dη

∫ +∞

−∞
exp

(

−|Θν |1+1/νS(η)
)

dη

,

where the phase function S(η) = η2ν+2 + η2 has clearly only a unique point of minimum: η = 0.
In this special case, it is convenient to make use of the asymptotic formula for integrals of the

Laplacian type:

+∞
∫

−∞

A(η) exp (−ωS(η)) dη = exp (−ωS(0))

√

2π

ωS′′(0)

×
{

A(0) +
1

2ω

[

A′′(0)

S′′(0)
+

A′(0)S′′′(0)

(S′′(0))2
+A(0)

(

5(S′′′(0))2

12(S′′(0))3
+

S′′′′(0)

4(S′′(0))2

)]

+O

(

1

ω2

)}

,

where ω → +∞. Taking into account that S′′(0) = 2, for our phase function, after elementary
calculations, we find a very simple approximation:

∂Uν(0, t, ε)

∂xν
= −ε−ν/(ν+1)|Θν |−1

[

1 +O
(

|Θν |−1−1/ν
)]

, Θν → −∞;

whence we obtain the necessary result. �

Remark 1. Relation (2.9) as t → −0 can be called the formula of the gradient catastrophe,
because the variable t enters the denominator. Strictly speaking, exactly in the sense of this
statement, we use the term “singular point” with reference to the point (x, t) = (0, 0). Let us
emphasize that for t = 0 the gradient ∂Uν/∂xν still does not become infinite, although it has,
according to formula (2.10), the order of the value ε−ν/(ν+1) → +∞ as ε → +0.

Now, let us look into the future: in other words, let us calculate the asymptotics of the function
of the leading approximation Uν(x, t, ε) as Θν → +∞.

Statement 3. As Θν → +∞ there holds the asymptotic formula

Uν(x, t, ε) = −2ε1/(2ν+2)

(

Θν

ν + 1

)1/2ν

tanh

[

Λν

(

Θν

ν + 1

)1/2ν ]

+O
(

Θ−(1+1/4ν)
ν

)

.

P r o o f. Using the change of the variable σν = Θ
1/2ν
ν zν , for the integral in the denominator

of expression (2.8), we obtain

+∞
∫

−∞

exp
(

−σ2ν+2
ν +Θνσ

2
ν + Λνσν

)

dσν = Θ1/2ν
ν

+∞
∫

−∞

exp
[

Θ1+1/ν
ν (z2ν − z2ν+2

ν ) + ΛνΘ
1/2ν
ν zν

]

dzν .

Following now Laplace’s method, for the phase function

F (z) = z2 − z2ν+2,

we find two stationary points

z± = ± 1

(ν + 1)1/2ν
, F ′(z±) = 0, F ′′(z±) = −4ν,
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and the necessary formula of the leading approximation for the integral

+∞
∫

−∞

exp
(

−σ2ν+2
ν +Θνσ

2
ν + Λνσν

)

dσν

= Θ1/4ν
ν

(

2π

ν

)1/2
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[

ν

(
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ν + 1

)1+1/ν ]

cosh

[

Λν

(

Θν
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)1/2ν ]

+O
(

Θ−(1+3/4ν)
ν

)

;

in addition, by the same method, the asymptotic formula

+∞
∫

−∞

σν exp
(

−σ2ν+2
ν +Θνσ

2
ν + Λνσν

)

dσν

= Θ3/4ν
ν

(

2π

ν(ν + 1)1/ν

)1/2

exp

[

ν

(

Θν

ν + 1

)1+1/ν ]

sinh

[

Λν

(

Θν

ν + 1

)1/2ν ]

+O
(

Θ−(1+1/4ν)
ν

)

is established. Substituting these formulas into expression (2.8), we easily arrive at the desired
result. �

Remark 2. Using the change (2.6), from Statement 3 in the leading approximation, we obtain
the relation

Uν(x, t, ε) ≈ −2

(

t

ν + 1

)1/2ν

tanh

[

xν
ε

(

t

ν + 1

)1/2ν ]

, Θν → +∞,

which gives a mathematical formulation of happening reconstructions of the scales of time and
space in the solution of the problem under consideration:

Θν =
t

εν/(ν+1)
7−→ t, Λν =

xν

ε(2ν+1)/(2ν+2)
7−→ xν

ε
.

3. Survey of the asymptotic structure

Using the form of the inner variables (2.6) and Statements 1–3, we can establish the boundaries
of domains, where the obtained asymptotic approximations of the solution of problem (1.1), (1.2)
remain valid.

Since in the formula for the solution (2.5) we have specific space-time scales, which are deter-
mined by changes (2.6), it is natural to define correspondingly the following sets of the independent
variables:

Ων = {(x, t) : |xν | < ε(2ν+1)/(2ν+2), |t| < εν/(ν+1)}.
In the smallest domain Ω3 (in Figures 1–3, it is conventionally shown with lilac color), bounded

in time by the value of order ε3/4, for the solution u(x, t, ε), a fortiori, there holds the asymptotic
formula (2.7) of the leading approximation.

As Θ3 → +∞, according to Statement 3 for ν = 3, the natural scale of the space localization
in x3 is constricted to the value of order ε and for the component u3 one should use the following
approximate relation:

u3(x, t, ε) ≈ −2

(

t

4

)1/6

tanh

[

x3
ε

(

t

4

)1/6 ]

, Θ3 → +∞, (3.1)
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x3

t

t ≈ ε
1/2

t ≈ ε
2/3

t ≈ ε
3/4

t ≈ −ε
3/4

x3 ≈ ε
7/8

x3 ≈ ε

Θ1 → +∞

Θ2 → +∞

Θ3 → +∞

Ω3

Figure 1. A schematic projection of the domain of the localization of the singularity in the plane (x3, t).

where t = ε3/4Θ3.
In the intermediate domain Ω2, (in our figures, it is shown with light-green color) bounded

in time by the value of order ε2/3, the “remote future” from the point of view of domain Ω3, i.e.,
the times such that Θ3 → +∞, turns out to be a relatively short interval, because we have the
relation Θ2 = ε1/12Θ3.

Remark 3. Elegantly confirming Newton’s principle relativus de relativo in relativum
2 from

his famous “Philosophiæ Naturalis Principia Mathematica”, a similar phenomenon is also observed
in another Cauchy problem for equation (1.1) with an additional small parameter in the initial
condition [8].

As Θ2 → +∞, according to Statement 3 for ν = 2, the natural scale of the space localization
in x2 is constricted to the value of order ε and for the component u2 one should use the following
approximate relation:

u2(x, t, ε) ≈ −2

(

t

3

)1/4

tanh

[

x2
ε

(

t

3

)1/4 ]

, Θ2 → +∞,

where t = ε2/3Θ2.
At last, in the largest domain Ω1 (in figures, it is shown with pink color), bounded in time

by the value of order ε1/2, the “remote future” already from the point of view of domain Ω2, i.e.
the times such that Θ2 → +∞, again turns out to be only a short interval, because we have the
relation Θ1 = ε1/6Θ2.

2In author’s free translation from Latin: anything relative [passes] from relative to relative.
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t

t ≈ ε
1/2
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t ≈ ε
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t ≈ ε
3/4

x2 ≈ ε
5/6

x2 ≈ ε

Θ1 → +∞

Θ2 → +∞

Θ3 → +∞

Ω2

Figure 2. A schematic projection of the domain of the localization of the singularity in the plane (x2, t).

As Θ1 → +∞, according to Statement 3 for ν = 2, the natural scale of the space localization
in x1 is constricted to the value of order ε and for the component u1 one should use the following
approximate relation:

u1(x, t, ε) ≈ −
√
2t tanh

[

x1
ε

√

t

2

]

, Θ1 → +∞, (3.2)

where t = ε1/2Θ1.

Remark 4. For correct understanding of the whole picture presented above, one important
explanation should be given, although it is a quite trivial moment when one uses the standard
matching method [7]. The indicated boundaries of the fragments of the asymptotic structure of the
singularity of the solution u(x, t, ε), that is the domains of the space-time scales of its localization,
are not perfectly defined, since they can be displaced to some inessential distances, for example,
with the help of multiplication by the value εδ, where 0 < δ ≪ 1, even without prejudice to the
strictness of mathematical statements if only the overlapping of the transition regions, i.e. the
domains of the reconstructions of the scales, is not upset.3

3The dialectic image of these metamorphoses and the place of particular ones in the whole structure
of the singularity may be excellently reproduced by the sharp-witted phrase from the first book of Hegel’s
“Wissenschaft der Logik”: “So ist das Endliche in dem Vergehen nicht vergangen; es ist zunächst nur ein
anderes Endliches geworden... .” (In author’s translation: “Thus the finite had not passed in the passage;
first of all, it became only some other finite.”)
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Ω1

Figure 3. A schematic projection of the domain of the localization of the singularity in the plane (x1, t).

4. Summary

1. The explicit formula (2.5) for the exact solution of the investigated Cauchy problem and
expression (2.8) for its leading asymptotic approximation clearly show that the specific form
the initial condition (1.2) in a finite time generates a peculiar multiscale microlocal singu-
larity, whose evolution is determined by the joint effect of the Lagrange singularities A3, A5,
and A7; as we have seen, their truncated versal deformations appear in the arguments of the
corresponding integrand exponents.

2. As shown by Statement 3 and further detailed explanations in Section 3, in particular, see re-
lations (3.1)–(3.2), moving away from the singular point (x, t) = (0, 0) is accompanied by the
multistep reconstruction of the natural space-time scales of the asymptotics of the solution,
in other words, by a successive “switching” of the orders of their values with respect to the
small parameter of dissipation.

In view of this interesting property, the case of the origin and the evolution of the multiscale
singularity of the solution under consideration is conceptually close to the nontrivial hierarchy
of the space-time reconstructions corresponding to the multiscale evolution of the initial
singularity obtained in [8]. Taking into account the picture of asymptotic relations clarified
above, we may say that the case considered in the present paper has the advantage of the
statement of the problem itself, since the vector field (1.2) at the initial moment of time is
smooth and does not depend on additional small parameters.

3. The summarizing thesis of the present paper, that confirms Hilbert’s thought about the
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importance of studying specific problems4, can be expressed as follows: the results of our
study give an obvious example when a rather simple experiment in mathematical physics —
the exactly solvable Cauchy problem for an evolutionary differential equation with only one
small parameter — was able to generate the multiscale structure of metamorphoses of the
“life” of the solution in the 4-dimensional space-time.

REFERENCES

1. Arnold V. I. Singularities of Caustics and Wave Fronts. Math. Its Appl. Ser., vol. 62. Dordrecht: Kluwer
Acad. Publ., 1990. 258 p. DOI: 10.1007/978-94-011-3330-2

2. Arnold V. I., Gusein-Zade S.M., Varchenko A. N. Singularities of Differentiable Maps. Vol. I. Classifi-

cation of Critical Points, Caustics and Wave Fronts. Monogr. Math., vol. 82. Boston, MA: Birkhäuser,
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meinern spielt — wie ich glaube — bei der Beschäftigung mit mathematischen Problemen das Specialisiren.”
(In author’s translation: “An even more important role is played, as I believe, by studying rather special
mathematical problems than general ones”.)

https://doi.org/10.1007/978-94-011-3330-2
https://doi.org/10.1016/S0167-2789(02)00652-8
https://doi.org/10.1007/978-3-642-23617-4
https://doi.org/10.3367/UFNr.0182.201203a.0233
https://doi.org/10.1134/S0040577918070048
https://doi.org/10.1134/S0965542520050164

	Statement of the problem
	Exact solution and its asymptotics
	Survey of the asymptotic structure
	Summary

