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1. Introduction

An electrical network X is a finite graph consisting of a finite number of nodes and branches,
each branch connecting some two nodes. There is a certain resistance r(a, b) on each branch [a, b]
connecting the nodes a and b in X; the reciprocal of the resistance is called the conductance c(a, b).
Thus, an electrical network X can be considered as a graph {X, c(a, b)} with finite number of
vertices (nodes) and a finite number of edges (branches); the non-negative conductance c(a, b) is
positive if and only if a and b are neighbors, that is [a, b] is an edge in X. A vertex e in X is called
a terminal vertex if e has only one neighbor in X. If a and b are neighbors, we write b ∼ a. We
assume also that if a ∼ b, then there is only one branch [a, b] connecting a and b and there is no
self-loops in X; there is no edge of the form [a, a] so that c(a, b) = 0 for all a in X. We also assume
that there is always a path {a = a0, a1, a2, . . . , an = b} connecting two vertices a and b in X where
ai ∼ ai+1 for 0 ≤ i ≤ n− 1.

An electrical current regime voltage is considered on the finite network {X, c(a, b)} assuming
the Ohm–Kirchhoff laws: if ψ is the potential function on X, when extremal currents are applied
on X, then the voltage on the branch [a, b] is [ψ(b) − ψ(a)] and the current is c(a, b)[ψ(b) − ψ(a)]
so that the total current at the node a is

∑

b∼a

c(a, b)[ψ(a)−ψ(b)]. Based on these basic notions, the

condenser principle, the equilibrium principle, the minimum principle, etc. are proved on X in [4].

In an abstract sense, can we consider these principles on an infinite network in a meaningful
manner? Is it possible to think of an infinite electrical network with Ohm–Kirchhoff laws suitably
modified by Nash-Williams [10] in his remarkable paper on random walks and electrical currents
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in networks, where it is shown that the random walk in probability theory has features analogous
to electrical networks. A random walk considered as an irreducible, reversible Markov chain will
serve as a model to develop a function theory on infinite graphs analogous to that of electrical
networks (Abodayeh and Anandam [1, 2], Woess [12] and Zemanian [13]). Let {X, p(a, b)} stand
for a countably infinite state X with the transition probabilities p(a, b). Assume that {X, p(a, b)}
is irreducible, i.e., is it possible to move along a path from any state a to any other state b in X; it
is also reversible, i.e., there is a function ϕ(a) > 0 on X such that ϕ(a)p(a, b) = ϕ(b)p(b, a) for any
two states a and b in X. Then, as an example of the analogy between random walks and electrical
currents, consider two disjoint subsets A and B. Denote by ψ(a) the probability that the walker
starting at the state a reaches A before meeting any state in B. Then ψ(a) = 1 for a ∈ A and
ψ(a) = 0 for a ∈ B; if a 6∈ A ∪ B, then ϕ(x) =

∑

b∼a

p(a, b)ψ(a) and, since
∑

b∼a

p(a, b) = 1, we have
∑

b∼a

p(a, b)[ψ(b)−ψ(a)] = 0, which is equality analogous to the situation where the total current at

the node a is 0.

In a random walk, the Green function G(a, b) represents the expected number of visits that
the walker starting at a makes to reach b. The function G(a, b) takes the value ∞ if {X, p(a, b)} is
recurrent, i.e., the walker starting at any state a comes back to a infinitely often; G(a, b) < ∞ for
all pairs a, b if {X, p(a, b)} is transient, i.e., the walker starting at a vertex a definitely wanders off
from a. A situation similar to this occurs in the study of Riemann surfaces. If a Riemann surface
R is parabolic, there is no Green potential on R. If R is hyperbolic, then there is a Green kernel
on R.

When this analogy between random walks and functions on Riemann surfaces is properly devel-
oped, a successful application of function-theoretic methods on Riemann surfaces to solve problems
in random walks on an irreducible, reversible {X, p(a, b)} is possible. For this case, we can de-
fine the Dirichlet norm on a, and then the functional analysis methods enable us to establish
a correspondence between some function-theoretic problems on a Riemann surface and problems
connected with a random walk on X. For example, Lyons [9], modifying a Royden criterion on
Riemann surfaces, gives a necessary and sufficient condition for a reversible Markov chain to be
transient. However, these arguments establishing relations between random walks and Riemann
surfaces are valid only when it is assumed that the random walk is reversible. Intending to develop
a function theory on infinite networks that will be applicable even in the case of non-reversible
Markov chains, we adopt here potential theoretic methods on locally compact spaces. The basic
result is the solution to a generalized Dirichlet problem in infinite networks; using which we in-
troduce the analogous of balayage, maximum principle, equilibrium principle, condenser principle,
the classifications based on the notions of transient and recurrent random walks, etc. in infinite
networks.

2. Preliminaries

Let N be an infinite graph that is connected and locally finite but without self-loops [4, 7]. Let
ϕ(a, b) ≥ 0 be a nonnegative number associated with each pair of vertices a and b in N such that
ϕ(a, b) > 0 iff b ∼ a. Then {N,ϕ(a, b)} is called an infinite network. We do not assume that ϕ(a, b)
is symmetric. Given a set B in N , say that a vertex a is an interior vertex of B if a and all its

neighbors are in B; denote by
◦
B the set of all interior vertices of B, and let ∂B = B \

◦
B. If f(a)

is a real-valued function on B, write

∆f(a) =
∑

b∼a

ϕ(a, b) [f(b)− f(a)]
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for any a ∈
◦
B. Say that f(a) is superharmonic on B if ∆f(a) ≤ 0 for any a ∈

◦
B; and f(a) is said

to be harmonic on B if ∆f(a) = 0 for any x ∈
◦
B. A function f(a) on B is subharmonic if −f(a) is

superharmonic on B. The following statements are valid.

(1) If {fn(a)} is a sequence of superharmonic functions on B and f(a) = limn fn(a) is real-
valued on B, then f(a) is superharmonic on B; consequently, if {gn(a)} is a sequence of
superharmonic functions on B such that g(a) =

∑

n gn(a) is finite for each a in B, then g(a)
is superharmonic on B.

(2) Minimum Principle: If s(a) ≥ 0 is superharmonic on N and s(a0) = 0 for some vertex a0,
then s ≡ 0.

(3) Greatest harmonic minorant: Let f be superharmonic on B and g be subharmonic on
B such that f ≥ g on B. Let u(a) be the sequence F of all subharmonic functions on B such
that u ≤ f. Let

λ(a) = sup
u∈F

u(a)

for x ∈ B. Then λ(a) is a harmonic function on B such that if λ′(a) is another harmonic
function and λ′ ≤ f on B, then λ′ ≤ λ. We call λ(a) the greatest harmonic minorant of f
on B. Similarly, we define the least harmonic majorant of g on B.

(4) Generalised Dirichlet Solution: Let F be an arbitrary set in N and B ⊂
◦
F . Suppose

that u(a) is a real-valued function on F \B such that there exist a superharonic function f
and a subharmonic function g on F such that f ≥ g on F and f ≥ u ≥ g on F \ B. Then
there exists a function λ on F such that λ = u on F \ B and ∆λ(a) = 0 for a ∈ B. This
generalised Dirichlet solution λ on F is uniquely determined if F is a finite set.

3. Biharmonic Green Function

Definition 1 (Potential). A nonnegative superharmonic function p defined on a subset B is
said to be potential if and only if the greatest harmonic minorant of p on B is 0.

Definition 2 (Bipotential). A potential u in (N, p) is said to be a bipotential if and only if
(−∆)u = p, where p is a potential in N . We say that N is a bipotential network if there exists a
positive bipotential on N .

Definition 3 (Biharmonic Green function). For a fixed vertex z in N , a potential uz(a) in
(N, p) is said to be the biharmonic Green function with biharmonic support {z} if and only if
(−∆)uz(a) = Gz(a), where Gz(a) is the harmonic Green function with harmonic support z.

Proposition 1. The biharmonic Green function exists on (N, p) if and only if there is a positive
bipotential on (N, p).

P r o o f. Clearly, the binarmonic Green function is a bipotential. Conversely, let u be a positive
bipotential, (−∆)u = p. Then,

u(a) =
∑

b

G(a, b)p(b).

Let z be a fixed vertex. Then, for some λ > 0, Gz(b) ≤ λp(b) for any b ∈ N (Domination Principle).
Hence,

Qz(a) =
∑

b

G(a, b)Gz(b)



180 Manivannan Varadha Raj and Venkataraman Madhu

is a well-defined potential such that (−∆)uz(a) = Gz(a). �

Theorem 1. Let (N, p) be a bipotential infinite network, and let uy(a) be the biharmonic Green
potential on (N, p). If

∑

b f(b)ub(a) is finite at some vertex a0 for some f > 0, then

u(a) =
∑

b

f(b)ub(a)

is a bipotential on (N, p). Conversely, every bipotential u(a) can be represented as

u(a) =
∑

b

f(b)ub(a),

where f(a) = (−∆)2u(a).

P r o o f. Let (−∆)u = p on (N, p). For a finite set E in (N, p), write

s(a) = u(a)−
∑

b∈E

(−∆)p(b)ub(a).

Then,

(−∆)s(a) = p(a)−
∑

b∈E

(−∆q)p(b)Gb(a) =
∑

b/∈E

(−∆)p(b)Gb(a) ≥ 0.

Hence, s is superharmonic on (N, p), and since

−s(a) ≤
∑

b∈E

(−∆)p(b)ub(a),

we conclude that −s ≤ 0. Hence,

u(a) ≥
∑

b∈E

(−∆)p(b)ub(a).

Allow E to grow into (N, p), to conclude that

u(a) ≥
∑

b∈E

(−∆)p(b)ub(a).

Write
ϕ(a) = q(a)−

∑

b∈(N,p)

(−∆)p(b)ub(a).

Then,

(−∆)ϕ(a) = p(a)−
∑

b∈(N,p)

(−∆)p(b)Gb(a) = 0.

Hence, ϕ(a) is a nonnegative harmonic function majorized by the potential u(a). Hence, ϕ = 0 so
that

u(a) =
∑

b∈(N,p)

(−∆)p(b)ub(a)

for any a ∈ (N, p). If f(a) = (−∆)p(a), then f ≥ 0 and f(a) = (−∆)2u(a). Conversely, suppose
that

u(a) =
∑

b

f(b)ub(a),
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which is a convergent sum of potentials if u(a0) is finite at some vertex a0. Then, u(a) is a potential
in (N, p) and

(−∆)u(a) =
∑

b

f(b)(−∆)ub(a) =
∑

b

f(b)Gb(a),

being finite at each a, defines a potential p(a). Thus, (−∆)u(a) = p(a). �

Proposition 2. Let (N, p) be a bipotential infinite network. For z ∈ (N, p), if uz(a) and Gz(a)
are the biharmonic and harmonic Green potentials, then uz(a) > Gz(a) for any a ∈ (N, p).

P r o o f. Since (−∆)uz(a) = Gz(a), (−∆)Gz(a) = δz(a), and Gz(z) ≥ Gz(a) for all a (Domi-
nation principle), we have

(−∆)

[

uz(a)

Gz(z)

]

=
Gz(a)

Gz(z)
≥ δz(a) = (−∆)Gz(a).

Hence,

u(a) =
uz(a)

Gz(z)
−Gz(a)

is a superharmonic function such that −u(a) ≤ Gz(a); hence, −u ≤ 0 on (N, p). Consequently,

uz(a) ≥ Gz(z)Gz(a) > Gz(a)

since Gz(z) > 1. �

Proposition 3. Let u be a potential in (N, p), (−∆)u = p. Suppose that 0 ≤ f ≤ p. Then,
there exists a potential v, v ≤ u, such that (−∆)v = f on (N, p).

P r o o f. Let

u(a) =
∑

b

G(a, b)p(b) ≥
∑

b

G(a, b)f(b) = v(a),

then v(a) is a potential, v ≤ u and (−∆)v(a) = f(a) for all a ∈ (N, p). �

Corollary 1. Let (N, p) be a bipotential infinite network. If u is a potentials with finite har-
monic support in (N, p), then there exist is a bipotential v on (N, p) such that (−∆)v = u on (N, p).

P r o o f. By hypothesis, there are postive potentials p and q such that (−∆)u = p on (N, p).
Since u has finite harmonic support, u ≤ λp on (N, p) for some λ > 0 (Domination Principle).
Hence use the above Proposition , there is a potential v ≤ λq such that (−∆)v = u on (N, p). �

Lemma 1. Let F be a finite subset in any infinite network (N, p). Let E ⊂
◦
F and f ≥ 0 be a

real-valued function on E. Then there exist a potential u on F such that (−∆)u(a) = f(a) for any
a ∈ E.

P r o o f. Assume that f is defined on F by giving it values 0 in F \ E. Let GF
b (a) be the

Green function in F with point harmonic support b ∈
◦
F such that GF

b (a) = 0 if a ∈ ∂F . Let

u(a) =
∑

b∈F

f(b)GF
b (a).

Then, u is a potential in F such that (−∆)u(a) = f(a) if a ∈ E. �
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4. Transient and hyperbolic networks

Let {N, p(a, b)} be a countable set of state space N with transition probabilities {p(a, b)}. Let
E be a fixed vertex in N. If a walker starting at e comes back to the state e infinitely often, i.e.,
with probability 1, then {N, p(a, b)} is said to be recurrent; otherwise, it is transient (see [5, 6]).

In classical potential theory (Brelot [8] and Al-Gwaiz M.A., Anandam V. [3]), a superharmonic
function s(a) ≥ 0 is called a potential if its greatest harmonic minorant is 0. In the discrete case,
we can show that the superharmoinc function s(a) ≥ 0 on an infinite network {N,ϕ(a, b)} is a
potential if its greatest harmonic minorant is 0. If there exists a potential p(a) > 0 on N, then we
say that {N,ϕ(a, b)} is a hyperbolic network; otherwise, it is called a parabolic network.

Let {N,ϕ(a, b)} be an infinite network. Write

ϕ(a) =
∑

b∼a

ϕ(a, b).

Then 0 < ϕ(a) <∞. Write

p(a, b) =
ϕ(a, b)

ϕ(a)
.

Then {N, p(a, b)} becomes a probability space, which need not be reversible. Therefore, we can say
that {N,ϕ(a, b)} is transient when the associated probability space {N, p(a, b)} is transient.

Theorem 2. The infinite network {N,ϕ(a, b)} is transient if and only if it is hyperbolic.

P r o o f. Let e be a fixed vertex in N. Consider a sequence of finite subsets {Fn} such that

e ∈
◦
F 1, Fn ⊂

◦
Fn+1, and N =

⋃

n
Fn. For a vertex a in N , let ψn(a) denote the probability that

the walker starting at a reaches the vertex e before contacting any vertex in FC
n . Then ψn(e) = 1,

ψn(a) = 0 for a 6∈ Fn, and

ψn(a) =
∑

b

p(a, b)ψn(b)

for a 6∈ {e} ∪ {FC
n }. Since

∑

b

p(a, b) = 1

for all a, we have
∑

b

p(a, b)[ψn(b)− ψn(a)] = 0;

that is ∆ψn(a) = 0 if a 6∈ {e} ∪ {FC
n }. Since {ψn(a)} is an increasing sequence, ψ(a) = lim

n
ψn(a)

exists and 0 ≤ ψ(a) ≤ 1 for all a in N. Clearly, ψ(a) denotes the probability that the walker starting
at {e} returns to {e}. Consequently, ψ ≡ 1 if and only if N is recurrent. Hence, {N,ψ(a, b)} is
transient if and only if ψ is not the constant 1.

Now, another interpretation of ψn(a) is that it is the Dirichlet solution with boundary values

ψn(e) = 1 and ψn(a) = 0 if a 6∈
◦
Fn. Hence, if we extend ψn to the whole space N assuming it

equal to 0 on Fn, then ψn(a) becomes subharmonic at each vertex other than e, harmonic at each

vertex in
◦
Fn \ {e}, and superharmonic at e. Hence, in the limit, we find that ψ(a) is a nonnegative

superharmonic function on N that is harmonic outside the vertex e. Consequently, if ψ is not the
constant 1, then ψ is a positive superharmonic function that is not harmonic on N. Let h(a) be the
greatest harmonic minorant of ψ(a) on N. Then, p(a) = ψ(a) − h(a) is a positive superharmonic
function that is a potential on N. That is, {N,ψ(a, b)} is hyperbolic. Then, the following statements
are equivalent:
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(1) the function ϕ is not the constant 1;

(2) the probability space {N, p(a, b)} is transient;

(3) the infinite network {N,ϕ(a, b)} is hyperbolic.

�

5. Bimedian functions on infinite networks

In this section, we assume that {N,ϕ(a, b)} is an infinite network that is a tree without terminal
vertices. Write

Au(a) = u(a)−
∑

b∼a

ϕ(a, b)u(b)

for a real-valued function u(a) on N. Note that A is the Lapalcian operator −∆ if

ϕ(a) =
∑

b∼a

ϕ(a, b) = 1

for all a in N.

Definition 4. A real-valued function u(a) on N is said to be supermedian if

u(a) ≥
∑

b∼a

ϕ(a, b)u(b)

for all a in N ; u(a) is said to be median if

u(a) =
∑

b∼a

ϕ(a, b)u(b)

for all a in N .

Remark 1.

(1) A supermedian function is the same as superharmonic if and only if ϕ(a) =
∑

b∼a

ϕ(a, b) = 1

for all a in N .

(2) A solution to the Schrödinger equation corresponds to a median function if and only if
ϕ(a) ≤ 1 for all a in N and ϕ(a0) < 1 for at least one vertex a0 in N .
We can develop a theory of supermedian functions exactly in the same way as the theory of
discrete superharmonic functions. For example, we have the following.

(a) If u(a) is supermedian and v(a) is submedian such that u(a) ≥ v(a) on N , then there
exists a median function h(a) on N such that u(a) ≥ h(a) ≥ v(a); and if h

′

(a) is another
median function such that u(a) ≥ h

′

≥ v(a), then h
′

(a) ≥ h(a).

(b) If u(a) ≥ 0 is supermedian, then there exists a unique decomposition u(a) = p(a)+h(a),
where p(a) is a superpotential (i.e., a nonnegative supermedian function whose greatest
median minorant is 0) and h(a) ≥ 0 is a median function. Recall that a finite or infinite
graph is known as a tree if there is no closed path of the form {a0, a1, . . . , an = a0} with
more than 2 distinct vertices.
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Corollary 2. Let {N,ϕ(a, b)} be an infinite tree without terminal vertex. Then, for any vertex
e in N , there exists a supermedian function ϕe(a) on N such that ϕe(a) is a median function at
each vertex in N \ {e}, i.e., ϕe(a) is not median at e.

P r o o f. Let F be the set consisting of {e} and all its neighbors. Define a function u(a) on
F such that u(a) = 1 and u(a) = 0 at each neighbor of e. Then extend v(a) to N as in the above
theorem to get the function v(a) which equal to u(a) on F and is a median function at each vertex
a 6= e. Note that u(a), and hence v(a), is superharmonic at e but not median. Denote the function
v(x) by ϕe(a) to prove the statement in the corollary. �

Remark 2. This function ϕe(a) is an analog of the Newtonian potential function 1/|x| in R
3 if

there is a positive superpotential on N ; otherwise, ϕe(a) is an analog of the logarithmic function
log(1/|x|) in R

2.

Theorem 3. Let {N,ϕ(a, b)} be an infinite tree without terminal vertices. Let F be a connected
subset of N, and let u(a) be a real-valued function on F. Then, there exists a real-valued function

v(a) on N such that v(a) = u(a) if a ∈ F and v(a) is a median function at each vertex not in
◦
F.

P r o o f. Let a0 ∈ ∂F. Let {a1, a2, . . . , ak, b1, b2, . . . , bm} be the neighbors of a0, where
{a1, . . . , ak} are in F and {b1, . . . , bm} are outside F. Note that the latter subset {b1, b2, . . . , bm} is
non-empty since a0 ∈ ∂F. Choose a constant λ and define a function v(a) on F ∪ {all neighbors of
a0} such that

v(a) =

{

u(a) for a ∈ F,
λ for a 6∈ F.

Now, if the constant λ is chosen so that

v(a0) =

k
∑

i=1

ϕ(a0, ai)u(ai) + λ

m
∑

j=1

t(a0, bj),

then v(a) is a median function at the vertex a0.

This procedure can be adopted with respect to each vertex on ∂F. Denoting this extended
function also by v(a), we get a function v(a) defined on Nbr(F ), which consists of F and all
neighbors of each vertex in F such that v(x) = u(x) if a ∈ F and v(a) is a median function at each
vertex in ∂F.

Repeat this procedure with respect to v(x) as Nbr(f). Since N is a connected network,

N = . . . Nbr[Nbr[Nbr(f)]]

so that v(a) is a function defined on N such that v(a) = u(a) if a ∈ F and v(a) is a median function

at each vertex not in
◦
F.

Theorem 4. Let f(a) be a real-valued function on N . Then there exists a function u(a) on N
such that Au(a) = f(a) for every a in N.

P r o o f. From Theorem 3, we have a function ϕe(a) such that Aϕe(a) = λδe(a), where λ > 0
is a constant and δe(a) is the Dirac function. Write qe(a) = 1/λ · ϕe(a). Thus, we conclude that
given any vertex e in N , there exists a real-valued function qe(a) on N such that Aqe(a) = δe(a).
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Take a finite exhaustion {En} of N, i.e., En is a non-empty finite set, En ⊂
◦
En+1, and N = ∪En.

For n > 1, let

un(a) =
∑

e∈En+1\En

qe(a)f(e).

Then, Aun(a) = 0 for x 6∈ En+1 \ En and Aun(a) = f(a) for x ∈ En+1 \ En. Define

u(a) =
∞
∑

n=1

un(a),

where
u1(a) =

∑

e∈E1

qe(a)f(e)

is such that Au1(a) = 0 for x 6∈ E1 and Au1(a) = f(a) for a ∈ E1. Note that the infinite sum

is well-defined. For, if a0 is any vertex in N, then a0 ∈
◦
Em for some m and

∑∞
n=m un(a) is a

convergent series consisting of functions that are median at the vertex a0. Consequently, u(a) is a
well-defined function on N such that Au(a) = f(a) for all a ∈ N.

Definition 5 (Bimedian) [11]. A real-valued function v(a) on N is said to be bimedian if there
exists a median function u(a) on N such that Av(a) = u(a) for all a ∈ N. If A is the Laplacian
operator, then v(a) is called a biharmonic function on N .

Theorem 5 (Discrete Riquier problem). Let E be a finite subset of N . Let f and g be two
real-valued functions on ∂E. Then, there exists a unique bimedian function v on E such that
Av(a) = f(a) and v(a) = g(a) for a ∈ ∂E.

P r o o f. Let h1(a) be the unique Dirichlet solution on E such that Ah1(a) = 0 for a ∈
◦
E

and h1(a) = f(a) for a ∈ ∂E. By Theorem 4, we can choose a function s(a) on E such that
As(a) = h1(a) on E.

Let h2(a) be the unique Dirichlete solution on E such that Ah2(a) = 0 for a ∈
◦
E and h2(a) =

g(a)− s(a) on ∂E. Take v(a) = s(a)+h2(a). Then, v(a) = g(a) on ∂E and Av(a) = As(a) = h1(a)

for a ∈
◦
E, so that A[Av(a)] = Ah1(a) = 0 for a ∈

◦
E; further, Av(a) = f(a) for a ∈ ∂E. Thus, v(a)

is the unique bimedian function on E such that Av(a) = f(a) and v(a) = g(a) for a ∈ ∂E. �

Acknowledgement

We thank the referee for very useful comments. The first author acknowledges the support given
by the Vellore Institute of Technology through the Teaching cum Research Associate fellowship
(VIT/HR/2019/5944 dated 18th September 2019).

REFERENCES

1. Abodayeh K., Anandam V. Bipotential and biharmonic potential on infinite network. Int. J. Pure. Appl.
Math., 2017. Vol. 112. No. 2 P. 321–332. DOI: 10.12732/ijpam.v112i2.9

2. Abodayeh K., Anandam V. Schrödinger networks and their Cartesian products. Math. Methods Appl.
Sci., 2021. Vol. 44. No. 6. P. 4342–4347. DOI: 10.1002/mma.7034

3. Al-Gwaiz M.A., Anandam V. On the representation of biharmonic functions with singularities in R
n.

Indian J. Pure Appl. Math., 2013. Vol. 44. No. 3. P. 263–276. DOI: 10.1007/s13226-013-0013-z

4. Anandam V. Harmonic Functions and Potentials on Finite or Infinite Networks. Ser. Lect. Notes Unione
Mat. Ital, vol. 12. Berlin, Heidelberg: Springer, 2011. DOI: 10.1007/978-3-642-21399-1

https://doi.org/10.12732/ijpam.v112i2.9
https://doi.org/10.1002/mma.7034
https://doi.org/10.1007/s13226-013-0013-z
https://doi.org/10.1007/978-3-642-21399-1


186 Manivannan Varadha Raj and Venkataraman Madhu

5. Anandam V. Some potential-theoretic techniques in non-reversible Markov chains. Rend. Circ. Mat.
Palermo (2), 2013. Vol. 62, No. 2. P. 273–284.

6. Anandam V. Biharmonic classification of harmonic spaces. Rev. Roumaine Math. Pures Appl., 2000.
Vol. 41. P. 383–395.
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