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Abstract: Let G = (V, E) be a graph with a vertex set V and an edge set E. The graph G is said to be with a
local irregular vertex coloring if there is a function f called a local irregularity vertex coloring with the properties:
(i) l : (V (G)) → {1, 2, ..., k} as a vertex irregular k-labeling and w : V (G) → N, for every uv ∈ E(G),
w(u) 6= w(v) where w(u) =

∑
v∈N(u) l(i) and (ii) opt(l) = min{max{li : li is a vertex irregular labeling}}. The

chromatic number of the local irregularity vertex coloring of G denoted by χlis(G), is the minimum cardinality
of the largest label over all such local irregularity vertex colorings. In this paper, we study a local irregular
vertex coloring of Pm

⊙
G when G is a family of tree graphs, centipede Cn, double star graph (S2,n), Weed

graph (S3,n), and E graph (E3,n).

Keywords: Local irregularity, Corona product, Tree graph family.

1. Introduction

Let G(V,E) be a connected and simple graph with a vertex set V and an edge set E. In
this paper, we combine two concepts, namely the local antimagic vertex coloring and the distance
irregular labelling, with a local irregularity of vertex coloring. This concept firstly was introduced
by Kristiana [2, 3], et. al. The latest research was conducted by Azzahra [4], who examined the
local irregularity vertex coloring of a grid graph family. In this paper we study the local irregularity
of vertex coloring of corona product graph of a tree graph family.

Definition 1. Suppose l : V (G) → {1, 2, ..., k} and w : V (G) → N , where

w(u) =
∑

v∈N(u)

l(v),

then l(v) is called the vertex irregular k-labeling and w(u) is called the local irregularity of vertex

coloring if

(i) opt(l) = min{max{li} : li vertex irregular labeling};

(ii) for every uv ∈ E(G), w(u) 6= w(v).

Definition 2. The chromatic number of local irregular graph G denoted by χlis(G), is the

minimum of cardinality of the local irregularity of vertex coloring.

https://doi.org/10.15826/umj.2022.2.008
mailto:arika.fkip@unej.ac.id


On Local Irregularity of the Corona Product Graph 95

In this paper, we will use the following lemma which gives a lower bound on the chromatic
number of local irregular vertex coloring:

Lemma 1 [2]. Let G be a simple and connected graph, then χlis(G) ≥ χ(G).

Proposition 1 [2]. Let G be a graph each two adjacent vertices of which have a different vertex

degree then opt(l) = 1.

Proposition 2 [2]. Let G be a graph each two adjacent vertices have the same vertex degree

then opt(l) ≥ 2.

Definition 3 [1]. Let G and H be two connected graphs. Let o be a vertex of H. The corona

product of the combination of two graphs G and H is defined as the graph obtained by taking a

duplicate of graph G and |V (G)| a duplicate of graph H, namely Hi; i = 1, 2, 3, ...|V (G)| then

connects each vertex i in G to each vertex in Hi. The corona product of the graphs G and H is

denoted by G
⊙

H.

2. Result and discussion

In this paper, we analyze the new result of the chromatic number of local irregular vertex
coloring of corona product by family of tree graph (Pm

⊙

G) where G is centipede graph (Cn),
double star graph (S2,n), and Weed graph (S3,n).

Theorem 1. Let G = Pm

⊙

Cpn, be a corona product of a path graph of order m and a

centipede graph of order n for n,m ≥ 2, then

χlis(Pm

⊙

Cpn) =















5, for m = 3 and n = 2, 3,
6, for m = 2 and n = 2, 3 or for m = 3 and n ≥ 4,
7, for m = 2 and n ≥ 4 or for m ≥ 4 and n = 2, 3,
8, for m ≥ 4 and n ≥ 4,

with opt(l) defined as

opt(l)(Pm

⊙

Cpn) =















1, for m = 3 and n = 3,
1, 2, for m = 2 and n = 2 or

for m = 3 and n = 2 or
for m ≥ 3 and n ≥ 4.

P r o o f. Vertex set is

V (Pm

⊙

CPn) = {xi; 1 ≤ i ≤ m} ∪ {xij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {yij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}

and the edge set is

E(Pm

⊙

CPn) = {xixi+1; 1 ≤ i ≤ m− 1} ∪ {xijxij+1; 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1}

∪{xijyij; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {xixij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {xiyij; 1 ≤ i ≤ m, 1 ≤ j ≤ n},

the order and size respectively are 2mn+m and 4mn− 1.

Case 1: m 6= p, m ≥ 2, p ≥ 2, n ≥ 3.
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First step to prove this theorem is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1,
we have χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.
Assume χlis(Pm

⊙

Cpn) = 4, let χlis(Pm

⊙

Cpn) = 4, if l(x1) = l(x3) = 1, l(x2) = 2,
l(xij) = l(yij) = 1 then w(x1) = w(x2), then there are 2 adjacent vertices that have the same
color, it contradicts the definition of vertex coloring. If

l(xij) = 1, l(yij) = 1, 1 ≤ i ≤ 3, j = 1, l(yij) = 2, 1 ≤ i ≤ 3, j = 2,

l(xi) = 1 → w(xi) 6= w(xi+1), w(xi1) 6= (xi2),

then χlis(Pm

⊙

Cpn) ≥ 5. Based on this, we have the lower bound χlis(Pm

⊙

Cpn) ≥ 5.
After that, we will find the upper bound of χlis(Pm

⊙

Cpn). Furthermore, the upper bound
for the chromatic number of local irregular (Pm

⊙

Cpn), we define l : V (Pm

⊙

Cpn) → {1, 2} with
the vertex irregular 2-labelling as follows:

l(xi) = 1, l(xij) = 1,

l(yij) =

{

1, for 1 ≤ i ≤ 3 and j = 1,

2, for 1 ≤ i ≤ 3 and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

6, for i = 1, 3,

8, for i = 2,

w(xij) =

{

3, for 1 ≤ i ≤ 3 and j = 1,

4, for 1 ≤ i ≤ 3 and j = 2,

w(yij) = 2, for 1 ≤ i ≤ 3 and j = 1, 2.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 5, and we have 5 ≤ χlis(Pm

⊙

Cpn) ≤ 5, so
χlis(Pm

⊙

Cpn) = 5 for m = 3 and n = 2.

Case 2: m = n = 3.
Based on Proposition 1, opt(l) = 1. So the lower bound of (Pm

⊙

Cpn) is

χlis(Pm

⊙

Cpn) ≥ 5.

Hence opt(l) = 1 and the labelling provides the vertex-weight as follows:

w(xi) =

{

7, for i = 1, 3,

8, for i = 2,

w(yij) =

{

3, for 1 ≤ i ≤ 3 and j ≡ 1, 3 (mod 4),

4, for 1 ≤ i ≤ 3 and j = 2,

w(xij) = 2, for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 5. We have 5 ≤ χlis(Pm

⊙

Cpn) ≤ 5, so
χlis(Pm

⊙

Cpn) = 5 for m = 3 and n = 3.

Case 3: m = n = 2.
First step here is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1, we have
χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.



On Local Irregularity of the Corona Product Graph 97

Assume χlis(Pm

⊙

Cpn) = 5, if l(x1) = 1, l(x2) = 2, l(xij) = l(yij) = 1, then w(x11) = w(x12)
and there are 2 adjacent vertices, that have the same color, it contradicts the definition of vertex
coloring. If

l(x1) = 1, l(x2) = 2, l(xij) = 1, l(yi1) = 1, i = 1, 2, l(yi2) = 2, i = 1, 2,

then w(x1) 6= w(x2), w(xi1) 6= w(xi2). Based on that we have the lower bound
χlis(Pm

⊙

Cpn) ≥ 6.

After that, we will find the upper bound of χlis(Pm

⊙

Cpn).

Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i = 1,

2, for i = 2,
l(xij) = 1, l(yij) =

{

1, for i = 1, 2 and j = 1,

2, for i = 1, 2 and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

6, for i = 2,

7, for i = 1,

w(xij) =











3, for i = 1 and j = 1

4, for i = 1 and j = 1, or for i = 2 and j = 1,

5, for i = 2 and j = 2,

w(yij) =

{

2, for i = 1 and j = 1, 2,

3, for i = 2 and j = 1, 2.

We have the following upper bound χlis(Pm

⊙

Cpn) ≤ 6. We have 6 ≤ χlis(Pm

⊙

Cpn) ≤ 6, so
χlis(Pm

⊙

Cpn) = 6 for m = 2 and n = 2.

Case 4: m = 2 and n = 3.

First step here is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1, we have
χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.

Assume χlis(Pm

⊙

Cpn) = 5, if

l(xi) = l(xij) = 1, l(y1j) = 1, l(y2j) = 1, j = 1, 2, l(yi3) = 2,

then w(x22) = w(x23), so there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(x1) = 1, l(x2) = 2, l(xij) = 1, l(yij) = 1,

then w(x1) 6= w(x2), w(xi,1) 6= w(xi,2). Based on that we have the lower bound χlis(Pm

⊙

Cpn) ≥ 6.

After that, we will find the upper bound of χlis(Pm

⊙

Cpn).

Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i = 1,

2, for i = 2,
l(xij) = 1, w(yij) = 1.
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Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

7, for i = 2,

8, for i = 1,

w(xij) =











3, for i = 1 and j = 1, 3,

4, for i = 1 and j = 2, or for i = 2 and j = 1, 3,

5, for i = 2 and j = 2,

w(yij) =

{

2, for i = 1 and 1 ≤ j ≤ 3,

3, for i = 2 and 1 ≤ j ≤ 3.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 6. So we have χlis(Pm

⊙

Cpn) = 6 for m = 2 and
n = 3.

Case 5: m = 3 and n ≥ 4.

First step to prove this theorem in this case is to find the lower bound of V (Pm

⊙

CPn). Based
on Lemma 1, we have χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.

Assume χlis(Pm

⊙

Cpn) = 5, if l(x1) = l(x3) = 1, l(x2) = 2, l(xij) = l(yij) = 1, then w(x1) =
w(x2) so there are 2 adjacent vertices with the have same color, it contradicts the definition of
vertex coloring. If

l(xi) = l(xij) = 1, l(yij) = 1, 1 ≤ i ≤ 3, j = 1, n, j ≡ 0 (mod 2),

l(yij) = 2, 1 ≤ i ≤ 3, j ≡ 1, 3 (mod 4), j 6= 1, n,

with the w(xi) 6= w(xi+1), w(xij) = w(xij+1). Therefore we have the lower bound
χlis(Pm

⊙

Cpn) ≥ 6.

After that, we will find the upper bound for χlis(Pm

⊙

Cpn).

Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(yij) =

{

1, for 1 ≤ i ≤ 3 and j = 1, n or for 1 ≤ i ≤ 3 and j ≡ 0 (mod 2),

2, for 1 ≤ i ≤ 3 and j ≡ 1, 3 (mod 4), j 6= 1, n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =























2n+ n/2, for i = 1, 3 and n ≡ 0 (mod 2),

2n+ ⌊n/2⌋ , for i = 1, 3 and n ≡ 1, 3 (mod 4),

3n+ 1− n/2, for i = 2 and n ≡ 0 (mod 2),

3n+ 1− ⌈n/2⌉ , for i = 2 and n ≡ 1, 3 (mod 4),

w(xij) =











3, for 1 ≤ i ≤ 3 and j = 1, n,

4, for 1 ≤ i ≤ 3 and j ≡ 0 (mod 2),

5, for 1 ≤ i ≤ 3 and j ≡ 1, 3 (mod 4), j 6= 1, n,

w(yij) = 2.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 6. So χlis(Pm

⊙

Cpn) = 6 for m = 3 and n ≥ 4.

Case 6: m ≡ 0 (mod 2), m ≥ 4 and n = 2.
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First step here is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1, we have
χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.

Assume χlis(Pm

⊙

Cpn) = 5, let χlis(Pm

⊙

Cpn) = 5, if

l(xi) = 1, i ≡ 1, 3 (mod 4), i ≡ 2 (mod 4), l(xi) = 2, i ≡ 0 (mod 4), l(xij) = l(yij) = 1

then w(xij) = w(xij+1), then there are 2 adjacent vertices that have same color, this contradicts
the definition of vertex coloring. If

l(xi) = 1, i ≡ 1, 3 (mod 4), i ≡ 2 (mod 4), l(xi) = 2, i ≡ 0 (mod 4),

l(xij) = 1l(yij) = 1, j = 2, l(yij) = 2, j = 1,

then w(xij) 6= w(xij+1);w(xi+1) 6= w(xi+2). So we have the lower bound χlis(Pm

⊙

Cpn) ≥ 7.

After that, we will find the upper bound of χlis(Pm

⊙

Cpn).

Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i ≡ 1, 3 (mod 4) or for i ≡ 2 (mod 4),

2, for i ≡ 0 (mod 4),

l(xij) = 1, l(yij) =

{

1, for 1 ≤ i ≤ m and j = 1,

2, for 1 ≤ i ≤ m and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











6, for i = 1,m,

7, for i ≡ 0 (mod 2), i 6= m,

8, for i ≡ 1, 3 (mod 4), i 6= 1,

w(xij) =























3, for i ≡ 1, 3 (mod 4) and j = 1 or for i ≡ 2 (mod 4) and j = 1,

4, for i ≡ 1, 3 (mod 4) and j = 2 or for i ≡ 2 (mod 4) and j = 2 or

for i ≡ 0 (mod 4) and j = 1,

5, for i ≡ 0 (mod 4) and j = 2,

w(yij) =

{

2, for i ≡ 1, 3 (mod 4) and j = 1, 2 or for i ≡ 2 (mod 4) and j = 1, 2,

3, for i = 0 (mod 4) and j = 1, 2.

We have the upper bound χlis(Pm

⊙

Cpn) ≤ 7. So χlis(Pm

⊙

Cpn) = 7 for m ≥ 4 and n = 2.

Case 7: m ≡ 0 (mod 2), m ≥ 4 and n = 3.

First step to prove this theorem is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1,
we have χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.

Assume χlis(Pm

⊙

Cpn) = 5, in this case if

l(xi) = l(xij) = 1, l(yij) = 1, 1 ≤ i ≤ m, j = 3, l(yij) = 2, 1 ≤ i ≤ m, j = 1, 2,

then w(xi) = w(xi+1), then there are 2 adjacent vertices that have the same color, this contradicts
the definition of vertex coloring. If

l(xi) = 1 i ≡ 1, 3 (mod 4), i ≡ 2 (mod 4), l(xi) = 2, i ≡ 0 (mod 2), l(yij) = l(xij) = 1,
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then w(xi+1) 6= w(xi+2), w(xi1) 6= w(xi2), w(xi1) 6= w(yi2). Therefore we have the lower bound
χlis(Pm

⊙

Cpn) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

Cpn).
Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i ≡ 1, 3 (mod 4) or for i ≡ 2 (mod 4),

2, for i ≡ 0 (mod 4),

l(xij) = 1, l(yij) = 1.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











7, for i = 1,m,

8, for i ≡ 0 (mod 2), i 6= m,

9, for i ≡ 1, 3 (mod 4), i 6= 1,

w(xij) =























3, for i ≡ 1, 3 (mod 4) and j = 1, 3 or for i ≡ 2 (mod 4) and j = 1, 3,

4, for i ≡ 1, 3 (mod 4) and j = 2 or for i ≡ 2 (mod 4) and j = 2 or

for i ≡ 0 (mod 4) and j = 1, 3,

5, for i ≡ 0 (mod 4) and j = 2,

w(yij) =

{

2, for i ≡ 1, 3 (mod 4) and 1 ≤ j ≤ 3 or for i ≡ 2 (mod 4) and 1 ≤ j ≤ 3,

3, for i = 0 (mod4) and 1 ≤ j ≤ 3.

We have the upper bound χlis(Pm

⊙

Cpn) ≤ 7. So χlis(Pm

⊙

Cpn) = 7 for m ≥ 4 and n = 3.

Case 8: m = 2 and n ≥ 4.
First step here is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1, we have
χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.
Assume χlis(Pm

⊙

Cpn) < 7, let χlis(Pm

⊙

Cpn) = 6, if

l(x1) = 1, l(x2) = 2, l(xij) = l(yij) = 1,

then w(xij+1) = w(xij+2), then there are 2 adjacent vertices that have same color, it contradicts
the definition of vertex coloring. If

l(x1) = 1, l(x2) = 2, l(xij) = 1, l(yij) = 1, j ≡ 0 (mod 2), j = 1, n,

l(yij) = 2, j ≡ 1, 3 (mod 4), j 6= 1, n → w(x1) 6= w(x2), w(xij+1) 6= w(xij+2),

then we have the lower bound χlis(Pm

⊙

Cpn) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

Cpn).
Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i = 1,

2, for i = 2,

l(xij) = 1,

l(yij) =

{

1, for i = 1, 2 and j = 1, n or for i = 1, 2 and j ≡ 0 (mod 2),

2, for i = 1, 2 and j ≡ 1, 3 (mod 4), j 6= 1, n.
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Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =























3n+ 1− n/2, for i = 1 and n ≡ 0 (mod 2),

3n+ 1− ⌈n/2⌉ , for i = 1 and n ≡ 1, 3 (mod 4),

2n+ n/2, for i = 2 and n ≡ 0 (mod 2),

2n+ ⌊n/2⌋ , for i = 2 and n ≡ 1, 3 (mod 4),

w(xij) =























3, for i = 1 and j = 1, n,

4, for i = 1 and j ≡ 0 (mod 2), j 6= n or for i = 2 and j = 1, n,

5, for i = 1 and j ≡ 1, 3 (mod 4), j 6= 1, n or for i = 2 and j ≡ 0 (mod 2), j 6= n,

6, for i = 2 and j ≡ 1, 3 (mod 4), j 6= 1, n,

w(yij) =

{

2, for i = 1 and 1 ≤ j ≤ n,

3, for i = 2 and 1 ≤ j ≤ n.

The upper bound χlis(Pm

⊙

Cpn) ≤ 7 is true. So χlis(Pm

⊙

Cpn) = 7 for m = 2 and n ≥ 4.

Case 9: m ≡ 1, 3 (mod 4), m ≥ 5 and n = 2.

First step to prove this theorem in this case is to find the lower bound of V (Pm

⊙

CPn). Based
on Lemma 1, we have χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.

Assume χlis(Pm

⊙

Cpn) < 7, and let χlis(Pm

⊙

Cpn) = 6, if

l(xi) = 1, i ≡ 1 (mod 4), i ≡ 0 (mod 2), l(xi) = 2, i ≡ 3 (mod 4), l(xij) = l(yij) = 1,

then w(xi1) = w(xi2), w(xi+1) = w(xi+2), then there are 2 adjacent vertices that have same color,
it contradicts the definition of vertex coloring. If

l(xi) = 1, i ≡ 1 (mod 4), i ≡ 0 (mod 2), l(xi) = 2, i ≡ 3 (mod 4),

l(xij) = 1, l(yij) = 1, 1 ≤ i ≤ m, j = 1, l(yij) = 2, 1 ≤ i ≤ m, j = 2,

then w(xi+1) 6= w(xi+2), w(xij+1) 6= w(xij+2). Therefore we have the lower bound
χlis(Pm

⊙

Cpn) ≥ 7.

After that, we will find the upper bound of χlis(Pm

⊙

Cpn).

Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i ≡ 1 (mod 4) or for i ≡ 0 (mod 2),

2, for i ≡ 3 (mod 4),

w(xij) = 1; l(yij) =

{

1, for 1 ≤ i ≤ m and j = 1,

2, for 1 ≤ i ≤ m and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











6, for i = 1,m,

7, for i ≡ 1, 3 (mod 4), i 6= 1,

8, for i ≡ 0 (mod 2), i 6= m,
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w(xij) =























3, for i ≡ 1 (mod 4) and j = 1 or for i ≡ 0 (mod 2) and j = 1,

4, for i ≡ 1 (mod 4) and j = 2 or for i ≡ 0 (mod 2) and j = 2 or

for i ≡ 3 (mod 4) and j = 1,

5, for i ≡ 3 (mod 4) and j = 2,

w(yij) =

{

2, for i ≡ 1 (mod 4) and j = 1, 2 or for i ≡ 0 (mod 2) and j = 1, 2,

3, for i = 3 (mod 4) and j = 1, 2.

The upper bound χlis(Pm

⊙

Cpn) ≤ 7 is true. So χlis(Pm

⊙

Cpn) = 7 for m ≡ 1, 3 (mod 4),
m ≥ 5 and n = 2.

Case 10: m ≡ 1, 3 (mod 4), m ≥ 5 and n = 3.
First step here is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1, we have
χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.
Assume χlis(Pm

⊙

Cpn) < 7, let χlis(Pm

⊙

Cpn) = 6, if

l(xi) = l(xij) = 1, l(yi1) = 1, l(yij) = 2, j = 2, 3,

then w(xi+1) = w(xi+2), then we have that there are 2 adjacent vertices that have same color, it
contradicts the definition of vertex coloring. If

l(xi) = 1, i ≡ 1 (mod 4), i ≡ 0 (mod 2), l(xi) = 2, i ≡ 3 (mod 4), l(xij) = 1; l(yij) = 1,

then w(xi+1) 6= w(xi+2), w(xij+1) 6= w(xij+2). Based on that we have the lower bound
χlis(Pm

⊙

Cpn) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

Cpn).
Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i ≡ 1 (mod 4) or for i ≡ 0 (mod 2),

2, for i ≡ 3 (mod 4),

l(xij) = 1, l(yij) = 1.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











7, for i = 1,m,

8, for i ≡ 1, 3 (mod 4), i 6= 1,m,

9, for i ≡ 0 (mod 2),

w(xij) =























3, for i ≡ 1 (mod 4) and j = 1, 3 or for i ≡ 0 (mod 2) and j = 1, 3,

4, for i ≡ 1 (mod 4) and j = 2 or for i ≡ 0 (mod 2) and j = 2 or

for i ≡ 3 (mod 4) and j = 1, 3,

5, for i ≡ 3 (mod 4) and j = 2,

w(yij) =

{

2, for i ≡ 1 (mod 4) and 1 ≤ j ≤ 3 or for i ≡ 0 (mod 2) and 1 ≤ j ≤ 3,

3, for i = 3 (mod 4) and 1 ≤ j ≤ 3.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 7. So χlis(Pm

⊙

Cpn) = 7 for
m ≡ 1, 3 (mod 4), m ≥ 5 and n = 3.
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Case 11: m ≡ 0 (mod 2) m ≥ 4 and n ≥ 4.
First step to prove this theorem is to find the lower bound of V (Pm

⊙

CPn). Based on Lemma 1,
we have χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.
Assume χlis(Pm

⊙

Cpn) < 8, let χlis(Pm

⊙

Cpn) = 7, if

l(xi) = 1, i ≡ 1, 3 (mod 4), i ≡ 2 (mod 4), l(xi) = 2, i ≡ 0 (mod 4), l(xij) = l(yij) = 1,

then w(xij+1) = w(xij+2), so there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = 1, i ≡ 1, 3 (mod 4), i ≡ 2 (mod 4), l(xi) = 2, i ≡ 0 (mod 4), l(xij) = 1,

l(yij) = 1, 1 ≤ i ≤ m, j = 1, n, j ≡ 0 (mod 2), l(yij) = 2,

1 ≤ i ≤ m, j ≡ 1, 3 (mod 4), j 6= 1, n,

then w(xi+1) 6= w(xi+2), w(xij+1) 6= w(xij+2), w(xij) 6= w(yij). Based on that we have the lower
bound χlis(Pm

⊙

Cpn) ≥ 8.
After that, we will find the upper bound of χlis(Pm

⊙

Cpn).
Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i ≡ 1, 3 (mod 4) and 1 ≤ j ≤ n or for i ≡ 2 (mod 4) and 1 ≤ j ≤ n,

2, for i ≡ 0 (mod 4) and 1 ≤ j ≤ n,

l(xij) = 1,

l(yij) =

{

1, for 1 ≤ i ≤ m and j = 1, n or for 1 ≤ i ≤ m and j ≡ 0 (mod 2),

2, for 1 ≤ i ≤ m and j ≡ 1, 3 (mod 4), j 6= 1,m.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











































2n+ n/2, for i = 1,m and n ≡ 0 (mod 2),

2n+ ⌊n/2⌋ , for i = 1,m and n ≡ 1, 3 (mod 4),

3n+ 1− n/2, for i ≡ 1, 3 (mod 4), i 6= 1 and n ≡ 0 (mod 2),

3n+ 1− ⌈n/2⌉ , for i ≡ 0 (mod 2), i 6= m and n ≡ 1, 3 (mod 4),

3n+ 2− n/2, for i ≡ 1, 3 (mod 4), i 6= 1 and n ≡ 0 (mod 2),

3n+ 1− ⌊n/2⌋ , for i ≡ 0 (mod 2), i 6= m and n ≡ 1, 3 (mod 4),

w(xij) =



















































3, for i ≡ 1, 3 (mod 4) and j = 1, n or for i ≡ 2 (mod 4) and j = 1, n,

4, for i ≡ 1, 3 (mod 4) and j ≡ 0 (mod 2), j 6= n or

for i ≡ 2 (mod 4) and j ≡ 0 (mod 2), j 6= n or for i ≡ 0 (mod 4) and j = 1, n,

5, for i ≡ 1, 3 (mod 4) and j ≡ 1, 3 (mod 4), j 6= 1, n or

for i ≡ 2 (mod 4) and j ≡ 1, 3 (mod 4), j 6= 1, n or

for i ≡ 0 (mod 4) and j ≡ 0 (mod 2), j 6= n,

6, for i ≡ 0 (mod 4) and j ≡ 1, 3 (mod 4), j 6= 1, n,

w(yij) =

{

2, for i ≡ 1, 3 (mod 4) and 1 ≤ j ≤ n or for i ≡ 2 (mod 4) and 1 ≤ j ≤ n,

3, for i ≡ 0 (mod 4) and 1 ≤ j ≤ n.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 8. So χlis(Pm

⊙

Cpn) = 8 for m ≡ 0 (mod 4), m ≥ 4
and n ≥ 4.
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Case 12: m ≡ 1, 3 (mod 4), m ≥ 5 and n ≥ 4.
First step to prove this theorem in this case is to find the lower bound of V (Pm

⊙

CPn). Based
on Lemma 1, we have χlis(Pm

⊙

Cpn) ≥ χ(Pm

⊙

Cpn) = 3.
Assume χlis(Pm

⊙

Cpn) < 8, let χlis(Pm

⊙

Cpn) = 7, if

l(xi) = 1, i ≡ 1 (mod 4), i ≡ 0 (mod 2), l(xi) = 2, i ≡ 3 (mod 4), l(xij) = l(yij) = 1,

then w(xij+1) = w(xij+2), so there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = 1, i ≡ 1 (mod 4), i ≡ 0 (mod 2), l(xi) = 2, i ≡ 3 (mod 4), l(xij) = 1, l(yij) = 1,

1 ≤ i ≤ m, j = 1, n, j ≡ 0 (mod 2), l(yij) = 2, 1 ≤ i ≤ m, j ≡ 1, 3 (mod 4),

j 6= 1, n → w(xi+1) 6= w(xi+2), w(xij+1) 6= w(xij+2), w(xij) 6= w(yij),

therefore we have the lower bound χlis(Pm

⊙

Cpn) ≥ 8.
After that, we will find the upper bound of χlis(Pm

⊙

Cpn).
Furthermore, we define l : V (Pm

⊙

Cpn) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) =

{

1, for i ≡ 1 (mod 4) or for i ≡ 0 (mod 2),

2, for i ≡ 3 (mod 4),

l(xij) = 1,

l(yij) =

{

1, for 1 ≤ i ≤ m and j = 1, n or for 1 ≤ i ≤ m and j ≡ 0 (mod 2),

2, for 1 ≤ i ≤ m and j ≡ 1, 3 (mod 4), j 6= 1, n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











































2n+ n/2, for i = 1,m and n ≡ 0 (mod 2),

3n+ 2− n/2, for i = 0 (mod2) and n ≡ 0 (mod 2),

3n+ 1− n/2, for i ≡ 1, 3 (mod 4) and n ≡ 0 (mod 2),

2n+ ⌊n/2⌋ , for i = 1,m and n ≡ 1, 3 (mod 4),

3n− ⌊n/2⌋ , for i ≡ 1, 3 (mod 4), i 6= 1 and n ≡ 1, 3 (mod 4),

3n+ 1− ⌊n/2⌋ , for i = 0 (mod4) and n ≡ 1, 3 (mod 4),

w(xij) =































































3, for i ≡ 1 (mod 4) and j = 1, n or for i ≡ 0 (mod 2) and j = 1, n,

4, for i ≡ 1 (mod 4) and j ≡ 0 (mod 2), j 6= n or

for i ≡ 0 (mod 2) and j ≡ 0 (mod 2), j 6= n or

for i ≡ 3 (mod 4) and j = 1, n,

5, for i ≡ 1 (mod 4) and j ≡ 1, 3 (mod 4), j 6= 1, n or

for i ≡ 0 (mod 2) and j ≡ 1, 3 (mod 4), j 6= 1, n or

for i ≡ 3 (mod 4) and j ≡ 0 (mod 2), j 6= n,

6, for i ≡ 3 (mod 4) and j ≡ 1, 3 (mod 4), j 6= 1, n,

w(yij) =

{

2, for i ≡ 1 (mod 4) and 1 ≤ j ≤ n or for i ≡ 0 (mod 2) and 1 ≤ j ≤ n,

3, for i ≡ 3 (mod 4) and 1 ≤ j ≤ n.

The upper bound is true: χlis(Pm

⊙

Cpn) ≤ 8. So χlis(Pm

⊙

Cpn) = 8 for m ≥ 5 and n ≥ 4. �
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Theorem 2. Let G = Pm

⊙

S2,n for n,m ≥ 2, then the chromatic number of local irregular G
is

χlis(Pm

⊙

S2,n) =











5, for m = 3 and n ≥ 2,

6, for m = 2 and n ≥ 2,

7, for m ≥ 4 and n ≥ 2,

with opt(l)(Pm

⊙

S2,n) = 1, 2, for m ≥ 2 and n ≥ 2.

P r o o f. Vertex set is

V (Pn

⊙

S2,n) = {xi; 1 ≤ i ≤ m} ∪ {ai; 1 ≤ i ≤ m} ∪ {bi; 1 ≤ i ≤ m}

∪{aij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {bij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}

and the edge set is

E(Pn

⊙

S2,n) = {xixi+1, 1 ≤ i ≤ m− 1} ∪ {aibi; 1 ≤ i ≤ m} ∪ {xiai; 1 ≤ i ≤ m}

∪{xibi; 1 ≤ i ≤ m} ∪ {xiaij; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {xibij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪{aiaij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {bibij; 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The order and the size respectively are 2mn+ 3m and 4mn+4m− 1. This proof is divided into 4
cases as follows.

Case 1: m = 3 and n ≥ 2.

First step to prove this theorem is to find the lower bound of V (Pm

⊙

S2,n). Based on Lemma 1,
we have χlis(Pm

⊙

S2,n) ≥ χ(Pm

⊙

S2,n) = 3.
Assume χlis(Pm

⊙

S2,n) = 4, if l(ai) = l(bi) = 1, l(xi) = l(aij) = l(bij) = 1 then w(ai) = w(bi),
then there are 2 adjacent vertices that have same color, it contradicts the definition of vertex
coloring. If

l(xi) = l(ai) = l(bi) = l(aij) = l(bij) = 1, 1 ≤ j ≤ n− 1, l(bin) = 2,

then
w(ai) 6= w(bi), w(x1) = w(x3) 6= w(x2),

therefore we have the lower bound χlis(Pm

⊙

S2,n) ≥ 5.
After that, we will find the upper bound of χlis(Pm

⊙

S2,n).
Furthermore, we define l : V (Pm

⊙

S2,n) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) = 1, l(ai) = 1, l(bi) = 1, l(aij) = 1,

l(bij) =

{

1, for 1 ≤ i ≤ 3 and 1 ≤ j ≤ n− 1,

2, for 1 ≤ i ≤ 3 and j = n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

2n+ 4, for i = 1, 3,

2n+ 5, for i = 2,

w(ai) = n+ 2, for 1 ≤ i ≤ 3,

w(bi) = n+ 3, for 1 ≤ i ≤ 3,

w(aij) = 2, w(bij) = 2.
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The upper bound χlis(Pm

⊙

S2,n) ≤ 5 is true. So χlis(Pm

⊙

S2,n) = 5 for m = 3 and n ≥ 2.

Case 2: m = 2 and n ≥ 2.
First step here is to find the lower bound of V (Pm

⊙

S2,n). Based on Lemma 1, we have
χlis(Pm

⊙

S2,n) ≥ χ(Pm

⊙

S2,n) = 3.
Assume χlis(Pm

⊙

S2,n) = 5, if

l(xi) = l(ai) = l(bi) = l(aij) = l(b2j) = 1, l(b1j) = 1, 1 ≤ j ≤ n− 1, l(b1n) = 2,

and then w(a2) = w(b2), and there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = l(ai) = l(bi) = l(aij) = 1,

l(b1,j) = 1, l(b1,n) = 2, l(b2,j) = 2, j = 1, n, l(b2j) = 1, 2 ≤ j ≤ n− 1,

then w(ai) 6= w(bi), w(x1) 6= w(x2). Based on that we have the lower bound χlis(Pm

⊙

S2,n) ≥ 6.
After that, we will find the upper bound of χlis(Pm

⊙

S2,n).
Furthermore, we define l : V (Pm

⊙

S2,n) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) = 1, l(ai) = 1, l(bi) = 1, l(aij) = 1,

l(bij) =

{

1, for i = 1 and 1 ≤ j ≤ n− 1 or for i = 2 and 2 ≤ j ≤ n− 1,

2, for i = 1 and j = n or for i = 2 and j = 1, n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

2n+ 4, for i = 1,

2n+ 5, for i = 2,

w(ai) = n+ 2, for i = 1, 2,

w(bi) =

{

n+ 3, for i = 1,

n+ 4, for i = 2,

w(aij) = 2, w(bij) = 2.

The upper bound is true: χlis(Pm

⊙

S2,n) ≤ 6. So χlis(Pm

⊙

S2,n) = 6 for m = 2 and n ≥ 2.

Case 3: m ≡ 0 (mod 4), m ≥ 4 and n ≥ 2.
First step to prove this theorem in this case is to find the lower bound of V (Pm

⊙

S2,n). Based
on Lemma 1, we have χlis(Pm

⊙

S2,n) ≥ χ(Pm

⊙

S2,n) = 3.
Assume χlis(Pm

⊙

S2,n) = 6, if

l(xi) = l(ai) = l(bi) = l(aij) = 1, l(bij) = 1, i ≡ 1, 3 (mod 4), i ≡ 2 (mod 4),

l(bij) = 1, i ≡ 0 (mod 4), j 6= 1, n, l(bij) = 2, i ≡ 0 (mod 4), j = 1, n,

then w(ai) = w(bi), so there are 2 adjacent vertices that have same color, it contradicts the definition
of vertex coloring. If

l(xi) = l(ai) = l(bi) = l(aij) = 1, l(bij) = 1, i ≡ 1, 3 (mod 4), i = m, 1 ≤ j ≤ n− 1,

i ≡ 0 (mod 2), i 6= m, 2 ≤ j ≤ n− 1, l(bij) = 2, i ≡ 1, 3 (mod 4),

i = m, j = n, i ≡ 0 (mod 2), i 6= m, j = 1, n,
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then w(ai) 6= w(bi), w(xi) 6= w(xi+1). Based on that we have the lower bound χlis(Pm

⊙

S2,n) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

S2,n)
Furthermore, we define l : V (Pm

⊙

S2,n) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) = 1, l(ai) = 1, l(bi) = 1, l(aij) = 1,

l(bij) =











































1, for i ≡ 1, 3 (mod 4) and 1 ≤ j ≤ n− 1 or

for i ≡ 0 (mod 2), i 6= m and 2 ≤ j ≤ n− 1 or

for i = m, and 1 ≤ j ≤ n− 1,

2, for i ≡ 1, 3 (mod 4) and j = n or

for i ≡ 0 (mod 2), i 6= m and j = 1, n or

for i = m, and j = n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











2n+ 4, for i = 1,m,

2n+ 5, for i ≡ 0 (mod 2), i 6= m,

2n+ 6, for i ≡ 1, 3 (mod 4), i 6= 1,

w(ai) = n+ 2, for 1 ≤ i ≤ m,

w(bi) =

{

n+ 3, for i ≡ 1, 3 (mod 4), i = m,

n+ 4, for i ≡ 0 (mod 2), i 6= m,

w(aij) = 2, w(bij) = 2.

The upper bound is true: χlis(Pm

⊙

S2,n) ≤ 7. So χlis(Pm

⊙

S2,n) = 7 for m ≡ 0 (mod 2),
m ≥ 4 and n ≥ 2.

Case 4: m ≡ 1, 3 (mod 4), m ≥ 5 and n ≥ 2.
First step here is to find the lower bound of V (Pm

⊙

S2,n). Based on Lemma 1, we have

χlis(Pm

⊙

S2,n) ≥ χ(Pm

⊙

S2,n) = 3.

Assume χlis(Pm

⊙

S2,n) = 6, if

l(xi) = l(ai) = l(bi) = l(aij) = 1, l(bij) = 1, i ≡ 1 (mod 4), i ≡ 0 (mod 2),

l(bij) = 1, i ≡ 3 (mod 4), j 6= n, l(bij) = 2, i ≡ 3 (mod 4), j = n,

then w(ai) = w(bi), and there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = l(ai) = l(bi) = 1, l(aij) = 1, l(bij) = 1, i ≡ 1, 3 (mod 4), 1 ≤ j ≤ n− 1,

i ≡ 0 (mod 2), 2≤j≤n− 1, l(bij) = 2, i ≡ 1, 3 (mod 4), j = n, i ≡ 0 (mod 2), j = 1, n,

then w(ai) 6= w(bi), w(xi) 6= w(xi+1). Based on that we have the lower bound χlis(Pm

⊙

S2,n) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

S2,n).
Furthermore, we define l : V (Pm

⊙

S2,n) → {1, 2} with the vertex irregular 2-labelling as
follows:

l(xi) = 1, l(ai) = 1, l(bi) = 1, l(aij) = 1,

l(bij) =

{

1, for i ≡ 1, 3 (mod 4) and 1 ≤ j ≤ n− 1 or for i ≡ 0 (mod 2), and 2 ≤ j ≤ n− 1,

2, for i ≡ 1, 3 (mod 4) and j = n or for i ≡ 0 (mod 2) and j = 1, n.
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Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











2n+ 4, for i = 1,m,

2n+ 5, for i ≡ 1, 3 (mod 4),

2n+ 6, for i ≡ 0 (mod 2),

w(ai) = n+ 2, for 1 ≤ i ≤ m,

w(bi) =

{

n+ 3, for i ≡ 1, 3 (mod 4),

n+ 4, for i ≡ 0 (mod 2),

w(aij) = 2, w(bij) = 2.

The upper bound is true: χlis(Pm

⊙

S2,n) ≤ 7. So χlis(Pm

⊙

S2,n) = 7 for m ≡ 1, 3 (mod 4),
m ≥ 5 and n ≥ 2. �

Theorem 3. Let G = Pm

⊙

S3,n for n,m ≥ 2, then the chromatic number of local irregular G
is

χlis(Pm

⊙

S3,n) =











5, for m = 3 and n ≥ 2,

6, for m = 2 and n ≥ 2,

7, for m ≥ 4 and n ≥ 3,

with

opt(l)(Pm

⊙

S3,n) =











1, for m = 3 and n = 3,

1, 2, for m = 2 and n = 2 or for m = 3 and n = 2 or

for m ≥ 4 and n ≥ 2.

P r o o f. The vertex set is

V (Pm

⊙

S3,n) = {xi; 1 ≤ i ≤ m} ∪ {ai; 1 ≤ i ≤ m} ∪ {bi; 1 ≤ i ≤ m} ∪ {ci; 1 ≤ i ≤ m}

∪{aij; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {bij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {cij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}

and the edge set is

V (Pm

⊙

S3,n) = {xixi+1; 1 ≤ i ≤ m− 1} ∪ {xiyi; 1 ≤ i ≤ m} ∪ {xiai; 1 ≤ i ≤ m}

∪{xibi; 1 ≤ i ≤ m} ∪ {xici; 1 ≤ i ≤ m} ∪ {yiai; 1 ≤ i ≤ m} ∪ {yibi; 1 ≤ i ≤ m}

∪{yici; 1 ≤ i ≤ m} ∪ {xiaij ; 1 ≤ i ≤ m; 1 ≤ j ≤ n} ∪ {xibij; 1 ≤ i ≤ m; 1 ≤ j ≤ n}

∪{xicij ; 1 ≤ i ≤ m; 1 ≤ j ≤ n} ∪ {aiaij ; 1 ≤ i ≤ m; 1 ≤ j ≤ n}

∪{bibij; 1 ≤ i ≤ m; 1 ≤ j ≤ n} ∪ {cicij ; 1 ≤ i ≤ m; 1 ≤ j ≤ n}.

The order and size respectively are 3mn + 5m and 6mn + 8n − 1. This proof can be divided into
8 following cases.

Case 1: m = 3 and n = 2.
First step to prove this theorem is to find the lower bound of V (Pm

⊙

S3,n). Based on Lemma 1,
we have χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.
Assume χlis(Pm

⊙

S3,n) = 4, if

l(ai) = l(bi) = l(ci) = l(yi) = l(aij) = l(bij) = l(cij) = 1,
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then w(ai) = w(bi) = w(ci) = w(yi), and there are 2 adjacent vertices that have same color, it
contradicts the definition of vertex coloring. If

l(ai) = l(bi) = l(ci) = 1, l(aij) = l(bij) = l(cij) = 1, l(yi) = 2,

then (w(ai) = w(bi) = w(ci)) 6= w(yi), w(x1) 6= w(x2). Therefore we have the lower bound
χlis(Pm

⊙

S3,n) ≥ 5.
After that, we will find the upper bound of χlis(Pm

⊙

S3,n).
Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 2, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1, l(cij) = 1.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

12, for i = 1, 3,

13, for i = 2,

w(yi) = 4, w(ai) = 5, w(bi) = 5, w(ci) = 5, w(aij) = 2, w(bij) = 2, w(cij) = 2.

The upper bound is true: χlis(Pm

⊙

S3,n) ≤ 5. So χlis(Pm

⊙

S3,n) = 5 for m = 3 and n = 2.

Case 2: m = 3 and n = 3.
Based on Proposition 1, we have opt(l) = 1. So the lower bound (Pm

⊙

S3,n) is
χlis(Pm

⊙

S3,n) ≥ 5
Since opt(l) = 1, the labelling provides the vertex-weight as follows:

w(xi) =

{

3n+ 5, for i = 1, 3,

3n+ 6, for i = 2,

w(yi) = 4,

w(ai) = n+ 1 for 1 ≤ i ≤ 3,

w(bi) = n+ 1 for 1 ≤ i ≤ 3,

w(ci) = n+ 1 for 1 ≤ i ≤ 3,

w(aij) = 2, w(bij) = 2, w(cij) = 2.

The upper bound is true: χlis(Pm

⊙

S3,n) ≤ 5. So χlis(Pm

⊙

S3,n) = 5 for m = 3 and n ≥ 2.

Case 3: m = 2 and n = 2.
First step to prove this theorem is to find the lower bound of V (Pm

⊙

S3,n). Based on Lemma 1,
we have χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.
Assume χlis(Pm

⊙

S3,n) = 5, if

l(ai) = l(bi) = l(ci) = l(aij) = l(bij) = l(cij) = 1, l(y1) = 1, l(y2) = 2,

then w(a2) = w(b2) = w(c2) = w(y2) and there are 2 adjacent vertices that have same color, it
contradicts the definition of vertex coloring. If

l(xi) = l(ai) = l(bi) = l(ci) = l(bij) = 1, l(yi) = 2, l(c1j) = 1, l(c2,1) = 1, l(c2,2) = 2,

then w(x1) 6= w(x2), w(yi) 6= ((w(ai) = w(bi) = w(ci)). Based on that we have the lower bound
χlis(Pm

⊙

S3,n) ≥ 6.
After that, we will find the upper bound of χlis(Pm

⊙

S3,n).
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Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 2, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1,

l(cij) =

{

1, for i = 1 and j = 1, 2 or for i = 2 and j = 1,

2, for i = 2 and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

12, for i = 1,

13, for i = 2,

w(yi) = 4, w(ai) = 5, w(bi) = 5,

w(ci) =

{

5, for i = 1,

6, for i = 2,

w(aij) = 2, w(bij) = 2, w(cij) = 2.

The upper bound is true: χlis(Pm

⊙

S2,n) ≤ 6. So χlis(Pm

⊙

S2,n) = 6 for m = 2 and n = 2.

Case 4: m = 2 and n ≥ 3.
First step here is to find the lower bound of V (Pm

⊙

S3,n). Based on Lemma 1, we have
χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.
Assume χlis(Pm

⊙

S3,n) = 5, if

l(ai) = l(bi) = l(ci) = l(yi) = 1, l(aij) = l(bij) = 1, l(cij) = 1, i = 1, 2, 1 ≤ j ≤ n− 1

l(cij) = 2, i = 1, 2, j = n,

then w(x1) = w(x2), then there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = l(aij) = l(bij) = 1, l(cij) = 1, i = 1, 1 ≤ j ≤ n, i = 2, 1 ≤ j ≤ n− 1,

l(cij) = 2, i = 2, j = n,

then w(x1) 6= w(x2), w(yi) 6= ((w(ai) = w(bi) = w(ci)). Therefore we have the lower bound
χlis(Pm

⊙

S3,n) ≥ 6.
After that, we will find the upper bound of χlis(Pm

⊙

S3,n).
Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 1, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1,

l(cij) =

{

1, for i = 1 and 1 ≤ j ≤ n or for i = 2 and 1 ≤ j ≤ n− 1,

2, for i = 2 and j = n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =

{

3n+ 5, for i = 1,

3n+ 6, for i = 2,

w(yi) = 4,

w(ai) = n+ 1, for i = 1, 2,

w(bi) = n+ 1, for i = 1, 2,

w(ci) =

{

n+ 1, for i = 1,

n+ 2, for i = 2,

w(aij) = 2, w(bij) = 2, w(cij) = 2.
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The upper bound is true: χlis(Pm

⊙

S3,n) ≤ 6. So χlis(Pm

⊙

S3,n) = 6 for m = 2 and n ≥ 3.

Case 5: m ≡ 0 (mod 2) m ≥ 4 and n = 2.
First step to prove this theorem in this case is to find the lower bound of V (Pm

⊙

S3,n). Based
on Lemma 1, we have χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.
Assume χlis(Pm

⊙

S3,n) = 6, if

l(ai) = l(bi) = l(ci) = l(yi) = 1, l(aij) = l(bij) = 1, l(cij) = 1, i ≡ 1, 3 (mod 4),

j = 1, 2, i ≡ 0 (mod 4), j = 1, 2, l(cij) = 1, i ≡ 2 (mod 4),

j = 1, l(cij) = 2, i ≡ 2 (mod 4), j = 2,

then w(yi) = w(ai). Then there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = 1, l(ai) = l(bi) = l(ci) = 1, l(yi) = 2, l(aij) = l(bij) = 1, l(cij) = 1,

i ≡ 0 (mod 2), j = 1, i 6= m, i ≡ 1, 3 (mod 4), j = 1, 2, l(cij) = 2,

i ≡ 0 (mod 2), i 6= m, j = 2,

then w(xi+1) 6= w(xi+2;w(yi) 6= w(ai). Therefore we have the lower bound χlis(Pm

⊙

S3,n) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

S3,n).
Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 2, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1,

l(cij) =











1, for i ≡ 1, 3 (mod 4) and j = 1, 2 or for i = m and j = 1, 2 or

for i ≡ 0 (mod 2), i 6= m and j = 1,

2, for i ≡ 0 (mod 2), i 6= m and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











12, for i = 1,m,

13, for i ≡ 1, 3 (mod 4), i 6= 1,

14, for i ≡ 0 (mod 2), i 6= m,

w(yi) = 4, w(ai) = 5, w(bi) = 5,

w(ci) =

{

5, for i ≡ 1, 3 (mod 4),

6, for i ≡ 0 (mod 2), i 6= m,

w(aij) = 2, w(bij) = 2, w(cij) = 2,

The upper bound is true: χlis(Pm

⊙

S3,n) ≤ 7. So χlis(Pm

⊙

S3,n) = 7 for m ≡ 0 (mod 2); m ≥ 4
and n = 2.

Case 6: m ≡ 1, 3 (mod 4), m ≥ 5 and n = 2.
First step here is to find the lower bound of V (Pm

⊙

S3,n). Based on Lemma 1, we have
χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.
Assume χlis(Pm

⊙

S3,n) = 6, if

l(ai) = l(bi) = l(ci) = l(yi) = 1, l(aij) = l(bij) = 1, l(cij) = 1,

i ≡ 1 (mod 4), j = 1, 2, i ≡ 0 (mod 2), j = 1, 2, l(cij) = 1,

i ≡ 3 (mod 4), j = 1, l(cij) = 2, i ≡ 3 (mod 4), j = 2,
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then w(yi) = w(ai), then there are 2 adjacent vertices that have same color, it contradicts to
definition of vertex coloring. If

l(xi) = 1, l(aij) = l(bij) = 1, l(cij) = 1, i ≡ 1, 3 (mod 4),

j = 1, 2, i ≡ 0 (mod 2), j = 1, l(cij) = 2, i ≡ 0 (mod 2), j = 2, l(yi) = 2,

then

w(xi+1) 6= w(xi+2, w(yi) 6= w(ai), w(yi) 6= w(bi), w(yi) 6= w(ci).

We have the lower bound χlis(Pm

⊙

S3,n) ≥ 7.

After that, we will find the upper bound of χlis(Pm

⊙

S3,n).

Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 2, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1,

l(cij) =











1, for i ≡ 1, 3 (mod 4) and j = 1, 2 or

for i ≡ 0 (mod 2), i 6= m and j = 1,

2, for i ≡ 0 (mod 2), i 6= m and j = 2.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











12, for i = 1,m

13, for i ≡ 1, 3 (mod 4), i 6= 1,m,

14, for i ≡ 0 (mod 2),

w(yi) = 4, w(ai) = 5, w(bi) = 5,

w(ci) =

{

5, for i ≡ 1, 3 (mod 4), i = 1,m,

6, for i ≡ 0 (mod 2),

w(aij) = 2, w(bij) = 2, w(cij) = 2.

The upper bound is true: χlis(Pm

⊙

S3,n) ≤ 7. So χlis(Pm

⊙

S3,n) = 7 for
m ≡ 1, 3 (mod 4); m ≥ 5 and n = 2.

Case 7: m ≡ 0 (mod 2) m ≥ 4 and n ≥ 3.

First step to prove this theorem is to find the lower bound of V (Pm

⊙

S3,n). Based on Lemma 1,
we have χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.

Assume χlis(Pm

⊙

S3,n) = 6, it is true if

l(ai) = l(bi) = l(ci) = l(yi) = l(aij) = l(bij) = 1, l(cij) = 1, 1 ≤ i ≤ m,

1 ≤ j ≤ n− 1, l(cij) = 2, 1 ≤ i ≤ m, j = n,

then w(xi+1) = w(xi+2), then there are 2 adjacent vertices that have same color, it contradicts the
definition of vertex coloring. If

l(xi) = 1, l(aij) = l(bij) = l(yi) = 1, l(cij) = 1, i ≡ 1, 3 (mod 4), 1 ≤ j ≤ n,

i ≡ 0 (mod 2), i 6= m, 1 ≤ j ≤ n− 1, i = m, 1 ≤ j ≤ n, l(cij) = 2, i ≡ 0 (mod 2),

i 6= m, i 6= m, j = n, w(xi+1) 6= w(xi+2),

we have the lower bound of χlis(Pm

⊙

S3,n) ≥ 7. After that, we will find the upper bound
χlis(Pm

⊙

S3,n).
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Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 1, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1,

l(cij) =























1, for i ≡ 1, 3 (mod 4) and 1 ≤ j ≤ n or

for i ≡ 0 (mod 2), i 6= m, and 1 ≤ j ≤ n− 1 or

for i = m, and 1 ≤ j ≤ n,

2, for i ≡ 0 (mod 2), i 6= m and j = n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











3n+ 5, for i = 1,m,

3n+ 6, for i ≡ 1, 3 (mod 4), i 6= 1,

3n+ 7, for i ≡ 0 (mod 2), i 6= m,

w(yi) = 4,

w(ai) = n+ 2, for 1 ≤ i ≤ m,

w(bi) = n+ 2, for 1 ≤ i ≤ m,

w(ci) =

{

n+ 2, for i = m, or for i ≡ 1, 3 (mod 4),

n+ 3, for i ≡ 0 (mod 2), i 6= m,

w(aij) = 2, w(bij) = 2, w(cij) = 2,

The upper bound χlis(Pm

⊙

S3,n) ≤ 7. So χlis(Pm

⊙

S3,n) = 7 for m ≡ 0 (mod 2); m ≥ 4 and
n ≥ 3.

Case 8: m ≡ 1, 3 (mod 4), m ≥ 5 and n ≥ 3.
First step to prove the theorem in this case is to find the lower bound of V (Pm

⊙

S3,n). Based
on Lemma 1, we have χlis(Pm

⊙

S3,n) ≥ χ(Pm

⊙

S3,n) = 3.
Assume χlis(Pm

⊙

S3,n) = 6, if

l(xi) = l(yi) = l(aij) = l(bij) = l(cij) = 1, l(ai) = l(bi) = 1, l(ci) = 2,

then w(xi+1) = w(xi+2). Then there are 2 adjacent vertices that have same color, it contradicts
the definition of vertex coloring. If

l(xi) = l(ai) = l(bi) = l(ci) = 1, l(aij) = l(bij) = l(yi) = 1, l(cij) = 1, i ≡ 1, 3 (mod 4),

1 ≤ j ≤ n, i ≡ 0 (mod 2), 1 ≤ j ≤ n− 1, l(cij) = 2, i ≡ 0 (mod 2), j = n,

then w(xi+1) 6= w(xi+2). Based on that we have the lower bound χlis(Pm

⊙

S3,n) ≥ 7.
After that, we will find the upper bound of χlis(Pm

⊙

S3,n).
Furthermore, we define l : V (Pm

⊙

S3,n) → {1, 2} with vertex irregular 2-labelling as follows:

l(xi) = 1, l(yi) = 1, l(ai) = 1, l(bi) = 1, l(ci) = 1, l(aij) = 1, l(bij) = 1,

l(cij) =











1, for i ≡ 1, 3 (mod 4), and 1 ≤ j ≤ n or

for i ≡ 0 (mod 2), and 1 ≤ j ≤ n− 1,

2, for i ≡ 0 (mod 2), and j = n.

Hence, opt(l) = 2 and the labelling provides the vertex-weight as follows:

w(xi) =











3n+ 5, for i = 1,m,

3n+ 6, for i ≡ 1, 3 (mod 4), i 6= 1,m,

3n+ 7, for i ≡ 0 (mod 2),
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w(yi) = 4,

w(ai) = n+ 2, for 1 ≤ i ≤ m,

w(bi) = n+ 2, for 1 ≤ i ≤ m,

w(ci) =

{

n+ 2, for i ≡ 1, 3 (mod 4),

n+ 3, for i ≡ 0 (mod 2),

w(aij) = 2, w(bij) = 2, w(cij) = 2.

The upper bound is true: χlis(Pm

⊙

S3,n) ≤ 7. So χlis(Pm

⊙

S3,n) = 7 for m ≡ 1, 3 (mod 4),
m ≥ 5 and n ≥ 3. �

3. Conclusion

In this paper, we have studied the coloring of the vertices of the local irregular corona product by
the graph of the family tree. We determined the exact value of the local irregular chromatic number
of the corona product from the graph of the family tree, namely χlis(Pm

⊙

Cpn), χlis(Pm

⊙

S2,n)
and χlis(Pm

⊙

S3,n).

Acknowledgements

We gratefully acknowledge the support from University of Jember of year 2023.

REFERENCES

1. Fructh R., Harary F. On the corona of two graphs. Aequationes Math., 1970. Vol. 4. P. 322–325.
DOI: 10.1007/BF01844162

2. Kristiana A. I., Dafik, UtoyoM. I., Slamin, Alfarisi R., Agustin I.H., VenkatachalamM. Local irregularity
vertex coloring of graphs. Int. J. Civil Eng. Technol., 2019. Vol. 10, No. 3. P. 1606–1616.

3. Kristiana A. I., Utoyo M. I., Dafik, Agustin I. H., Alfarisi R., Waluyo E. On the chromatic number local
irregularity of related wheel graph. J. Phys.: Conf. Ser., 2019. Vol. 1211. Art. no. 0120003. P. 1–10.
DOI: 10.1088/1742-6596/1211/1/012003

4. Kristiana A. I., Alfarisi R., Dafik, Azahra N. Local irregular vertex coloring of some families of graph.
J. Discrete Math. Sci. Cryptogr., 2020. P. 15–30. DOI: 10.1080/09720529.2020.1754541

https://doi.org/10.1007/BF01844162
https://doi.org/10.1088/1742-6596/1211/1/012003
https://doi.org/10.1080/09720529.2020.1754541

	Introduction
	Result and discussion
	Conclusion

