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Abstract: A reverse time problem is considered for a semi-linear parabolic equation. Two-sided estimates
are obtained for the norms of values of a nonlinear operator in terms of the norms of values of the corresponding
linear operator. As a consequence, two-sided estimates are established for the modulus of continuity of a
semi-linear inverse problem in terms of the modulus of continuity of the corresponding linear problem.

Key words: Parabolic equation, Inverse problem, Modulus of continuity of the inverse operator, Approxi-
mate method, Error estimate.

Introduction

The article examines the reverse time problem for a semilinear parabolic equation. V. K. Ivanov,
V. N. Strakhov, and their disciples and followers developed the theory and worked out the tech-
nique to obtain error estimates for approximate methods of solution of linear ill-posed problems
on compact sets (correctness classes) (see, for example, [2, 3, 6]). This theory naturally introduces
the concepts of optimal and order-optimal approximate methods of solution of unstable problems.
The relevant concepts were introduced for nonlinear ill-posed problems as well (see, for exam-
ple, [9,10]) Various methods for solving nonlinear ill-posed problems were considered, for example,
in [1, 5, 7, 8, 11].

For linear ill-posed problems the technique for computing the error of optimal regularization
method on a correctness class is based on the connection between the error of the method and
modulus of continuity for the inverse operator, which can be calculated for each operator and
each correctness class M by means of the spectral technique [3, 6]. For nonlinear problems, the
connection between the error of the method and the modulus of continuity for the inverse operator
is also present; unfortunately, there seems to be no known method for calculation of the modulus
of continuity on correctness classes.

To the best of our knowledge, this paper is the first one to use the Volterra property of the
operator corresponding to the reverse time problem to obtain two-sided estimates for the norms
of values of a non-linear operator in terms of the norms of the values of the corresponding linear
operator. This allows us to get two-sided estimates for the modulus of continuity for the semi-linear
inverse problem on correctness classes through the modulus of continuity for the corresponding
linear problem, for which the calculation technique is well-known.

1Published in Russian in Trudy Inst. Mat. i Mekh. UrO RAN, 2013. Vol. 19. No 1. P. 253-257.
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1. An estimate of the modulus of continuity for the semi-linear inverse
problem

1.1. “Forward” problem for a parabolic equation

Consider an initial boundary value problem for a parabolic equation. That is, the function
v(x, t) ∈ C([t0; T ]; W 2,0

2 [0; l])∩C1((t0; T ); L2[0; l]) is to be determined from the following equations:

∂v

∂t
=

∂2v

∂x2
+ a(x)v + f(t, v(x, t)); t ∈ (t0; T ), x ∈ (0; l), (1.1)

v(t0, x) = ϕ(x) (0 < x < l),

v(t, 0) = v(t, l) = 0 (0 < t0 < t < T ),

where a(x) ∈ C2[0; l], ϕ(x) ∈ L2[0; l] are certain given functions. Here f : [t0; T ]×L2[0; l] → L2[0; l]
is a mapping that is Lipshitz continuous in v and the Holder continuous in t:

‖f(v1, t1)− f(v2, t2)‖L2[0;l] ≤ L‖v1 − v2‖L2[0;l] + K|t1 − t2|α

for all t1, t2 ∈ [t0; T ], v1, v2 ∈ L2[0; l], where the constants L, K do not depend on t, 0 < α < 1 .
Let Xn(x) denote the eigenfunctions of the Sturm-Liouville problem

X ′′
n + a(x)X(x) = µX, X(0) = X(l) = 0,

corresponding to the eigenvalues µn = −λ2
n and forming a complete orthonormal system in L2[0; l].

Problem (1.1) is equivalent to the integral equation

v(x, t) =
∞∑

n=1

e−λ2
ntϕnXn(x) +

t∫

0

( ∞∑

n=1

e−λ2
n(t−τ)fn(τ, v(x, τ))Xn(x)

)
dτ, (1.2)

where fn(t, v(x, t)) =
∫ l

0
f(t, v(x, t))Xn(x)dx; ϕn(t, v(x, t)) =

∫ l

0
ϕ(x))Xn(x)dx (see, for exam-

ple, [4]).
Consider the initial-boundary value problem for the linear parabolic equation corresponding

to problem (1.1). Namely, the function u(x, t) ∈ C([t0;T ]; W 2,0
2 [0; l]) ∩ C1((t0; T );L2[0; l]) is to be

determined from the following equations:

∂u

∂t
=

∂2u

∂x2
+ a(x)u; t ∈ (t0;T ), x ∈ (0; l), (1.3)

u(t0, x) = ϕ(x) (0 < x < l),

u(t, 0) = u(t, l) = 0 (0 < t0 < t < T ).

Problem (1.3) has a unique solution, which can be represented in the form

u(x, t) =
∞∑

n=1

e−λ2
ntϕnXn(x). (1.4)

Here, ϕn =
∫ l

0
ϕ(x)Xn(x)dx are the Fourier coefficients of ϕ(x) with respect to the orthonormal

system of functions Xn(x) (see, for example, [4]).
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Lemma. Consider functions ϕ1, ϕ2 ∈ L2[0; l]. Let u1(x, t), u2(x, t) be the corresponding solu-
tions to the problem (1.3), let v1(x, t), v2(x, t) be the solutions to the problem (1.1). Then, for every
t ∈ [t0;T ], the following inequalities hold

e−LTeLT ‖u1 − u2‖ ≤ ‖v1 − v2‖ ≤ eLT ‖u1 − u2‖.

P r o o f. It follows from equalities (1.2) and (1.4) that

v1(x, t)− v2(x, t) = u1(x, t)− u2(x, t)

+

t∫

0

( ∞∑

n=1

e−λ2
n(t−τ)

(
fn(τ, v1(x, τ))− fn(τ, v2(x, τ))Xn(x)

))
dτ. (1.5)

Thus, taking into account the Lipshitz continuity of f , we obtain the inequality

‖v1(x, t)− v2(x, t)‖ ≤ ‖u1(x, t)− u2(x, t)‖+ L

t∫

t0

‖v1(x, τ)− v2(x, τ)‖dτ. (1.6)

The estimate below follows from (1.6) by the Gronwall lemma:

‖v1(x, t)− v2(x, t)‖ ≤ eLT ‖u1(x, t)− u2(x, t)‖. (1.7)

From equality (1.5), we can also obtain the following:

u1(x, t)− u2(x, t) = −(v1(x, t)− v2(x, t))

+

t∫

0

( ∞∑

n=1

e−λ2
n(t−τ)

(
fn(τ, v1(x, τ))− fn(τ, v2(x, τ))Xn(x)

))
dτ ;

hence, taking into account the Lipschitz continuity, we get

‖u1(x, t)− u2(x, t)‖ ≤ ‖v1(x, t)− v2(x, t)‖+ L

t∫

t0

‖v1(x, τ)− v2(x, τ)‖dτ. (1.8)

Moreover, in view of (1.7), inequality (1.8) implies that

‖u1(x, t)− u2(x, t)‖ ≤ ‖v1(x, t)− v2(x, t)‖+ LeLT

t∫

t0

‖u1(x, τ)− u2(x, τ)‖dτ. (1.9)

From (1.9), by the Gronwall lemma, we have

‖u1(x, t)− u2(x, t)‖ ≤ eLTeLT ‖v1(x, t)− v2(x, t)‖. (1.10)

The statement of lemma follows from inequalities (1.7) and (1.10).
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1.2. The inverse problem for a parabolic equation

Consider the reverse time problem for a semi-linear parabolic equation. That is, we have to
determine a function ϕ(x) ∈ L2[0; l] such that the solution of initial-boundary value problem (1.1)
satisfies the condition

v(x, T ) = χ(x), (1.11)

where χ(x) ∈ L2[0; l] is a given function from the range of the forward problem. Namely, we assume
there exists a function ϕ(x) ∈ L2[0; l] such that the forward problem takes it to χ(x), where χ(x)
is given explicitly.

Simultaneously, we consider the inverse problem for the corresponding linear equation. Let
χ̂(x) denote the solution to linear forward problem (1.3) with the initial condition u(0, x) = ϕ(x),
0 < x < l, and consider the inverse problem with the following condition:

u(x, T ) = χ̂(x), (1.12)

where u(x, t) is the solution of initial boundary value problem (1.3) for the linear equation. Hence,
in parallel with nonlinear inverse problem (1.1), (1.11), we consider the inverse problem for the
linear equation, i. e., we have to determine a function ϕ(x) ∈ L2[0; l] such that the solution to
initial boundary value problem (1.3) satisfies condition (1.12).

Let M ⊂ L2[0; l] be a compact set. We assume that, for a given function χ(x) ∈ L2[0; l],
nonlinear inverse problem (1.1), (1.11) has an exact solution ϕ(x) belonging to the set M , but the
values of the function χ(x) are unknown; instead we know approximate values of the given function,
that is, we know a function χδ ∈ L2[0; l] such that ‖χ− χδ‖ < δ. Given the initial data, we are to
determine an approximate solution ϕδ to the reverse time problem and to estimate its deviation
from the exact solution.

Consider the following values:
ω(M, δ) = sup{‖ϕ1 − ϕ2‖ : ϕ1, ϕ2 ∈ M, ‖χ1 − χ2‖ ≤ δ} is a modulus of continuity for the

nonlinear inverse problem,
ω̂(M, δ) = sup{‖ϕ1−ϕ2‖ : ϕ1, ϕ2 ∈ M, ‖χ̂1− χ̂2‖ ≤ δ} is a modulus of continuity for the linear

inverse problem.
The following theorem holds.
Theorem. There exists δ0 > 0, such that for all 0 < δ < δ0 the following inequalities hold:

ω̂(M, e−LT δ) ≤ ω(M, δ) ≤ ω̂(M, eLTeLT
δ).

P r o o f. Consider ϕ1, ϕ2 ∈ M . We estimate the value ω(M, δ) using the inequalities obtained
in the lemma.

Find the upper estimate of ω(M, δ). Write inequality (1.10) for t = T :

‖χ̂1 − χ̂2‖ ≤ eLTeLT ‖χ1 − χ2‖.
Therefore, the conditions ϕ1, ϕ2 ∈ M , ‖χ1 − χ2‖ ≤ δ implies that ‖χ̂1 − χ̂2‖ ≤ δ1, where
δ1 = eLTeLT

δ.
Thus, by definition of the modulus of continuity

ω(M, δ) ≤ ω̂(M, eLTeLT
δ).

Find the lower estimate of ω(M, δ). Write inequality (1.7) for t = T :

‖χ1 − χ2‖ ≤ eLT ‖χ̂1 − χ̂2‖.
Denote δ2 = e−LT δ. Taking into account the inequality above, we see that the conditions ϕ1, ϕ2 ∈
M ‖χ̂1 − χ̂2‖ ≤ δ2 imply that ‖χ1 − χ2‖ ≤ δ. Hence, by definition of the modulus of continuity,

ω(M, δ) ≥ ω̂(M, e−LT δ).

This completes the proof.
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2. Examples

Example 1. Consider the set M1 of functions ϕ(x) ∈ L2[0; l] such that

∂2kϕ

∂x2k
∈ L2[0; l] (k = 1, . . . ,m),

ϕ(0) = ϕ(l) = 0, ϕ(2k)(0) = ϕ(2k)(l) = 0 (k = 1, . . . , m− 1);
∥∥∂2mϕ

∂x2m

∥∥
L2[0;l]

≤ r.

Calculating the modulus of continuity for problem (1.3), (1.12) in the way suggested in [1, 11], we
obtain

ω̂(M1, δ) = 2r
(T − t0)m

lnm(r/δ)
.

Using the theorem, we get the following estimate of the modulus of continuity for semi-linear
problem (1.1), (1.11) on the set M1:

2r(T − t0)m

(
ln reLT

δ

)m ≤ ω(δ,M1) ≤ 2r(T − t0)m

(
ln r

LeLT δ

)m .

Example 2. Consider 0 < t0 < T . We define the set M2 using the linear problem

∂u

∂t
=

∂2u

∂x2
+ a(x)u; t ∈ (0;T ), x ∈ (0; l),

u(0, x) = u0(x) (0 < x < l),

u(t, 0) = u(t, l) = 0 (t0 < t < T ).

Denote ϕ(x) = u(t0, x). We consider the set of functions

M2 = {ϕ(x) ∈ L2[0; l] : ‖u0‖ ≤ r}.

Find the estimate of the modulus of continuity for semi-linear inverse problem (1.1), (1.11) on the
set M2. Examine linear problem (1.3), (1.12). The theorem implies that

ω̂(M2, e
−LT δ) ≤ ω(M2, δ) ≤ ω̂(M2, e

LTeLT
δ).

The standard calculations for the linear problem (see, for example, [2]) allow us to obtain the
estimate

2e−Lt0eLt0
r

T−t0
T δ

t0
T ≤ ω̂(M2, δ) ≤ 2eLt0r

T−t0
T δ

t0
T .

Finally, we obtain

2eLt0(1−eLt0 )r
T−t0

T δ
t0
T ≤ ω(δ,M2) ≤ 2eLt0(1+eLT )r

T−t0
T δ

t0
T .
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