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Abstract: For the multidimensional heat equation, the long-time asymptotic approximation of the solution
of the Cauchy problem is obtained in the case when the initial function grows at infinity and contains loga-
rithms in its asymptotics. In addition to natural applications to processes of heat conduction and diffusion,
the investigation of the asymptotic behavior of the solution of the problem under consideration is of interest for
the asymptotic analysis of equations of parabolic type. The auxiliary parameter method plays a decisive role
in the investigation.
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1. Introduction

In 1822, J. Fourier published his most fundamental work [4], where the heat conduction equation
was presented and analyzed. This event provided a strong impetus for later researches in the fields
of partial differential equations and trigonometric series. The famous equation has been further
successfully used for effective descriptions of molecular diffusion, stochastic motion, the capillary
conduction of liquids in porous media, and even for the analysis of social economic data. Already
Fourier himself pointed out the universality of this mathematical model sine qua non in his eminent
book as follows: “Il est facile de juger combien ces recherches intéressent les sciences physiques et
I’économie civile, et quelle peut étre leur influence sur les progres des arts qui exigent I’emploi
et la distribution du feu.”? Fourier’s preliminary theoretical studying of heat phenomena and
some vivid particulars of his elaborations in early 1800s are expressively reflected in the prefatory
part of [4]. The historical survey [10] supplied with appropriate general and specialized references
depicts many significant details of the subsequent life of the heat equation during the XIX and XX
centuries.

Since the literature about the heat equation, in particular, and parabolic equations, in general,
is immense, it is impossible in this introduction to give a complete picture of available results, and
the bibliography below is of course by no means exhaustive. Here, we mention that existence and
uniqueness theorems were obtained for a wide class of parabolic equations and systems [6, 15, 18, 19];
some results for unbounded solutions were presented in [11, 13]. As for the long-time behavior
of solutions, we see that their stabilization, certain estimates, and the leading terms of asymptotics

'Dedicated to the 200th anniversary of Charles Hermite and “Théorie analytique de la chaleur” by
Joseph Fourier.

24Tt is easy to judge how much these researches are interesting for the physical sciences and the civil
economy and what may be their influence on the progress of the arts which require the employment and the
distribution of fire.”
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were mainly considered [2, 8, 12, 17]. Complete asymptotic expansions of solutions into infinite
series in inverse integer powers of the time variable were earlier obtained by Friedman in [5] and [6,
Ch. 6] for bounded space-domains.

In the present paper, the long-time asymptotics of the solution of the Cauchy problem for the
multidimensional heat equation

ou  0%u 0%u

e T > 9, 1.1

ot 0x? o oz’ ZHm (11)
w(zy, ..oy Tm, 0) = Az1,. .., Zm),  (21,...,2m) € R™, (1.2)

is obtained for a locally Lebesgue integrable initial function A : R™ — R of polynomial growth.
As is well known [18], in the class of smooth functions of moderate growth for ¢ > 0, there exists
a unique solution of problem (1.1)-(1.2) and it can be written in the form of the Poisson integral®

u(z,t) = WRZ A(s)exp < s ;tx‘z)ds, (1.3)

where = (21,...,2,) ER™, s =(81,...,87,) € R™, and ds = dsj ... dsn,.

It should be noted that the investigation of the asymptotic behavior of the function u(x,t),
in addition to possible natural applications to the modeling of physical processes of heat conduction
and diffusion, may be of interest for the asymptotic analysis of solutions of nonlinear parabolic
equations by the matching method [9, 21] as well as for the theory of invariants [7] and some issues
of matrix geometry [14].

Below, a complete asymptotic expansion of the solution w(z,t) of problem (1.1)—(1.2) is found
as |z| +t — +oo under the following suppositions:

Azy,...,2m) =0, x1 <0, (1.4)
[e.e] n )
ANz, ) = af Z x " Z Ay (@) In? 21, @1 — 400, (1.5)
n=0 j=0
where p is a positive integer and A, ;(z") are Lebesgue integrable functions of @’ = (z2,...,%m);

for simplicity, we also suppose that
supp A C {(@1,...,&m) 121 > 0, |z2| 4+ ...+ |wm| <ai}, v >0,

(1.6)
supp A, ; C {(xg,...,xm) Clee| 4 || < rn}, ry > 0.

Although A is a function of several variables, the asymptotic series (1.5) must be understood here
in the usual sense of Poincaré [16, § 1] due to the second condition (1.6), that is

N-1 n
Ay, . o) = Z L ZAn,j(:c') W’ 2y 4 O (af N I x1), @1 — +00, (1.7)
n=0 =0

for any integer N > 1. It should be also said that the appearance of asymptotic series of form (1.5)
is typical for the matching method [9].

The main difficulty of the calculation of the asymptotic expansion of integral (1.3) is exactly
due to condition (1.5) and the “smearing” of the integrand exponent as ¢ — +oo; if we formally
put ¢ = 400, then we generally get the divergence of the integral. Thus, the asymptotic limit under
consideration is diametrically opposite to the well-known case of the integrals of Laplace’s type
with the sharpening exponent and a suitable computational technique suggested by Danilin in [1]
is therefore complementary to the standard Laplace method. This technique is called the auxiliary
parameter method.

3In essence, this solution was given by Fourier [4, Ch.IX, §392].
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2. Applying the auxiliary parameter method

To obtain the asymptotic behavior of integral (1.3) as the space-time variables (z,t) indepen-
dently tend to infinity, we apply a scheme similar to that used in [20] for the solution of the heat
equation in R. x R;". First of all, taking into account condition (1.4), we represent function (1.3)
in the form of the sum

u(z,t) = Up(x,t) + Uy (z,t), (2.1)
where
) +oo
Up(z,t) = / / ...ds'dsy, Uj(z,t) = / / ... ds'dsy,
0 Rjm-1 (i) Rm—1
o(xt) = (22 + )7, 0<p<1, (2.2)

the dots denote the integrand in formula (1.3) together with the factor (47t)~™/2, the number j3
is an arbitrary parameter, and ds’ = dss ... ds;,. Under conditions (1.4) and (1.5), the asymptotics
of the integrals Uy(z, t) and Uy (z,t) can be computed by using the expansions of the kernel exponent
and the initial function A, respectively.

2.1. Asymptotics of U;(z,t)

In the integral Uy(x,t), we make the change s; = 224/t and put
o(x,t) x1

plz,t) = NG ) 771:2—\/%.

Next, using condition (1.5), for any integer N > p + 1, we obtain (hereinafter we often omit

(2.3)

the arguments of o and )

+o0o
1 2 / |s" —a']? '
Up(z,t) = 2 (4g) (D2 exp (—(m — 2)?) A(22V't,s') exp BT ds'dz
1 Rm—1
tp/2

ZQP "t ”/QZ/zp "In? (22v/1) exp (—(z —m) %) dz

L s — 2|2
“rn D72 / Angs )eXp< %)dHR(m,t),

Rm—1
where
My [ -
|R(z,t)| < 7]: / szl’lenN S1€xp (—@%) ds1, My >0,
g

by formula (1.7). Then, for N > p + 1, we have

/2 '1 400

_ _ n't e

(x,t) Z op—ny=n/2 ZZ SUTTE / P Ind 7 (22) exp (—=(z—m)?) dz

=0 1=0 L

1 / s — 2/ ? / p—N 1. N
xm Ay j(s) exp T ds'+ 0 (6" In" o)
Rm—1
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as 0 = o(x,t) — +00. Changing the order of summation, we find

—+00
|2p n—I

tp/2 Z + n/2 Zln tz \/_ll j _l / Lp—n lnj*l(Qz) exp (—(z — 771)2) dz

(2.4)

1 2
*{r)mD72 / Ang(e) exp <_%> ds' +0 (6" NIV o), o= +oo.
Rm—1

To handle the integral with respect to z, it is convenient to consider first the following set of inde-
pendent variables:

To={(z,t) : e R™ t 2 [2[*>1, 1+ 8 <a<2}. (2.5)

The obvious inequalities
o(x,t) < (1Y +1)P12 < 28/24Ple

for (x,t) € T, imply that
t>272[o(z,t)]*P  for (x,t) € Ta; (2.6)

therefore, on account of the first definition (2.3), we obtain

0 < p(x,t) <24 Vo (z, )77 for (x,t) € Ty, where ~= ﬁ —-1>0. (2.7)
For 0 < n < p, we have

400 +00 K
/ P Ind 7 (22) e~ (Emm)’ gy = / P Ind 7 (22) e~ (emm)’ gy — /zp_"lnj_l(lz) e~ (Emm)? g,
o 0 0

+o00 K

= /(771 +5)P " Ind L (2(my + 8)) e ds — /z”_" In?=!(22) e~ (E=m)’ gz,
-m 0

Since by (2.7) p — +0 as 0 — +oo for (z,t) € Ty, it follows that

i . 2 = (p—n)p " b , 2
/ P T (22)e" M) g = Z q'(p——nl—q)' / s 2(n1 + s)]e”* ds
p 7=0 - (2.8)

e Z Ve Inb w+ 0 (67), o — +oo,
s:r2+12#£0

where the finite sum over s with b, being some constants and ng, s, ls being some nonnegative
integers depends naturally on N. For n > p, we have

+00 +oo
/ zp_"lnj_l(2z) e (z=m)® g, — / zp_"lnj_l(2z) e (z=m)? g,
nw 1

1 n—p—1

1
"‘/lnj_l(QZ)‘I’n—p(Zﬂh)dz+e_’7% > Pr(m)/lnj_l(Q,z)z“rp_"dz,
In

1 r=0
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where P,.(n;) are some polynomials of degree r,

n—p—1
Uy p(z,m) = 297" [e(zm)2 . efn% Z Hr(m)z_'} (2.9)
r=0

and the sum in the square brackets is a partial sum of the Maclaurin series for the function
exp(2zm; — 2?) in variable z with H,.(n;) being the Hermite polynomials of degree r. This implies
the equality

+oo
/ 2P nd7(22) e~ (F=m) gy
In
+o0
= / 7" Ind7(22) o L P Z bl e e Int (2.10)

s:r2+12:£0

1 H
—|—/an L22)W,,_ p(z,m)dz—/lnjl(2z)\I’np(z,171)dz
0 0

with b” being some constants and ng, s, [s being some nonnegative integers. From formula (2.9)
we easily conclude that the function W,,_,(z,71) has no singularities as z — 0; therefore, the last
two integrals in (2.10) converge and relation (2.10) itself thus becomes

+00

/ P Ind 7 (22) e~ (Emm)? gy = Tpmgi(m) + e Z oY e Inbs yu + O (™) (2.11)

L s:T2412#£0

as 0 — 400, where

+0o0 1
Jpmji(m) = /zp_"lnj_l(lz) e_(z_m)de+/1nj_l(2z)\11n_p(z,771)dz, (2.12)
1 0

b are some constants, ng, rs, ls are some nonnegative integers, and +y is defined in (2.7).
Using the second condition (1.6) and Maclaurin’s expansion for the exponent in the integrand
of (2.4) in 't~ /2, for any natural N* > 1, we obtain

1 ! |S, — :C/|2 /
G- / st (- )
Rm—l
N*—1

(2.13)

where Ql(n’j )(77’ ) are some [th degree polynomials in 1’ = 2-1¢71/24/ whose coefficients depend on n
and j. Substituting expressions (2.8), (2.11), and (2.13) into formula (2.4) and taking into account
that 0~ (220N = O(¢=N), since v + /28 = a/f — 1 > 1, we find that

Uy (z,t) = tP=m+1)/2 Z t_"/ZZS YIn't + Vi (1,1, t) + O (6PN 1InN o) (2.14)
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as 0 — 400, where, according to formulas (2.9) and (2.12), the coefficients §n7l(77) are some smooth
functions of polynomial growth for 0 < n < p and of superexponential decreasing for n > p,

Vin(un,t) =exp (=[n*) > aitbnmp Il p (2.15)
s:72412#0

is a finite sum with ™ = 77;“’5 ...mm™*, a’, being some real constants, ks being half-integer numbers,
and njs, s, ls being some nonnegative integers. Because of the factor exp(—|n|?), the estimate
of the remainder in formula (2.14) remains true for the values of the independent variables from
the set

Xo={(z,t) : |z| >1, 0<t <|z|*}, (2.16)
since for (x,t) € X, there hold the following inequalities:
2 8
= EEEDT opyPla =209 g2 > Zjape > Lor-ors, (247)
2.2. Asymptotics of Uy(z,t)
Now, let us pass to the evaluation of the integral
o(z,t)
Us(z, 1) ! /d /d’A( ') s — o,
z,t) = —— s s A(s1,s )exp | — S.
OB = rtym/2 L 1,87 XP 4t
0 Rm—1
From the obvious inequality |z|?> < [o(z,t)]?/# and inequality (2.6) we conclude that
Els —25 TSk 2MiSk 5 a—1
— =0 — = =0 0= -1>0 2.18
=0, T I o), -2 , (218)

for |s| < o and (z,t) € T,, where 1 < k< m. Then, using conditions (1.6), (1.7) and esti-
mates (2.18), we represent the integral Uy(x,t) in the following form:

ex s14 ...+ 0msm |52\
Uo(x,t) = mef L?/‘Q [/ / A(s1,s <771 ! \/Z " ’4’t> ds'd51+0<ap+1 6N)]

as 0 — +oo with any N > 1. Because of the factor exp(—|n|?), the estimate of the remainder
holds also true on the set X, defined by (2.16). Expanding the parenthesis in the above formula
for Uy(x,t) and changing the order of summation, we obtain

g

Ui, ) = "2 Zt‘"” St [ A

0<k1+...+km<n 0 pm—1
0<li+Hz,2+...+Hl2m<n

eXp(—WQ) +1-6N
+O<7tm/2 aP )

as 0 — +o00, where ap; = Gk, kpnlilss,. . lom ar€ some constants, = n’fl...n,]f]m,

and (s')2 = sl; 2 si%m Keeping in mind the asymptotic condition (1.7), we transform the mul-
tiple integral appeared above as follows:

/ / lQA (s1,8")ds'dsy = / / lQA (s1,8") ds'dsy

0 rRm—1 0 Rm—1
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A p+li+1 q

+/ / st (s [A(Sl, sy — Z Z ") In’ 51] ds'dsy
1 pm—1 q=0 =0
‘ ptli+1
+/ / [(s')l2 Z path ZAQJ ) In’ sl}ds dsy
1 gm—1 q=0
p+li+1
Z Cly la,j it o+ Z cEliZﬂ,j o'ln? o + O(O'_N* In™N" a), o — +o0,
j=0 i,j: 10

with ¢, 1, 5 and ¢, ij . being some constants, where the finite sum over ¢,j depends naturally
on a sufficiently large N *; here we used the elementary relation

[

l'|lnjfl (_1)JJ|
1 i ds1 = k+1 ) k+1 A A, k > i>1).
/81 n- s1as81 = 0 Z k‘ + 1)l+1(] — l) + (U )(k‘ n 1)J+1 ( 0’ J )

1
From formulas (2.3), inequality (2.6), the uniform estimate
=2 exp (—|nf?) = O(o—™/?F),
and the previous asymptotic expression for Uy(z,t), it follows that
pt+n+2

exp . B
Ui(e.t) = 2D Zt P a4 o) + O ) @19

as 0 — +o00, where ¢ is defined in (2.18), II,, ;(n) are some polynomials of degree n, and the finite
sum

Vo (umt) =exp (=[n?) Y altbonpu "y, (2:20)
s:1r2+127£0

with a!/ being some constants, is obtained similarly to expression (2.15).

2.3. Evaluation of the “virtual terms”

In the sequel, it is convenient to suppose that 1+ 5 < a < 1+ 23, whence we find the in-
equalities 0 < § = (« —1)/8 —1 < 1 and the asymptotic estimate o» ¥ InVo = O (ap“*‘w)

as 0 — +o00. Then substituting expansions (2.14) and (2.19) into formula (2.1), we summarize
the results of the previous two subsections as follows.

Lemma 1. For the solution of the Cauchy problem (1.1)—(1.2), the asymptotic formula

p+n+2

N-—1 n
u(a,t) =723 {Zt@“)/?’s;,l(n) 't + 3 () exp (~[nl?) Ind ¢
n=0 =0 7=0

+ VO,N(M, 7, t) + VI,N(/L, 7, t) + O(O.p—l—l—&N)

(2.21)

holds true as o — +oo, where N > p+ 1, Sn]( ) are smooth functions of polynomial growth,

I1,, j(n) are nth degree polynomials, and the functions Vo n(u,n,t) and Vi n(p,n,t) are defined by
expressions (2.15) and (2.20).
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Now we must evaluate the “virtual terms” that depend on the value
p(z,t) = 27147 Y2(|z|? + t)#/? with the arbitrary parameter f§.

From inequalities (2.17), we conclude that, for (x,t) € X,, any integer numbers ng j, 7, ls, and
half-integer number ks, there exist C' > 0 and ¢ > 0 such that

‘tksnys’jurs In's 11| exp (=In*) < Co%exp ( — 8_10(2_0‘)/5).

Consequently, the expressions Vo n (i, n,t) and Vi y(p,n,t) in formulas (2.14) and (2.19) are expo-
nentially small for (z,t) € X,, since o < 2 by (2.5).

For (x,t) € Ty, we introduce a small quantity € = (|z|? + t)~'/4; whence, according to (2.2) and
(2.3), we easily get the relations

o= p=2"11272% (2.22)

Then, by formulas (2.15), (2.20), and (2.22), we have

L(N)
‘/O,N(,u'a 7, t) + Vl,N(:u'a 7, t) = exp (_’77‘2) Z a;l/ tks 1nks t 7711587257“5 lnls 82[37 (223)
s=1
where ¢ — 40 as |z|?> +t — +oo, L(N) € N, @ are some constants, 5™ = n>" ...0m", ks

are half-integer numbers, k., ns ;, s, ls, are nonnegative integers such that r2+12#£0, and B is
an arbitrary parameter, without loss of generality, such that 0 < 81 < 8 < B2 < 1, where 81 < Bs.

By virtue of the arbitrariness of the value /3, from formulas (2.21) and (2.23) with 8 = /;
and 8 = B2 such that all numbers 20171, ..., 26171 (N), 208271, .., 28271 () are pairwise distinct,
we obtain the following asymptotic relation with 72 + 12 # 0:

L(N)
exp (—’77‘2) Z ay' ths Inks ¢ n"s <€7251”S Inbs 281 — g=2B2ms 1pls 5252> = O<52(0‘*1*51)N*251 (p“))
s=1

as ¢ — 40. Consequently, taking into account the finiteness of the sum in the left-hand side,
we have to conclude about every particular term in the left-hand side that either its order is not
greater than the estimate in the right-hand side or the corresponding coefficient a!’ is equal to zero.
Thus, we arrive at the following statement with 5 = ;.
Lemma 2. For some 3 € (0,1) and € (14 3,1+ 25), the asymptotic estimate
‘/O,N(M7 n, t) + VlyN(M’ n, t) =0 ((‘.%"2 + t)i(ailiﬁ)N/2+B(p+1)/2> (224)

holds true as |x|* +t — +oo.

3. Asymptotics of the solution

Immediately from Lemmas 1 and 2, we obtain our main result.

Theorem 1. Let u: R™ x Rt — R be the solution of the Cauchy problem

ou 82u+ +82u £ 0 S 9
— =4 ...+ — m > 2,
ot 023 ox2,’ ’

w(z, .oy Tm, 0) = A1, ..y 2),  (21,...,2m) € R™,
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with a locally Lebesque integrable initial function A : R™ — R. And let the following conditions
be fulfilled:

Azxy,...;zm) =0 for z <0,

[o.¢] n
Ay, .. y) = of E x " E A j(z2, ..., xm)In’ 21 as x1 — 400,
n=0 =0

where p is a positive integer,
suppA C {(xl,...,mm) cx1 >0, |z .. T < x{}, v >0,
suppAp ; C {(xQ,...,xm) Slae| 4 ] < rn}, rp > 0.

Then there holds the asymptotic formula

0o p+n+2
(T, .. Ty, t)=t™/2 Z /2 Z In’ t [t(pﬂ)/QSn,j(m, ooy m) (- ) €xp (—|77|2) ]
n—0 =0

as |z1| + ... + |zm| +t = +00, where Sy, j(N1,...,Mm) are smooth functions of polynomial growth
and I1,, ;(n1,...,nm) are nth degree polynomials in the self-similar variables
I Tm

771:2—\/%7 cee 77m—2—\/5-
4. Conclusion

According to formulas (2.14), (2.19), and (2.24), the obtained expansion of the solution in
Theorem 1 is understood in the sense of Erdélyi [3, Definition 2.4] with the gauge (asymptotic)
sequence {(|z|? 4+ ¢)7PN}5_,, where p > 0, that is

N-1 p+n—+2 . - ‘x’2
_ —(m4n)/2 1 1)/2 ) '
u(x,t) = nzzot (m+n)/ jzo In? t[t(m- )/ S”J<—2\/Z> —{—Hn,](—z\/%) exp < - )]

+0 ((Jz]* + t)="N)

for each N > p+1 as |z[> +t — +o0. In general, the exact formulas for S, j(n) and II, ;(n) are
fairly cumbersome; however, by using the above proofs, one can derive them in particular cases.
Note that, as shown by earlier investigations, asymptotic expansions in half-integer powers of ¢ are
naturally intrinsic to solutions of the heat equation, see, for example, [19, Ch. X, §1] and [20].

In conclusion, following Poincaré’s thesis “sans généralisation, la prévision est impossible”* (
his “La Science et I’Hypothese”, Ch.IX), it is appropriate to say that the immense variety of asymp-
totics of initial data together with the account of possible external sources of heat opens a wide
field of further investigation of the long-time behavior of heat distribution by the above-presented
method; in addition, other types of equations whose solutions have the form of convolutions can
also be treated in a similar way.

see
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