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Abstract: Let P (z) be a polynomial of degree n, then concerning the estimate for maximum of |P ′(z)| on
the unit circle, it was proved by S.Bernstein that ‖P ′‖∞ ≤ n‖P‖∞. Later, Zygmund obtained an Lp-norm
extension of this inequality. The polar derivative Dα[P ](z) of P (z), with respect to a point α ∈ C, generalizes
the ordinary derivative in the sense that limα→∞Dα[P ](z)/α = P ′(z). Recently, for polynomials of the form
P (z) = a0 +

∑n
j=µ ajz

j , 1 ≤ µ ≤ n and having no zero in |z| < k where k > 1, the following Zygmund-type

inequality for polar derivative of P (z) was obtained:

‖Dα[P ]‖p ≤ n
( |α|+ kµ

‖kµ + z‖p

)

‖P‖p, where |α| ≥ 1, p > 0.

In this paper, we obtained a refinement of this inequality by involving minimum modulus of |P (z)| on |z| = k,
which also includes improvements of some inequalities, for the derivative of a polynomial with restricted zeros
as well.

Keywords: Lp-inequalities, Polar derivative, Polynomials.

1. Zygmund type inequalities for polynomials

Let Pn denote the space of all complex polynomials of degree at most n. Define

‖P‖p :=

(

1

2π

∫ 2π

0

∣

∣P (eiθ)
∣

∣

p
dθ

)1/p

, 0 < p <∞.

It is well known that the supremum norm satisfies

‖P‖∞ := max
|z|=1

|P (z)| = lim
p→∞

‖P‖p .
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It is also known [11] that lim
p→0

‖P‖p = ‖P‖0, where

‖P‖0 := exp

(

1

2π

∫ 2π

0
log

∣

∣P (eiθ)
∣

∣dθ

)

.

Let Dα[P ](z) denote the polar differentiation (see [12]) of a polynomial P(z ) of degree n with
respect to a complex number α, then

Dα[P ](z) := nP (z) + (α− z)P ′(z).

Note that Dα[P ](z) is a polynomial of degree at most n−1 and it generalizes the ordinary derivative
P ′(z) of P (z) in the sense that

lim
α→∞

Dα[P ](z)

α
= P ′(z)

uniformly with respect to z for |z| ≤ R, R > 0.
If P ∈ Pn, then

‖P ′‖p ≤ n‖P‖p. (1.1)

Inequality (1.1) is due to Zygmund [21] for the case p ≥ 1. In its proof, he uses M. Riesz’s inter-
polation formula by means of Minkowski’s inequality and obtained this inequality as an Lp-norm
analogue of Bernstein’s inequality (for details see [13] or [20]). A natural question was raised here:
whether the restriction on p was indeed necessary? The question remained open for quite a long
time despite some partial answers. Finally, it was Arestov [1] came up with some remarkable re-
sults which among other things proved that the inequality (1.1) remains valid for 0 < p < 1 as
well. This result is sharp as shown by P(z) = azn, a 6= 0. Arestov [2] also obtained some sharp
Bernstein–Zygmund type inequalities for the Szegö composition operators on the set of algebraic
polynomials with restrictions on the location of their zeros.

For the class of polynomials P ∈ Pn having no zero in |z| < 1, inequality (1.1) can be sharpened.
In fact, if P ∈ Pn and P(z) 6= 0 for |z| < 1, then

∥

∥P ′
∥

∥

p
≤

n

‖1 + z‖p
‖P‖p , p ≥ 1. (1.2)

Inequality (1.2) is due to De Bruijn [7]. Later Rahman and Schmeisser [16] followed Arestov’s
technique and proved that this inequality remains true for 0 < p < 1 as well. The estimates is
sharp and equality in (1.2) holds for P(z) = azn + b, |a| = |b| 6= 0.

Govil and Rahman [10] generalized inequality (1.2) and proved that if P ∈ Pn does not vanish
in |z| < k where k ≥ 1, then

∥

∥P ′
∥

∥

p
≤

n

‖k + z‖p
‖P‖p , p ≥ 1. (1.3)

Let Pn,µ ⊂ Pn be a class of lacunary type polynomials

P (z) = a0 +

n
∑

j=µ

ajz
j ,

where 1 ≤ µ ≤ n.
As a generalization of inequality (1.3), it was shown by Gardner & Weems [8] that if P ∈ Pn,µ

and P (z) 6= 0 for |z| < k, k ≥ 1, then

∥

∥P ′
∥

∥

p
≤

n

‖kµ + z‖p
‖P‖p , p > 0. (1.4)
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Aziz and Rather [5] extended inequality (1.2) to the polar derivative of a polynomial and proved
that if P ∈ Pn and P (z) does not vanish in |z| < 1, then for α ∈ C with |α| ≥ 1, and p ≥ 1,

‖Dα[P ]‖p ≤ n

(

|α|+ 1

‖1 + z‖p

)

‖P‖p . (1.5)

Concerning the concept and properties of the polar derivative refer to [14].
Aziz et. al [6] also obtained an analogue of inequality (1.3) to the polar derivative and proved

that if P ∈ Pn and P (z) 6= 0 for |z| < k where k ≥ 1, then for α ∈ C with |α| ≥ 1 and p ≥ 1,

‖Dα[P ]‖p ≤ n

(

|α|+ k

‖k + z‖p

)

‖P‖p . (1.6)

Rather [17, 18] showed that inequalities (1.5) and (1.6) remain valid for 0 < p < 1 as well.
Recently, as a generalization of inequality (1.6), Rather et. al [19] proved that if P ∈ Pn,µ and

P (z) does not vanish in |z| < k where k ≥ 1, then for α ∈ C with |α| ≥ 1 and 0 ≤ p <∞,

‖Dα[P ]‖p ≤ n

(

|α|+ kµ

‖kµ + z‖p

)

‖P‖p . (1.7)

2. Main results

In this paper, we obtain a refinement of inequality (1.7) by involving the minimum modulus of
a polynomial. We prove the following main result.

Theorem 1. If P ∈ Pn,µ and P (z) does not vanish in |z| < k where k ≥ 1, then for α ∈ C

with |α| ≥ 1, 0 ≤ p ≤ ∞ and 0 ≤ t ≤ 1,
∥

∥

∥

∥

|Dα[P ]|+ nmt

(

|α| − 1

1 + kµ

)
∥

∥

∥

∥

p

≤ n

(

|α| + kµ

‖z + kµ‖p

)

‖P‖p, (2.1)

where m = min|z|=k |P (z)|.

Since
nmt(|α| − 1)

1 + kµ
≥ 0 for |α| ≥ 1,

then one can easily observe that

‖Dα[P ]‖p ≤

∥

∥

∥

∥

|Dα[P ]|+ nmt

(

|α| − 1

1 + kµ

)
∥

∥

∥

∥

p

,

and this implies that the Theorem 1 is a refinement of inequality (1.7).
If we divide both sides of inequality (2.1) by |α| and let |α| → ∞, we obtain the following

refinement of inequality (1.4).

Corollary 1. If P ∈ Pn,µ and P (z) does not vanish in |z| < k where k ≥ 1, then for 0 ≤ p ≤ ∞,
∥

∥

∥

∥

|P ′|+
nmt

1 + kµ

∥

∥

∥

∥

p

≤
n

‖z + kµ‖p
‖P‖p, (2.2)

where m = min|z|=k |P (z)|. The result is best possible as shown by the polynomial

P (z) = (zµ + kµ)n/µ,

where µ divides n.
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Inequality (2.2) also includes a refinement of (1.3). By taking k = 1 and µ = 1 in (2.2), the
following improvement of inequality (1.2) follows immediately.

Corollary 2. If P ∈ Pn and P (z) does not vanish in |z| < 1 then for 0 ≤ p ≤ ∞,

∥

∥

∥

∥

|P ′|+
nmt

2

∥

∥

∥

∥

p

≤
n

‖1 + z‖p
‖P‖p, (2.3)

where m = min|z|=1 |P (z)|. The result is sharp and equality in (2.3) holds for P (z) = zn + 1.

3. Lemmas

For the proof of above theorem, we need the following lemmas.

Lemma 1. If

P (z) = a0 +

n
∑

j=µ

ajz
j , 1 ≤ µ ≤ n,

is a polynomial of degree n having no zeros in |z| < k, where k ≥ 1, then

kµ|P ′(z)| ≤ |Q′(z)| for |z| = 1,

where Q(z) = znP (1/z).

The above Lemma 1 is implicit in Qazi [15] and the proof of next lemma is implicit in [9].

Lemma 2. If P (z) is a polynomial of degree n having no zero in |z| < k, k ≥ 1, then for every
λ ∈ C with |λ| < 1,

|Q′(z)| ≥ |λ|mn for |z| = 1,

where

m = min|z|=k|P (z)|, Q(z) = znP (1/z).

Lemma 3. If

P (z) = a0 +
n
∑

j=µ

ajz
j , 1 ≤ µ ≤ n,

is a polynomial of degree n having no zeros in |z| < k, where k ≥ 1, then for 0 ≤ t ≤ 1,

kµ|P ′(z)| ≤ |Q′(z)| −mnt for |z| = 1, (3.1)

where

Q(z) = znP (1/z), m = min|z|=k|P (z)|.

P r o o f. By hypothesis, the polynomial P (z) has no zero in |z| < k, k ≥ 1. We first show for
a given λ ∈ C with |λ| < 1, the polynomial F (z) = P (z) − λm does not vanish in |z| < k. This is
clear if m = 0, that is if P (z) has a zero on |z| = k. We now suppose that all the zeros of P (z) lie
in |z| > k, then clearly m > 0 so that m/P (z) is analytic in |z| ≤ k and

∣

∣

∣

∣

m

P (z)

∣

∣

∣

∣

≤ 1 for |z| = k.
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Since m/P (z) is not a constant, by the Minimum modulus principle, it follows that

m < |P (z)| for |z| < k. (3.2)

Now, if F (z) = P (z)− λm has a zero in |z| < k, say at z = z0 with |z0| < k, then

P (z0)− λm = 0.

This gives

|P (z0)| = |λm| = |λ|m ≤ m, where |z0| < k,

which contradicts (3.2). Hence, we conclude that in any case, the polynomial

F (z) = P (z) − λm

does not vanish in |z| < k, k ≥ 1, for every λ ∈ C with |λ| ≤ 1. Applying Lemma 1 to

F (z) = P (z)− λm,

we get

|Q′(z) − λmnzn−1| ≥ kµ|P ′(z)| for |z| = 1. (3.3)

Now choosing the argument of λ so that on |z| = 1,

|Q′(z) − λmnzn−1| = |Q′(z)| − |λ|mn (3.4)

which is possible due to lemma 2. By combining (3.3) and (3.4), we obtain

|Q′(z)| ≥ kµ|P ′(z)|+ tmn for |z| = 1, (3.5)

where t = |λ| and 0 ≤ t < 1. For the case t = 1, the inequality (3.1) follows immediately by letting
t→ 1 in (3.5) and this completes the proof.

The following lemma is due to Aziz and Rather [3].

Lemma 4. If A,B and C are non-negative real numbers such that B +C ≤ A, then for every
real number β,

|(A− C) + eiβ(B + C)| ≤ |A+ eiβB|.

Lemma 5 [19]. If a, b are any two positive real numbers such that a ≥ bc where c ≥ 1, then
for any x ≥ 1, p > 0 and 0 ≤ β < 2π,

(a+ bx)p
∫ 2π

0

∣

∣c+ eiβ
∣

∣

p
dβ ≤ (c+ x)p

∫ 2π

0

∣

∣a+ beiβ
∣

∣

p
dβ.

We also need the following lemma due to Aziz and Rather [4].

Lemma 6 [4]. If P ∈ Pn and Q(z) = znP (1/z), then for every p > 0 and β real , 0 ≤ β < 2π,

∫ 2π

0

∫ 2π

0

∣

∣P ′(eiθ) + eiβQ′(eiθ)
∣

∣

p
dθdβ ≤ 2πnp

∫ 2π

0

∣

∣P (eiθ)
∣

∣

p
dθ.
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4. Proof of Theorem 1

P r o o f. By hypothesis P ∈ Pn,µ and does not vanish in |z| < k, where k ≥ 1 further if

Q(z) = znP (1/z),

then, by Lemma 3, we have for |z| = 1,

kµ
∣

∣P ′(z)
∣

∣ ≤
∣

∣Q′(z)
∣

∣−mnt =
∣

∣Q′(z)
∣

∣ −mnt

(

1 + kµ

1 + kµ

)

.

Equivalently,

kµ
(

∣

∣P ′(z)
∣

∣ +
mnt

1 + kµ

)

≤ |Q′(z)| −
mnt

1 + kµ
for |z| = 1. (4.1)

Setting

A =
∣

∣

∣
Q′(eiθ)

∣

∣

∣
, B = |P ′(eiθ)|, C =

mnt

1 + kµ

in Lemma 4 we note by (4.1) that

B + C ≤ kµ(B + C) ≤ A− C ≤ A, since k ≥ 1.

Therefore, by Lemma 4 for each real β, we get

∣

∣

∣

∣

(

|Q′(eiθ)| −
mnt

1 + kµ

)

+ eiβ
(

|P ′(eiθ)|+
mnt

1 + kµ

)∣

∣

∣

∣

≤
∣

∣

∣
|Q′(eiθ)|+ eiβ |P ′(eiθ)|

∣

∣

∣
.

This implies for each p > 0

∫ 2π

0

∣

∣

∣
F (θ) + eiβG(θ)

∣

∣

∣

p
dθ ≤

∫ 2π

0

∣

∣

∣
|Q′(eiθ)|+ eiβ |P ′(eiθ)|

∣

∣

∣

p
dθ, (4.2)

where

F (θ) = |Q′(eiθ)| −
mnt

1 + kµ
and G(θ) = |P ′(eiθ)|+

mnt

1 + kµ
. (4.3)

Let P ′(θ) = |P ′(θ)|eiψ and Q′(θ) = |Q′(θ)|eiφ, then

∫ 2π

0

∣

∣

∣
Q′(eiθ)eiβ + P ′(eiθ)

∣

∣

∣

p
dβ =

∫ 2π

0

∣

∣

∣
|Q′(eiθ)|ei(β+φ) + eiψ|P ′(eiθ)|

∣

∣

∣

p
dβ

=

∫ 2π

0

∣

∣

∣
|Q′(eiθ)|ei(β+φ−ψ) + |P ′(eiθ)|

∣

∣

∣

p
dβ.

Putting β + φ− ψ = Φ, then we obtain,

∫ 2π

0

∣

∣

∣
Q′(eiθ)eiβ + P ′(eiθ)

∣

∣

∣

p
dβ =

∫ 2π+φ−ψ

φ−ψ

∣

∣

∣
|Q′(eiθ)|eiΦ + |P ′(eiθ)|

∣

∣

∣

p
dΦ.

Since the function

T (Φ) = |Q′(eiθ)|eiΦ + |P ′(eiθ)|
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is periodic with period 2π, hence we have

∫ 2π

0

∣

∣

∣
Q′(eiθ)eiβ + P ′(eiθ)

∣

∣

∣

p
dβ =

∫ 2π

0

∣

∣

∣
|Q′(eiθ)|eiΦ + |P ′(eiθ)|

∣

∣

∣

p
dΦ

=

∫ 2π

0

∣

∣

∣
|Q′(eiθ)|eiβ + |P ′(eiθ)|

∣

∣

∣

p
dβ.

(4.4)

Integrating (4.2) both sides with respect to β from 0 to 2π and using (4.4), we get

∫ 2π

0

∫ 2π

0

∣

∣

∣
F (θ) + eiβG(θ)

∣

∣

∣

p
dθdβ ≤

∫ 2π

0

∫ 2π

0

∣

∣

∣
|Q′(eiθ)|+ eiβ |P ′(eiθ)|

∣

∣

∣

p
dβdθ

=

∫ 2π

0

∫ 2π

0

∣

∣

∣
Q′(eiθ) + eiβP ′(eiθ)

∣

∣

∣

p
dβdθ

=

∫ 2π

0

∫ 2π

0

∣

∣

∣
P ′(eiθ) + eiβQ′(eiθ)

∣

∣

∣

p
dθdβ.

By using Lemma 6 this implies,

∫ 2π

0

∫ 2π

0

∣

∣

∣
F (θ) + eiβG(θ)

∣

∣

∣

p
dθdβ ≤ 2πnp

∫ 2π

0

∣

∣

∣
P (eiθ)

∣

∣

∣

p
dθ. (4.5)

Now for |z| = 1, 0 ≤ t ≤ 1 and α ∈ C with |α| ≥ 1 and using the fact that

|nP (z)− zP ′(z)| = |Q′(z)|

for z with unit modulus, we have

|Dα[P ](e
iθ)|+ nmt

(

|α| − 1

1 + kµ

)

=
∣

∣nP (z) + (α− z)P ′(z)
∣

∣+ nmt

(

|α| − 1

1 + kµ

)

≤ |α||P ′(z)| + |nP (z)− zP ′(z)| + nmt

(

|α| − 1

1 + kµ

)

= |α||P ′(eiθ)|+ |Q′(eiθ)|+ nmt

(

|α| − 1

1 + kµ

)

= |α|

(

|P ′(eiθ)|+
mnt

1 + kµ

)

+

(

|Q′(eiθ)| −
mnt

1 + kµ

)

.

By integrating both sides with respect to θ from 0 to 2π, for each p > 0, we get

∫ 2π

0

∣

∣

∣

∣

|Dα[P ](e
iθ)|+ nmt

(

|α| − 1

1 + kµ

)
∣

∣

∣

∣

p

dθ

≤

∫ 2π

0

∣

∣

∣

∣

|α|

(

|P ′(eiθ)|+
mnt

1 + kµ

)

+

(

|Q′(eiθ)| −
mnt

1 + kµ

)
∣

∣

∣

∣

p

dθ.

Multiply both sides by
∫ 2π

0
|kµ + eiβ |pdβ,

we obtain
∫ 2π

0
|kµ + eiβ|pdβ

∫ 2π

0

∣

∣

∣

∣

|Dα[P ](e
iθ)|+ nmt

(

|α| − 1

1 + kµ

)
∣

∣

∣

∣

p

dθ

≤

∫ 2π

0

∣

∣

∣

∣

|α|

(

|P ′(eiθ)|+
mnt

1 + kµ

)

+

(

|Q′(eiθ)| −
mnt

1 + kµ

)
∣

∣

∣

∣

p

dθ

∫ 2π

0
|kµ + eiβ |pdβ.

(4.6)
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Further, since kµ ≥ 1, 1 ≤ µ ≤ n, and if

a =
∣

∣

∣
Q′(eiθ)

∣

∣

∣
−

mnt

1 + kµ
, b =

∣

∣

∣
P ′(eiθ)

∣

∣

∣
+

mnt

1 + kµ
, c = kµ, x = |α| ,

then from (4.1) one can observe that a ≥ bc. Using Lemma 5, we get for every α ∈ C with |α| ≥ 1,

{(

|Q′(eiθ)| −
mnt

1 + kµ

)

+ |α|

(

|P ′(eiθ)|+
mnt

1 + kµ

)}p ∫ 2π

0
|kµ + eiβ |pdβ

≤ (|α|+ kµ)p
∫ 2π

0

∣

∣

∣

∣

(

|Q′(eiθ)| −
mnt

1 + kµ

)

+ eiβ
(

|P ′(eiθ)|+
mnt

1 + kµ

)
∣

∣

∣

∣

p

dβ.

Again, integrating both sides with respect to θ from 0 to 2π, we obtain

∫ 2π

0

∣

∣

∣

∣

(

|Q′(eiθ)| −
mnt

1 + kµ

)

+ |α|

(

|P ′(eiθ)|+
mnt

1 + kµ

)
∣

∣

∣

∣

p

dθ

∫ 2π

0
|kµ + eiβ|pdβ

≤ (|α| + kµ)p
∫ 2π

0

∫ 2π

0

∣

∣

∣
F (θ) + eiβG(θ)

∣

∣

∣

p
dβdθ,

where F (θ) and G(θ) are given by (4.3). Using this in inequality (4.6), we get

∫ 2π

0
|kµ + eiβ|dβ

∫ 2π

0

∣

∣

∣

∣

|Dα[P ](e
iθ)|+ nmt

(

|α| − 1

1 + kµ

)
∣

∣

∣

∣

p

dθ

≤ (|α|+ kµ)p
∫ 2π

0

∫ 2π

0
|F (θ) + eiβG(θ)|pdβdθ.

(4.7)

By using (4.5) in (4.7), we obtain for each p > 0 and |α| ≥ 1

∫ 2π

0
|kµ + eiβ |dβ

∫ 2π

0

∣

∣

∣

∣

|Dα[P ](e
iθ)|+ nmt

(

|α| − 1

1 + kµ

)
∣

∣

∣

∣

p

dθ ≤ (|α| + kµ)p2πnp
∫ 2π

0

∣

∣

∣
P (eiθ)

∣

∣

∣

p
dθ.

Equivalently,

(

1

2π

∫ 2π

0

∣

∣

∣

∣

|Dα[P ](e
iθ)|+ nmt

(

|α| − 1

1 + kµ

)
∣

∣

∣

∣

p

dθ

)1/p

≤
n(|α|+ kµ)

(

1/(2π)
∫ 2π
0 |kµ + eiβ |dβ

)1/p

(

1

2π

∫ 2π

0

∣

∣

∣
P (eiθ)

∣

∣

∣

p
dθ

)1/p

,

which immediately leads to (2.1) for 0 < p < ∞ and the cases p = 0 and p = ∞ follow by
respectively taking the limits p→ 0+ and p→ ∞. This completes the proof of Theorem 1. �
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14. Pólya G.,Szegö G. Aufgaben und lehrsätze aus der Analysis. Springer-Verlag, Berlin, 1925. 353 p. (in
German)

15. Qazi M.A. On the maximum modulus of polynomials. Proc. Amer. Math. Soc., 1992. Vol. 115. P. 237–
243. DOI: 10.1090/S0002-9939-1992-1113648-1

16. Rahman Q. I., Schmeisser G. Lp inequalities for polynomials. J. Approx. Theory, 1998. Vol. 53, No. 1.
P. 26–32. DOI: 10.1016/0021-9045(88)90073-1

17. Rather N.A., Some integral inequalities for the polar derivative of a polynomial. Math. Balkanica (N.S.),
2008. Vol. 22, No. 3–4. P. 207–216.

18. Rather N.A. Lp inequalities for the polar derivative of a polynomial. J. Inequal. Pure Appl. Math., 2008.
Vol. 9, No. 4. Art. no. 103, P. 1–10.

19. Rather N.A., Iqbal A., Hyun G.H. Integral inequalities for the polar derivative of a polynomial. Non-
linear Funct. Anal. Appl., 2018. Vol. 23, No. 2. P. 381–393.

20. Schaeffer A.C. Inequalities of A. Markoff and S.Bernstein for polynomials and related functions. Bull.
Amer. Math. Soc., 1941. Vol. 47. P. 565–579. DOI: 10.1090/S0002-9904-1941-07510-5

21. Zygmund A. A remark on conjugate series. Proc. Lond. Math. Soc. (3), 1932. Vol. s2-34, No. 1. P. 392–
400. DOI: 10.1112/plms/s2-34.1.392

https://doi.org/10.1016/S0022-247X(03)00530-4
https://doi.org/10.1007/s12044-007-0030-0
https://doi.org/10.7153/mia-11-20
https://doi.org/10.1090/S0002-9947-1969-0236385-6
https://doi.org/10.1112/S0025579300001637
https://doi.org/10.1142/1284
https://doi.org/10.1090/S0002-9939-1992-1113648-1
https://doi.org/10.1016/0021-9045(88)90073-1
https://doi.org/10.1090/S0002-9904-1941-07510-5
https://doi.org/10.1112/plms/s2-34.1.392

	 Zygmund type inequalities for polynomials
	Main results
	Lemmas
	Proof of Theorem 1

