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Abstract: In this paper, we study modified-type proximal point algorithm for approximating a common
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1. Introduction

In recent years, much attention has been given to develop several iterative methods including
the proximal point algorithms (PPA) which was suggested by Martinet [26] for solving convex opti-
mization problems which was extensively developed by Rockafellar [28] in the context of monotone
variational inequalities. The main idea of this method consists of replacing the initial problem with
a sequence of regularized problems, so that each particular auxiliary problem can be solved by one
of the well-known algorithms. Quiet number of different method of proximal point algorithm have
been proposed and studied from the classical linear spaces such as Euclidean spaces, Hilbert spaces,
and Banach spaces to the setting of manifolds (see [5, 6, 13, 18, 20, 26, 28]).
Recently, the classical proximal point algorithms have been extended from linear spaces such as
Hilbert spaces or Banach spaces to the setting of nonlinear version.

In 2013, Bačák [6] introduced the PPA in a CAT(0) space (X, d) as follows: x1 ∈ X and

xn+1 = argmin
y∈X

(

f(y) +
1

2λn

d2(y, xn)
)

, ∀ n ≥ 1,

where λn > 0, ∀ n ≥ 1. It was shown that if f has a minimizer and

∞
∑

n=1

λn = ∞,

then the sequence {xn} △−converges to its minimizer [5].
It is a known fact that iterative methods for finding fixed points of nonexpansive mappings have

received vast investigations due to its extensive applications in a variety of applied areas of inverse
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problem, partial differential equations, image recovery, and signal processing; see [2, 5, 8, 15, 21]
and the references therein.

Fixed-point theory in CAT(0) spaces was first studied by Kirk [22, 23]. He showed that every
nonexpansive (single-valued) mapping defined on a bounded closed convex subset of a complete
CAT(0) space always has a fixed point. Since then, the fixed-point theory for single-valued and
multivalued mappings in CAT(0) spaces has been rapidly developed.

Recently, Suparatulatorn et al. [29] presented a new modified proximal point algorithm for
solving the minimization of a convex function and the fixed points of nonexpansive mappings
in CAT(0) spaces. Chang et al. [12] proved some strong convergence theorems of the PPA to
a common fixed point of asymptotically nonexpansive mappings and to minimizers of a convex
function in CAT(0) spaces.

Let C be a nonempty subset of a complete CAT(0) space X and T a mapping from C into
itself. Then, a point x ∈ C is called a fixed point of T if Tx = x. We denote by F (T ) the set of all
the fixed points of T . A mapping T from C into itself is said to be:

(N) nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C;

(AN) asymptotically nonexpansive, if there is a sequence {un} ⊆ [0,∞) with un → 0 as n → ∞
such that

d(T nx, T ny) ≤ (1 + un)d(x, y), ∀n ≥ 1, x, y ∈ C;

(UL) uniformly L-Lipschitzian, if there exists a constant L > 0 such that

d(T nx, T ny) ≤ Ld(x, y), ∀n ≥ 1, x, y ∈ C.

The concept of total asymptotically nonexpansive mappings was first introduced by Alber et al. [1].
A mapping T : C → C is said to be total asymptotically nonexpansive mapping if there exists
nonnegative sequences {µn}, {νn} with µn → 0, νn → 0 as n → ∞ and a strictly increasing
continuous function ζ : [0,∞) → [0,∞) with ζ(0) = 0 such that

d(T nx, T ny) ≤ d(x, y) + νnζ(d(x, y)) + µn, ∀n ≥ 1, x, y ∈ C.

Remark 1. From the definitions, it is known that each nonexpansive mapping is asymptotically
nonexpansive mapping with sequence {un = 0}, and each asymptotically nonexpansive mapping
is ({µn}, {νn}, ζ)-total asymptotically nonexpansive mapping with µn = 0, νn = un, ∀n ≥ 1 and
ζ(t) = t, t ≥ 0. But the opposite may not be true for each of them in a general sense. Furthermore,
every asymptotically nonexpansive mapping is a uniformly L-Lipschitzian mapping with

L = sup
n≥1

(1 + un).

Motivated and inspired by the above works, in this paper, we study a modified algorithm for
proximal point and fixed point of total asymptotically nonexpansive mapping in CAT(0) space.
Strong convergence of this algorithm is proved. Our method of proof is different from the method
in Chang et al. [12].

2. Preliminaries

Let (X, d) be a metric space and x, y ∈ X with d(x, y) = l. A geodesic path from x to y

is an isometry c : [0, l] → X such that c(0) = x and c(l) = y. The image of a geodesic path is
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called a geodesic segment. A metric space X is a (uniquely) geodesic space, if every two points
of X are joined by only one geodesic segment. A geodesic triangle △(x1, x2, x3) in a geodesic
space X consists of three points x1, x2, x3 of X and three geodesic segments joining each pair of
vertices. A comparison triangle of a geodesic triangle △(x1, x2, x3) is the triangle △̄(x1, x2, x3) :=
△(x̄1, x̄2, x̄3) in the Euclidean space R

2 such that

d(xi, xj) = dR2(x̄i, ȳj), ∀i, j = 1, 2, 3.

A geodesic space X is a CAT(0) space, if for each geodesic triangle △(x1, x2, x3) in X and its
comparison triangle △̄ := △(x̄1, x̄2, x̄3) in R

2, the CAT(0) inequality d(x, y) ≤ dR2(x̄, ȳ) is satisfied
for all x, y ∈ △ and x̄, ȳ ∈ △̄.

A thorough discussion of these spaces and their important role in various branches of mathe-
matics are given in [9, 10]. Let x, y ∈ X and λ ∈ [0, 1], we write λx⊕ (1− λ)y for the unique point
z in the geodesic segment joining from x to y such that

d(z, x) = (1− λ)d(x, y) and d(z, y) = λd(x, y).

We also denote by [x, y] the geodesic segment joining from x to y, that is,

[x, y] =
{

λx⊕ (1− λ)y : λ ∈ [0, 1]
}

.

A subset C of a CAT(0) space is convex if [x, y] ⊆ C for all x, y ∈ C.

Berg and Nikolaev [7] introduced the concept of an inner product-like notion (quasi-
linearization) in complete CAT(0) spaces to resolve these difficulties as follows:

Let denote a pair (a, b) ∈ X × X by
−→
ab and call it a vector. The quasilinearization is a map

〈., .〉 : (X ×X)× (X ×X) → R defined by

〈
−→
ab,

−→
cd〉 =

1

2

(

d2(a, d) + d2(b, c) − d2(a, c)− d2(b, d)
)

, ∀a, b, c, d ∈ X. (2.1)

It is easily seen that 〈
−→
ab,

−→
cd〉 = 〈

−→
cd,

−→
ab〉, 〈

−→
ab,

−→
cd〉 = −〈

−→
ba,

−→
cd〉 and 〈−→ax,

−→
cd〉 + 〈

−→
xb,

−→
cd〉 = 〈

−→
ab,

−→
cd〉 for

all a, b, c, d ∈ X. We say that X satisfies the Cauchy-Schwarz inequality if

〈
−→
ab,

−→
cd〉 ≤ d(a, b)d(c, d)

for all a, b, c, d ∈ X. It is known that a geodesically connected metric space is a CAT(0) space if
and only if it satisfies the Cauchy–Schwarz inequality (see [7]).

Lemma 1 [16]. Let X be a CAT(0) space, x, y, z ∈ X and λ ∈ [0, 1]. Then

d(λx⊕ (1− λ)y, z) ≤ λd(x, z) + (1− λ)d(y, z).

Lemma 2 [16]. Let X be a CAT(0) space, x, y, z ∈ X and λ ∈ [0, 1]. Then

d2(λx⊕ (1− λ)y, z) ≤ λd2(x, z) + (1− λ)d2(y, z)− λ(1− λ)d2(x, y).

Lemma 3 [14]. Let X be a CAT(0) space, x, y, z ∈ X and λ ∈ [0, 1]. Then

d2(λx⊕ (1− λ)y, z) ≤ λ2d2(x, z) + (1− λ)2d2(y, z) + 2λ(1 − λ)〈−→xz,−→yz〉.
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Let {xn} be a bounded sequence in a complete CAT(0) space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf
{

r(x, {xn}) : x ∈ X
}

,

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) =
{

x ∈ X : r(x, {xn}) = r({xn})
}

.

It is well known that in a CAT(0) space A({xn}) consists of exactly one point (see [15, Proposi-
tion 7]).

Lemma 4 [24]. Every bounded sequence in a complete CAT(0) space always has a
△−convergent subsequence.

Lemma 5 [19]. Let X be a complete CAT(0) space, {xn} be a sequence in X and x ∈ X. Then
{xn} △−converges to x if and only if lim supn→∞〈−−→xxn,

−→xy〉 ≤ 0 for all y ∈ C.

A function f : C → (−∞,∞] defined on a convex subset C of a CAT(0) space is convex if, for
any geodesic

[x, y] := {γx,y(λ) : 0 ≤ λ ≤ 1} := {λx⊕ (1− λ)y : 0 ≤ λ ≤ 1}

joining x, y ∈ C, the function f ◦ γ is convex, i.e.

f(γx,y(λ)) := f(λx⊕ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

For examples of convex functions in CAT(0), see [12]. For any λ > 0, define the Moreau–Yosida
resolvent of f in CAT(0) space X as

Jλ(x) = argmin
y∈X

[

f(y) +
1

2λ
d2(y, x)

]

, ∀ x ∈ X.

Let f : X → (−∞,∞] be a proper convex and lower semi-continuous function. It is shown
in [3] that the set F (Jλ) of fixed points of the resolvent associated with f coincides with the set
argminy∈X f(y) of minimizers of f . Also for any λ > 0, the resolvent Jλ of f is nonoexpansive [17].

Lemma 6 (Sub-differential inequality [4]). Let (X, d) be a complete CAT(0) space and
f : X → (−∞,∞] be proper convex and lower semi-continuous. Then, for all x, y ∈ X and λ > 0,
the following inequality holds:

1

2λ
d2(Jλx, y)−

1

2λ
d2(x, y) +

1

2λ
d2(x, Jλx) + f(Jλx) ≤ f(y).

Lemma 7 [17, 27] (The resolvent identity). Let (X, d) be a complete CAT(0) space and
f : X → (−∞,∞] be proper convex and lower semi-continuous. Then the following identity holds:

Jλx =
(λ− µ

λ
Jλx⊕

µ

λ
x
)

for all x ∈ X and λ > µ > 0.
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Lemma 8 [11]. If C is a closed convex subset of a complete CAT(0) space X and T : C → X be
a uniformly L-Lipschitzian and total asymptotically nonexpansive mappings. Let {xn} be a bounded
sequence in C such that xn ⇀ p and

lim
n→∞

d(xn, Txn) = 0.

Then Tp = p.

Lemma 9 [25]. Let {an} be a sequence of real numbers such that there exists a subsequence {ni}
of {n} such that ani

< ani+1 for all i ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N

such that mk → ∞ and the following properties are satisfied by all (sufficiently large) numbers
k ∈ N

amk
≤ amk+1 and ak ≤ amk+1.

In fact,
mk = max{j ≤ k : aj < aj+1}.

Lemma 10. (Xu, [30]) Let {an} be a sequence of nonnegative real numbers satisfying the fol-
lowing relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0,

where, (i) {αn} ⊂ [0, 1],
∑

αn = ∞; (ii) lim sup σn ≤ 0; (iii) γn ≥ 0; (n ≥ 0),
∑

γn < ∞.

Then, an → 0 as n → ∞.

3. Main Result

Theorem 1. Let X be a complete CAT(0) space and C be a nonempty closed convex subset
of X. Let f : C → (−∞,∞] be a proper convex and lower semi-continuous function and T : C → C

be L−Lipschitzian and total asymptotically nonexpansive mappings with {un}, {vn} and mappings
ζ : [0,∞) → [0,∞) satisfying

∑∞
n=1 un < ∞ and

∑∞
n=1 vn < ∞ such that

Ω := F (T )
⋂

argmin
y∈C

f(y) 6= ∅.

Let {xn}
∞
n=1 be a sequence generated by x1 = w ∈ C chosen arbitrarily,















zn = argmin
y∈C

[

f(y) +
1

2λn

d2(y, xn)
]

,

yn = αnw ⊕ (1− αn)zn,
xn+1 = (1− βn)xn ⊕ βnT

nyn,

(3.1)

where {αn}
∞
n=1 ⊂ (0, 1), {βn}

∞
n=1 ⊂ [c, d] ⊂ (0, 1) satisfying

lim
n→∞

αn = 0,
∞
∑

n=1

αn = ∞, lim
n→∞

un

αn

= 0, lim
n→∞

vn

αn

= 0.

Assume there exists constant M > 0, such that ζ(r) ≤ Mr,∀r ≥ 0. Then {xn}
∞
n=1 converges

strongly to Ω.

P r o o f. Let p ∈ Ω and f(p) ≤ f(y), ∀ y ∈ C. Therefore we obtain

f(p) +
1

2λn

d2(p, p) ≤ f(y) +
1

2λn

d2(y, p), ∀ y ∈ C,
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hence p = Jλn
p, ∀ n ≥ 1. Indeed zn = Jλn

xn and Jλn
is nonexpansive [17]. Thus

d(zn, p) = d(Jλn
xn, Jλn

p) ≤ d(xn, p).

Let δn := αnβn(1 + unM). Since there exists N0 > 0 such that

un

αn

≤
ǫ(1 + unM)

M
,

vn

αn

≤ (1 + unM),

for all n ≥ N0 and for some ǫ > 0 satisfying 0 ≤ (1 − ǫ)δn ≤ 1. For any point p ∈ Ω and n ≥ N0,
then we have from (3.1) and from Lemma 1 that

d(xn+1, p) = d((1 − βn)xn ⊕ βnT
nyn, p)

≤ (1− βn)d(xn, p) + βnd(T
nyn, p)

≤ (1− βn)d(xn, p) + βn(1 +Mun)d(yn, p) + βnvn

= (1− βn)d(xn, p) + βn(1 +Mun)[d(αnw ⊕ (1− αn)zn, p)] + βnvn

≤ (1− βn)d(xn, p) + αnβn(1 +Mun)d(w, p) + βn(1− αn)(1 +Mun)d(zn, p) + βnvn

≤ [1− βn + βn(1− αn)(1 +Mun)]d(xn, p)

+αnβn(1 +Mun)d(w, p) + βnvn

≤ [1− (1− ǫ)δn]d(xn, p) + δn(1− ǫ)
(d(w, p) + 1)

(1− ǫ)

≤ max
{

d(xn, p),
(d(w, p) + 1)

(1− ǫ)

}

.

Thus, by induction

d(xn, p) ≤ max
{

d(xN0
, p),

(d(w, p) + 1)

(1− ǫ)

}

, ∀ n ≥ N0.

It implies that {xn} is bounded, it follows that {yn} and {zn} are also bounded. Furthermore,
from (3.1) and Lemma 2 and letting ūn := 2Mun + u2n, we obtain

d2(xn+1, p) = d2((1 − βn)xn ⊕ βnT
nyn, p)

≤ (1− βn)d
2(xn, p) + βnd

2(T nyn, p)− βn(1− βn)d
2(xn, T

nyn)

≤ (1− βn)d
2(xn, p) + βn((1 +Mun)d(yn, p) + vn)

2 − βn(1− βn)d
2(xn, T

nyn)

= (1− βn)d
2(xn, p) + βn(1 +Mūn)d

2(yn, p) + βnvn[2(1 +Mun)d(yn, p) + vn]

−βn(1− βn)d
2(xn, T

nyn), (3.2)

also from Lemma 3, we have

d2(yn, p) = d2(αnw ⊕ (1− αn)zn, p)

≤ α2
nd

2(w, p) + (1− αn)
2d2(zn, p) + 2αn(1− αn)〈

−→wp,−→znp〉

≤ α2
nd

2(w, p) + (1− αn)d
2(zn, p) + 2αn(1− αn)〈

−→wp,−→znp〉 (3.3)

≤ α2
nd

2(w, p) + (1− αn)d
2(xn, p) + 2αn(1− αn)〈

−→wp,−→znp〉. (3.4)

From (3.2) and (3.4) and the fact that {yn} is bounded, we have that there exists D > 0 such that
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for any n ≥ N0, d(yn, p) ≤ D and letting θn := αnβn, we obtain

d2(xn+1, p) ≤ (1− βn)d
2(xn, p) + βn[α

2
nd

2(w, p) + (1− αn)d
2(xn, p) + 2αn(1− αn)〈

−→wp,−→znp〉]

+βnūnd
2(yn, p)βnvn[2(1 +Mun)d(yn, p) + vn]− βn(1− βn)d

2(xn, T
nyn)

≤ (1− θn)d
2(xn, p) + θn[αnd

2(w, p) + (1− αn)〈
−→wp,−→znp〉]

+βn[ūnD
2 + 2Dvn(1 +Mun) + v2n]− βn(1− βn)d

2(xn, T
nyn) (3.5)

≤ (1− θn)d
2(xn, p) + θn[αnd

2(w, p) + (1− αn)〈
−→wp,−→znp〉]

+βn[ūnD
2 + 2Dvn(1 +Mun) + v2n]. (3.6)

To complete the proof, we have to consider the following two cases.

Case 1. Suppose {d(xn, p)} is non-increasing, then {d(xn, p)} is convergent, from (3.5) and
boundedness of {zn}, then there exists D1 > 0 such that for any n ≥ N0, d(zn, p) ≤ D1, thus

βn(1− βn)d
2(xn, T

nyn) ≤ d2(xn, p)− d2(xn+1, p)

+θn[αnd
2(w, p) + 2(1− αn)〈

−→wp,−→znp〉 − d2(xn, p)]

+βn[ūnD
2 + 2Dvn(1 +Mun) + v2n]

≤ d2(xn, p)− d2(xn+1, p)

+θn[αnd
2(w, p) + 2(1− αn)D1d(w, p) − d2(xn, p)]

+βn[ūnD
2 + 2Dvn(1 +Mun) + v2n], (3.7)

which implies that

βn(1− βn)d
2(xn, T

nyn) → 0 as n → ∞,

hence

lim
n→∞

d(xn, T
nyn) = 0 (3.8)

and from (3.1), we have

d(yn, zn) ≤ αnd(w, zn) + (1− αn)d(zn, zn) → 0 as n → ∞, (3.9)

also from (3.1) and (3.8), we obtain

d(xn+1, xn) ≤ (1− βn)d(xn, xn) + βnd(T
nyn, xn) → 0 as n → ∞. (3.10)

Furthermore from Lemma 6, we see that

1

2λn

d2(zn, p)−
1

2λn

d2(xn, p) +
1

2λn

d2(xn, zn) ≤ f(p)− f(zn),

since f(p) ≤ f(zn) for all n ≥ 1, it follows that

d2(xn, zn) ≤ d2(xn, p)− d2(zn, p). (3.11)

But from (3.2) and (3.3), we obtain

d2(xn+1, p) ≤ (1− βn)d
2(xn, p) + βn[α

2
nd

2(w, p) + (1− αn)d
2(zn, p) + 2αn(1− αn)〈

−→wp,−→znp〉]

+βn[2vn(1 +Mun)d(yn, p) + v2n + ūnd
2(yn, p)],
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therefore, from (2.1) and boundedness of {zn}, we obtain

d2(xn, p) ≤
1

βn
(d2(xn, p)− d2(xn+1, p)) + α2

nd
2(w, p) + (1− αn)d

2(zn, p)

+2αn(1− αn)D1d(w, p) + 2Dvn(1 +Mum) + ūnD
2,

(3.12)

from (3.11) and (3.12), we obtain

d2(xn, zn) ≤
1

βn
(d2(xn, p)− d2(xn+1, p)) + αn(αnd

2(w, p) − d2(zn, p))

+2αn(1− αn)D1d(w, p) + 2Dvn(1 +Mum) + ūnD
2,

since {xn} and {zn} are bounded and {d(xn, p)} is non-increasing sequence, it follows from that

lim
n→∞

d(xn, zn) = 0, (3.13)

from (3.9) and (3.13), we obtain

lim
n→∞

d(xn, yn) = 0 (3.14)

and

d(yn, T
nyn) ≤ d(yn, xn) + d(xn, T

nyn) → 0 as n → ∞, (3.15)

also from (3.14) and (3.15), we obtain

d(xn, T
nxn) ≤ d(xn, yn) + d(yn, T

nyn) + d(T nyn, T
nxn)

≤ (2 +Mun)d(xn, yn) + d(yn, T
nyn) + vn → 0 (3.16)

as n → ∞. Observe also that since T is uniformly L-Lipschitzian, we have

d(xn, Txn) ≤ d(xn, T
nxn) + d(T nxn, Txn)

≤ d(xn, T
nxn) + Ld(T n−1xn, xn)

≤ d(xn, T
nxn) + L[d(T n−1xn, T

n−1xn−1) + d(T n−1xn−1, xn−1) + d(xn−1, xn)]

≤ d(xn, T
nxn) + Ld(T n−1xn−1, xn−1) + L(1 + L)d(xn, xn−1),

it follows from (3.10) and (3.16) that

lim
n→∞

d(xn, Txn) = 0, (3.17)

from (3.14) and (3.17), we obtain

d(yn, T yn) ≤ d(yn, xn) + d(xn, Txn) + d(Txn, T yn)

≤ (1 + L)d(yn, xn) + d(xn, Txn) → 0

as n → ∞. Also since λn ≥ λ > 0, from Lemma 7, we obtain

d(Jλxn, Jλn
xn) = d

(

Jλxn, Jλ

(λn − λ

λn

Jλn
xn ⊕

λ

λn

xn

))

≤ d(xn, (1−
λ

λn

)Jλn
xn ⊕

λ

λn

xn)

≤ (1−
λ

λn

)d(xn, zn) → 0



Modified Proximal Point Algorithm 117

as n → ∞, hence

d(xn, Jλxn) ≤ d(xn, zn) + d(zn, Jλxn) → 0 as n → ∞. (3.18)

Moreover, since {xn} is bounded and X is a complete CAT(0) space, by Lemma 4 we choose
a subsequence {xni

} of {xn} such that △ − limxni
= v, where v := PΩ(w). Then, from (3.15),

(3.18), Lemma 8 and the fact that Jλ is nonexpansive [17], we have v ∈ F (T ), also from Lemma 5,
we have

lim sup〈−→wv,−−→xnv〉 ≤ 0. (3.19)

Furthermore, since

〈−→wv,−→znv〉 = 〈−→wv,−−→znxn〉+ 〈−→wv,−−→xnv〉

≤ d(w, v)d(zn, xn) + 〈−→wv,−−→xnv〉,

it follows from (3.13) and (3.19) that

lim sup〈−→wv,−→znv〉 ≤ 0.

Thus, now putting v := p in inequality (3.6), we get that, for n ≥ N0

d2(xn+1, v) ≤ (1− θn)d
2(xn, v) + θn[αnd

2(w, v) + (1− αn)〈
−→wv,−→znv〉]

+βn[ūnD
2 + 2Dvn(1 +Mun) + v2n].

(3.20)

Hence
d2(xn+1, v) ≤ (1− θn)d

2(xn, v) + θnσn + γn,

where

σn := αnd
2(w, v) + (1− αn)〈

−→wv,−→znv〉, γn := βn[ūnD
2 + 2Dvn(1 +Mun) + v2n],

it follows from Lemma 10 that d(xn, v) → 0 as n → ∞. Consequently, xn → v.

Case 2. Suppose that {d(xn, p)}n≥1 is non-decreasing sequence. Then, there exists a subse-
quence {ni} of {n} such that

d(xni
, p) < d(xni+1, p)

for all i ∈ N. Then, by Lemma 9, there exists an increasing sequence {mj}j≥1 such that mj → ∞,

d(xmj
, p) ≤ d(xmj+1, p) and d(xj , p) ≤ d(xmj+1, p) for all j ≥ 1. Then from (3.7), we obtain

βmj
(1− βmj

)d2(xmj
, Tmjymj

) ≤ d2(xmj
, p)− d2(xmj+1, p)

+θmj
[αmj

d2(w, p) + 2(1 − αmj
)〈−→wp,−−→zmj

p〉 − d2(xmj
, p)]

+βmj
[ūmj

D2 + 2Dvmj
(1 +Mumj

) + v2mj
]

≤ d2(xmj
, p)− d2(xmj+1, p)

+θmj
[αmj

d2(w, p) + 2(1 − αmj
)D1d(w, p) − d2(xmj

, p)]

+βmj
[ūmj

D2 + 2Dvmj
(1 +Mumj

) + v2mj
].

This implies d(xmj
, Tmjymj

) → 0 as j → ∞. Thus, as in Case 1, we obtain that d(xmj
, Txmj

) → 0
and d(xmj

, Jλxmj
) → 0 as j → ∞ and also following the same argument in Case 1, we get

lim sup〈−→wv,−−→zmj
v〉 ≤ 0, where v := PΩ(w). Also from (3.20), we obtain that,

d2(xmj+1, v) ≤ (1− θn)d
2(xmj

, v) + θmj
[αmj

d2(w, v) + (1− αmj
)〈−→wv,−−→zmj

v〉]

+βmj
[ūmj

D2 + 2Dvmj
(1 +Mumj

) + v2mj
].

(3.21)
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Since d2(xmj
, v) ≤ d2(xmj+1, v), it follows that

θmj
d2(xmj

, v) ≤ d2(xmj
, v)− d2(xmj+1, v) + θmj

[αmj
d2(w, v) + (1− αmj

)〈−→wv,−−→zmj
v〉]

+βmj
[ūmj

D2 + 2Dvmj
(1 +Mumj

) + v2mj
]

≤ θmj
[αmj

d2(w, v) + (1− αmj
)〈−→wv,−−→zmj

v〉]

+βmj
[ūmj

D2 + 2Dvmj
(1 +Mumj

) + v2mj
].

In particular, since θmj
> 0, we get

d2(xmj
, v) ≤ [αmj

d2(w, v) + (1− αmj
)〈−→wv,−−→zmj

v〉] +
[ ūmj

αmj

D2 + 2D
vmj

αmj

(1 +Mumj
) + vmj

vmj

αmj

]

.

Then, since lim sup〈−→wv,−−−→xmj
v〉 ≤ 0 and the fact that αmj

→ 0 as j → ∞ and

lim
j→∞

umj

αmj

= 0, lim
j→∞

vmj

αmj

= 0

we obtain that d(xmj
, v) → 0 as j → ∞. This together with (3.21) give d(xmj+1, v) → 0 as j → ∞.

But d(xj , v) ≤ d(xmj+1, v), for all j ≥ 1, thus we obtain that xj → v. Therefore, from the above
two cases, we can conclude that {xn}

∞
n=1 converges strongly to an element of Ω and the proof is

complete. �

4. Conclusion

In this work, we study a modified Halpern-type proximal point algorithm for finding the mini-
mizer of a convex lower semi-continuous function which is also a fixed point of total asymptotically
nonexpansive mapping. Under some appropriate assumption, we have obtained a strong conver-
gence theorem for the proposed algorithm in the framework of a complete CAT(0) space.
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18. Güler O. On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control
Optim., 1991. Vol. 29, No. 2. P. 403–419. DOI: 10.1137/0329022

19. Kakavandi B.A. Weak topologies in complete CAT(0) metric spaces. Proc. Amer. Math. Soc., 2012.
Vol. 141, No. 3. P. 1029–1039. URL: https://www.jstor.org/stable/23558440

20. Kamimura S., Takahashi W. Approximating solutions of maximal monotone operators in Hilbert spaces.
J. Approx. Theory, 2000. Vol. 106, No. 2. P. 226–240. DOI: 10.1006/jath.2000.3493

21. Kang S.M., Haq A.U., Nazeer W., Ahmad I., Ahmad M. Explicit viscosity rule of nonexpansive map-
pings in CAT(0) spaces. J. Comput. Anal. Appl., 2019. Vol. 27, No. 6. P. 1034–1043.

22. Kirk W.A. Geodesic geometry and fixed point theory. In: Seminar of Mathematical Analysis,
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